Computational Complexity

Prof Dr Marko Robnik Šikonja
Analysis of Algorithms and Heuristic Problem Solving
February 2023

Asymptotically tight bound Θ

- Given function $g(n)$, we denote with $\Theta(g(n))$ a set of functions:
- $\Theta(\mathrm{g}(\mathrm{n}))=\left\{\mathrm{f}(\mathrm{n}) ; \exists \mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{n}_{0}>0, \forall \mathrm{n}>\mathrm{n}_{0}: 0 \leq \mathrm{c}_{1} \mathrm{~g}(\mathrm{n}) \leq \mathrm{f}(\mathrm{n}) \leq \mathrm{c}_{2} \mathrm{~g}(\mathrm{n})\right\}$
- notation used is $f(n) \in \Theta(g(n))$ and more frequently $f(n)=\Theta(g(n))$
- $\mathrm{g}(\mathrm{n})$ is asymptotically tight bound for $\mathrm{f}(\mathrm{n})$
- assumption: $\mathrm{g}(\mathrm{n})$ is asymptotically positive function

$\Theta(\mathrm{g}(\mathrm{n}))$

An example

- Let us show that $1 / 2 n^{2}-3 n=\Theta\left(n^{2}\right)$
- find $\mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{n}_{0}$
- Home work:
- show that $\mathrm{an}^{2}+\mathrm{bn}+\mathrm{c}=\Theta\left(\mathrm{n}^{2}\right)$
- show for all polynomials $\mathrm{p}(\mathrm{n}), p(n)=\sum_{i=0}^{d} a_{i} n^{i}, a_{d}>0$, that $\mathrm{p}(\mathrm{n})=\Theta\left(\mathrm{n}^{\mathrm{d}}\right)$
- show $6 n^{3} \neq \Theta\left(n^{2}\right)$
- we denote constant function as $\Theta\left(\mathrm{n}^{0}\right)=\Theta(1)$

Asymptotical upper bound 0

- for functions $g(n)$ we write $O(g(n))$ to be a set of functions for which the following holds:
- $O(\mathrm{~g}(\mathrm{n}))=\left\{\mathrm{f}(\mathrm{n}) ; \exists \mathrm{c}, \mathrm{n}_{0}>0, \forall \mathrm{n}>\mathrm{n}_{0}: 0 \leq \mathrm{f}(\mathrm{n}) \leq \mathrm{cg}(\mathrm{n})\right\}$
- we use notation $f(n) \in O(g(n))$ or more frequently $f(n)=O(g(n))$
- $\mathrm{g}(\mathrm{n})$ is asymptotical upper bound for $\mathrm{f}(\mathrm{n})$
- attention! the literature tend to be imprecise in this notation
- use also as an anonymous function, for example $T(n)=2 T(n / 2)+O(n)$
$O(g(n))$

Alternative definitions

- for upper bound

$$
f(n)=O(g(n)) \Leftrightarrow \lim _{n \rightarrow \infty} \frac{|f(n)|}{g(n)}<\infty \text { and the limit exists }
$$

Examples

- Show $1 / 2 n^{2}-3 n=O\left(n^{2}\right)$
- Show at home:
- $a n^{2}+b n+c=O\left(n^{2}\right)$
- $a n+c=O\left(n^{2}\right)$

Asymptotical lower bound Ω

- For function $\mathrm{g}(\mathrm{n})$ we write $\Omega(\mathrm{g}(\mathrm{n}))$ to be a set of functions:
- $\Omega(\mathrm{g}(\mathrm{n}))=\left\{\mathrm{f}(\mathrm{n}) ; \exists \mathrm{c}, \mathrm{n}_{0}>0, \forall \mathrm{n}>\mathrm{n}_{0}: 0 \leq \mathrm{cg}(\mathrm{n}) \leq \mathrm{f}(\mathrm{n})\right\}$
- notation $f(n) \in \Omega(g(n))$ or more frequently $f(n)=\Omega(g(n))$
- $g(n)$ is asymptotical lower bound for $f(n)$
- attention, the literature might be imprecise

