# Amortized analysis of computational complexity



Prof Marko Robnik-Šikonja

Analysis of Algorithms and Heuristic Problem Solving Edition 2023

#### Three methods

- aggregated analysis
- the accounting method
- the potential method

• CLRS, Chapter 17

## Aggregated analysis

- Two examples:
  - stack
  - binary counter

# Example1: Stack with MULTIPOP operation

# MULTIPOP(S, k)

- 1 while not STACK-EMPTY (S) and k > 0
- 2 Pop(S)
- 3 k = k 1

#### Example 2: Incrementing binary counter

## INCREMENT(A)

```
1  i = 0

2  while i < A.length and A[i] == 1

3  A[i] = 0

4  i = i + 1

5  if i < A.length

6  A[i] = |1
```

# Binary counter: aggregated analysis

Example: k = 3

[Underlined bits flip. Show costs later.]

| counter | A            |      |
|---------|--------------|------|
| value   | 2 1 0        | cost |
| 0       | 000          | 0    |
| 1       | 0 <u>0 1</u> | 1    |
| 2       | 0 1 <u>0</u> | 3    |
| 3       | <u>0 1 1</u> | 4    |
| 4       | 1 0 <u>0</u> | 7    |
| 5       | 1 <u>0 1</u> | 8    |
| 6       | 1 1 <u>0</u> | 10   |
| 7       | <u>111</u>   | 11   |
| 0       | 000          | 14   |
| :       | :<br>:       | 15   |

Cost of Increment =  $\Theta(\# \text{ of bits flipped})$ .

# Binary counter: aggregated analysis

Not every bit flips every time.

[Show costs from above.]

| bit        | flips how often  | times in $n$ INCREMENTS |
|------------|------------------|-------------------------|
| 0          | every time       | n                       |
| 1          | 1/2 the time     | $\lfloor n/2 \rfloor$   |
| 2          | 1/4 the time     | $\lfloor n/4 \rfloor$   |
|            | •<br>•           |                         |
| i          | $1/2^i$ the time | $\lfloor n/2^i \rfloor$ |
|            | •<br>•           |                         |
| $i \geq k$ | never            | 0                       |

#### Stack: accounting method

#### Stack

| operation | actual cost  | amortized cost |
|-----------|--------------|----------------|
| PUSH      | 1            | 2              |
| POP       | 1            | 0              |
| MULTIPOP  | $\min(k, s)$ | O              |

# Stack: potential method

| operation | actual cost       | $\Delta\Phi$                        | amortized cost |
|-----------|-------------------|-------------------------------------|----------------|
| Push      | 1                 | (s+1) - s = 1                       | 1 + 1 = 2      |
|           |                   | where $s = \#$ of objects initially |                |
| Pop       | 1                 | (s-1)-s=-1                          | 1 - 1 = 0      |
| MULTIPOP  | $k' = \min(k, s)$ | (s - k') - s = -k'                  | k' - k' = 0    |

#### Example 3: Dynamic arrays

#### TABLE-INSERT (T, x)

T.num = T.num + 1

```
if T.size == 0
          allocate T.table with 1 slot
          T.size = 1
    if T.num == T.size
 5
         allocate new-table with 2 \cdot T. size slots
 6
         insert all items in T.table into new-table
         free T.table
         T.table = new-table
 9
         T.size = 2 \cdot T.size
     insert x into T.table
10
```

#### Exercise: Cuckoo hashing

• See the paper

Rasmus Pagh (2006): Cuckoo Hashing for Undergraduates.