
Approximation Algorithms

University of Ljubljana, Faculty of Computer and Information Science

Prof Marko Robnik-Šikonja

Analysis of Algorithms and Heuristic Problem Solving
Edition 2023

2

Contents

• refresh your knowledge about NP-completeness in Cormen et al.:
Introduction to algorithms, 2009, Chapter 34

• performance ratios

• examples of approximation algorithms

• non-existance of approximation algorithms

• Literature:
Cormen et al.: Introduction to algorithms, 2009/2022, Chapter 35

Next six slides are just a refreshment of important topics in NPC, we require in our course.
Please read Chapter 34 in Cormen et al, Introduction to algorithms, 2009

NP-completeness refreshment

4

P and NP problems

• shortest and longest paths

• Euler’s trail and Hamilton’s cycle

• decision and optimization problems

• problem reductions

• Formal languages: alphabet, language, language operations

• accepting a word, deciding, verification

revision

5

Definitions

• P={L  {0,1}*: there exists an algorithm A which decides L in
polynomial time}

• verification algorithm A(x, y), where x is an input and y a certificate

• a language is verified with verification algorithm A if for every x  L
there exists a certificate
L={x{0,1}*: ⱻ y{0,1}* such that A(x, y) = 1}

• The complexity class NP is a class of languages, verifiable by a
polynomial algorithm

L  NP ↔ ⱻ A(x,y)  P, constant c, such that
L={x{0,1}*: ⱻ certificate y: |y|=O(|x|c)
that A(x,y)=1}

revision

6

Reductions

• Language L1 is polynomial reducible to language L2, which we denote as L1 p
L2, if there exists a polynomially computable function f: {0,1}* → {0,1}*, such
that for all x  {0,1}* it is true:
x  L1 ↔ f(x)  L2

• for languages L1, L2  {0,1}* and L1 p L2 it holds: L2  P → L1  P

revision

7

NP-completeness

Language L is NP-complete (NPC) if

1. L  NP

2. L’ p L for each L’  NP

If at least the second point is true, language L is NP-hard.

revision

8

Proofs of NP-completeness

• If for L is true that L’ p L for some L’  NPC, then L is NP-hard. If L
 NP, then L  NPC.

• Proof steps:

1. show L  NP

2. choose a known NP-complete language L’

3. describe reduction algorithm, which computes function f, that
for every x  L’ returns f(x)  L

4. prove that for all x  {0,1}* it holds: x  L’ ↔ f(x)  L

5. prove that your algorithm computes f in polynomial time

revision

9

A few well-known
NP-complete problems

• CSAT - logical Circuit Satisfiability,

• FSAT - logical Formula Satisfiability,

• 3CNF-SAT - formula in 3-Conjunctive Normal Form Satisfiability

• CLIQUE - existence of Cliques in a graph,

• VERTEX COVER – a minimal set of vertices that cover all the edges
of a graph

• HAM Hamiltonian cycle of a graph,

• TSP Travelling Salesman Problem,

• SUBSET-SUM – the subset of numbers equal to a given number

• BIN-TREE – optimal binary decision tree (the tree that identifies all
objects with a minimal amount of tests)

• SUBGRAPH-ISOMPOPHISM (but not GRAPH-ISOMPORPHISM)

revision

10

Performance ratios

• approximation ratio is a ratio between the cost of approximate and
optimal solution of a problem

• see Cormen et al: Introduction to algorithms, 2009/2022, Chapter 35

11

Vertex-cover

12

Illustration of
Approx-Vertex-Cover algorithm

13

General TSP

• Non-existence of approximation algorithm for general TSP

14

MAX-3CNF-SAT

• expected approximation ratio is an expected ratio between the
cost of approximate and optimal solution of a problem of a
randomized algorithm

• randomized algorithm: randomly assign each of the variables with
0 or 1 with probability 0.5

• this algorithm is 8/7-approximation algorithm