$\Omega(\mathrm{g}(\mathrm{n}))$

Relations between asymptotical bounds

- for functions $f(n)$ and $g(n)$ it holds:
- $\mathrm{f}(\mathrm{n})=\Theta(\mathrm{g}(\mathrm{n})$) if and only if $\mathrm{f}(\mathrm{n})=\mathrm{O}(\mathrm{g}(\mathrm{n}))$ and $\mathrm{f}(\mathrm{n})=\Omega(\mathrm{g}(\mathrm{n}))$

Imprecise boundaries, notations o and ω

- $o(g(n))=\left\{f(n) ; \forall c>0, \exists n_{0}>0, \forall n>n_{0}: 0 \leq f(n)<c g(n)\right\}$
- e.g., $7 n=o\left(n^{2}\right)$ in $3 n^{2} \neq o\left(n^{2}\right)$
- $o(g(n))$ is an imprecise upper bound
- $\mathrm{f}(\mathrm{n})=o(\mathrm{~g}(\mathrm{n})) \leftrightarrow \lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0$
- $\omega(\mathrm{g}(\mathrm{n}))=\left\{\mathrm{f}(\mathrm{n}) ; \forall \mathrm{c}>0, \exists \mathrm{n}_{0}>0, \forall \mathrm{n}>\mathrm{n}_{0}: 0 \leq \mathrm{cg}(\mathrm{n})<\mathrm{f}(\mathrm{n})\right\}$
- e.g., $n^{2}=\omega(n)$ and $3 n \neq \omega(n)$
- $\omega(\mathrm{g}(\mathrm{n}))$ is an imprecise lower bound
- $\mathrm{f}(\mathrm{n})=\omega(\mathrm{g}(\mathrm{n})) \leftrightarrow \lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=\infty$

Properties of asymptotic bounds1/2

- transitivity

$$
\begin{aligned}
& \mathrm{f}(\mathrm{n})=\Theta(\mathrm{g}(\mathrm{n})) \wedge \mathrm{g}(\mathrm{n})=\Theta(\mathrm{h}(\mathrm{n})) \Rightarrow \mathrm{f}(\mathrm{n})=\Theta(\mathrm{h}(\mathrm{n})) \\
& \mathrm{f}(\mathrm{n})=\mathrm{O}(\mathrm{~g}(\mathrm{n})) \wedge \mathrm{g}(\mathrm{n})=\mathrm{O}(\mathrm{~h}(\mathrm{n})) \Rightarrow \mathrm{f}(\mathrm{n})=\mathrm{O}(\mathrm{~h}(\mathrm{n})) \\
& \mathrm{f}(\mathrm{n})=\Omega(\mathrm{g}(\mathrm{n})) \wedge \mathrm{g}(\mathrm{n})=\Omega(\mathrm{h}(\mathrm{n})) \Rightarrow \mathrm{f}(\mathrm{n})=\Omega(\mathrm{h}(\mathrm{n})) \\
& \mathrm{f}(\mathrm{n})=\mathrm{o}(\mathrm{~g}(\mathrm{n})) \wedge \mathrm{g}(\mathrm{n})=o(\mathrm{~h}(\mathrm{n})) \Rightarrow \mathrm{f}(\mathrm{n})=\mathrm{o}(\mathrm{~h}(\mathrm{n})) \\
& \mathrm{f}(\mathrm{n})=\omega(\mathrm{g}(\mathrm{n})) \wedge \mathrm{g}(\mathrm{n})=\omega(\mathrm{h}(\mathrm{n})) \Rightarrow \mathrm{f}(\mathrm{n})=\omega(\mathrm{h}(\mathrm{n}))
\end{aligned}
$$

- reflexivity

$$
\begin{aligned}
& f(n)=\Theta(f(n)) \\
& f(n)=O(f(n)) \\
& f(n)=\Omega(f(n))
\end{aligned}
$$

Properties of asymptotic bounds 2/2

- symmetry
$\mathrm{f}(\mathrm{n})=\Theta(\mathrm{g}(\mathrm{n})) \Leftrightarrow \mathrm{g}(\mathrm{n})=\Theta(\mathrm{f}(\mathrm{n}))$
- transpose symmetry

$$
\begin{aligned}
& \mathrm{f}(\mathrm{n})=\mathrm{O}(\mathrm{~g}(\mathrm{n})) \Leftrightarrow \mathrm{g}(\mathrm{n})=\Omega(\mathrm{f}(\mathrm{n})) \\
& \mathrm{f}(\mathrm{n})=\mathrm{o}(\mathrm{~g}(\mathrm{n})) \Leftrightarrow \mathrm{g}(\mathrm{n})=\omega(\mathrm{f}(\mathrm{n}))
\end{aligned}
$$

- analogy with numbers

$$
f(n)=O(g(n)) \quad a \leq b
$$

$$
f(n)=\Omega(g(n)) \quad a \geq b
$$

- but not trichotomy
e.g., between two numbers exactly one of the following relations holds $a<b, a=b, a>b$
why not for asymptotic function bounds?

Divide and conquer algorithms

- Idea:
- divide the problem into several (equal) parts
- (recursively) conquer (solve) each of the sub problems
- combine sub problem solutions
- An example: maximum subarray problem

Maximum subarray problem

// maximal subarray of array A[low...high] crossing the point mid findMaxCrossingSubarray(A, low, mid, high) \{
leftSum $=-\infty$; sum $=0$;
for ($\mathrm{i}=$ mid ; $\mathrm{i}>=$ low ; $\mathrm{i}-\mathrm{-}$) $\{$
sum $=$ sum $+A[i]$;
if (sum > leftSum) \{
leftSum = sum ;
maxLeft $=\mathrm{i}$;
\}
\}
rightSum $=-\infty$; sum $=0$;
for ($\mathrm{j}=$ mid $+1 ; \mathrm{j}$ <= high ; $\mathrm{j}++$) \{
sum $=\operatorname{sum}+A[j]$;
if (sum > rightSum) \{
rightSum = sum ;
maxRight $=\mathrm{j}$;
\}
\}
return (maxLeft, maxRight, leftSum + rightSum) ;

```
// maximal subarray of array A[low...high]
findMaxSubarray(A, low, high) {
    if (low == high) // boundary condition
    return (low, high, A[low]) ;
    else {
    mid = (low + high) / 2;
    (leftLow, leftHigh, leftSum) = findMaxSubarray(A, low, mid) ;
    (rightLow, rightHigh, rightSum) = findMaxSubarray(A, mid+1, high) ;
    (crossLow, crossHigh, crossSum) = findMaxCrossingSubarray(A, low, mid, high) ;
    if (leftSum >= rightSum && leftSum >= crossSum)
        return (leftLow, leftHigh, leftSum) ;
    else if (rightSum >= leftSum && rightSum >= crossSum)
        return (rightLow, rightHigh, rightSum) ;
    else return (crossLow, crossHigh, crossSum) ;
    }
}
```


Kadane algorithm

- idea: for each position compute the maximum subarray result for the subarray ending at given position
findMaxSubarrayKadane(A) \{
maxEndingHere $=0$;
maxSoFar = 0 ;
for ($\mathrm{i}=1$; $\mathrm{i}<=$ A.length ; $\mathrm{i}++$) \{
maxEndingHere $=\max (0$, maxEndingHere $+A[i])$;
$\operatorname{maxSoFar}=\max (\operatorname{maxSoFar}, \operatorname{maxEndingHere})$;
\}
return maxSoFar ;
\}

Four approaches to the analysis of divide-and-conquer algorithms

- substitution method:
- guess the solution
- using induction find the constants and prove the solution is valid (requires some practice and knowledge of some tricks)
- recursive tree:
- draw recursion tree and sum complexity level-wise and altogether;
- prove with induction that the result is correct
- master theorem
- Akra-Bazzi theorem

Master theorem

- for divide and conquer algorithms
- assume constants $a \geq 1, b>1$, a function $f(n)$
- $T(n)$ is defined for nonnegative integers with recurrent equation

$$
\mathrm{T}(\mathrm{n})=\mathrm{aT}(\mathrm{n} / \mathrm{b})+\mathrm{f}(\mathrm{n})
$$

where n / b is either $\lfloor n / b\rfloor$ or $\lceil n / b\rceil$. T(n) has the following asymptotic bounds

$$
\left\{\begin{array}{cc}
T(n)=\theta\left(n^{\log _{b} a}\right) & ; f(n)=O\left(n^{\log _{b} a-\varepsilon}\right) \text { for constant } \varepsilon>0 \\
T(n)=\theta\left(n^{\log _{b} a} \log n\right) & ; f(n)=\theta\left(n^{\log _{b} a}\right) \\
T(n)=\theta(f(n)) & ; f(n)=\Omega\left(n^{\log _{b} a+\varepsilon}\right) \text { for constant } \varepsilon>0, \\
& \text { if } a f\left(\frac{n}{b}\right) \leq c f(n), \text { for constant } c<1, \text { and all large enough } n
\end{array}\right\}
$$

Using the master theorem

- examples when it works
- and when it doesn't

Akra-Bazzi theorem

(Mohamad Akra and Louay Bazzi, 1998)
Let
$\mathrm{T}(\mathrm{x})=\left\{\begin{array}{cl}\theta(1) & ; 1 \leq x \leq x_{0} \\ \sum_{i=1}^{k} a_{i} T\left(b_{i} x\right)+f(x) & ; x>x_{0}\end{array}\right\}$, where

- real number $x>=1$,
- constant $x_{0}>=1 / b_{i}$ and $x_{0}>=1 /\left(1-b_{i}\right)$ for $i=1,2, \ldots, k$
- a_{i} is a positive constant for $i=1,2, \ldots, k$
- b_{i} is constant $0<b_{i}<1$ for $i=1,2, \ldots, k$
- $k>=1$ is an integer constant
- $f(x)$ is nonnegative function satisfying polynomial growth condition: there exist positive constants c_{1} and c_{2} such that for all $x>=1$ and for $i=1,2, \ldots$, k, for all u for which $b_{i} x<=u<=x$ it holds $c_{1} f(x)<=f(u)<=c_{2} f(x)$. Alternatively: if $\left|f^{\prime}(x)\right|$ is upper bounded by polynomial of x, then $f(x)$ satisfies polynomial growth condition.
- real number p is the only solution of equation $\sum_{i=1}^{k} a_{i} b_{i}^{p}=1$

Then the solution of the recursion is

$$
\mathrm{T}(\mathrm{x})=\theta\left(x^{p}\left(1+\int_{1}^{x} \frac{f(u)}{u^{p+1}} d u\right)\right)
$$

Akra-Bazzi theorem - the strong form

Let
$\mathrm{T}(\mathrm{x})=\left\{\begin{array}{cl}\theta(1) & ; 1 \leq x \leq x_{0} \\ \sum_{i=1}^{k} a_{i} T\left(b_{i} x+h_{i}(x)\right)+f(x) & ; x>x_{0}\end{array}\right\}$, where

- real number $x>=1$,
- constant $x_{0}>=\max \left(b_{j}, 1 / b_{i}\right)$ for $i=1,2, \ldots, k$
- a_{i} is a positive constant for $i=1,2, \ldots, k$
- b_{i} is constant $0<b_{i}<1$ for $i=1,2, \ldots, k$
- $k>=1$ is an integer constant
- $|f(x)|=O\left(x^{c}\right)$ for any $c \in N$
- $\left|h_{i}(x)\right|=O\left(\frac{x}{\log ^{2} x}\right)$
- real number p is the only solution of equation $\sum_{i=1}^{k} a_{i} b_{i}^{p}=1$

Then the solution of the recursion is

$$
\mathrm{T}(\mathrm{x})=\theta\left(x^{p}\left(1+\int_{1}^{x} \frac{f(u)}{u^{p+1}} d u\right)\right)
$$

