
Intersection of two implicit surfaces
A surface in R3 can be described as a solution set of an equation f(x) = 0, where x =
[x1, x2, x3]

T ∈ R3, and f is a function of three variables. Suppose we are given two surfaces
given by f1(x) = 0 and f2(x) = 0. The intersection of these two surfaces is the solution set
of the nonlinear system

f1(x) = 0,
f2(x) = 0.

If f1 and f2 are smooth functions and some additional conditions are satisfied the intersection
of these two surfaces is a smooth curve K. The objective is to find this curve.

Construction of the curve K

View equations f1(x) = 0 and f2(x) = 0 as equations of level sets of f1 and f2. The curve
K is the intersection of these two level sets. Gradients of f1 and f2 are orthogonal to K at
each point of K. In other words, the vector (grad f1)× (grad f2) is tangent to K. Set

F(x) =
(grad f1(x))× (grad f2(x))

‖(grad f1(x))× (grad f2(x))‖
.

This is a vector-valued function F : R3 → R3. The curve K can then be understood as a
solution to the differential equation

ẋ(t) = F (x) (1)
x(0) = x0

where x0 is an initial point that lies in the intersection of both surfaces, i.e. f1(x0) = 0 and
f2(x0) = 0. Since the vector product in F in normed, the solution to (1) is even parametrised
according to its natural prarameter.

We can solve (1) using numerical methods for solving differential equations, say Eulers
or Runge-Kutta methods.

Depending on the accuracy of the chosen method and the step size h we are using,
the curve we get may eventually noticeably deviate from the intersection of the surfaces
f1(x) = 0 and f2(x) = 0 due to numerical errors (this may happen even after just one step,
if we are using Eulers method or the step size h is too large). We can correct this behaviour
by continually checking if the current point y on the curve is still close enough to K and, if
needed, move to a point on K that is ’close’ to K. Considering that the values f1(y) and
f2(y) are themselves good measures of how close y is to the surfaces, we can decide to make
a correction whenever the quantity

d = max{|f1(y), |f2(y)|} (2)

exceeds a given value ε > 0.
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In the case y is too far away from the intersection and denoting v = F(y), then v·x = v·y
is the equation of a plane, which is ‘close’ to a plane normal to K. We can use y to obtain
x1, which actually lies on K by solving the system of nonlinear equations (in the unknown
x)

f1(x) = 0,
f2(x) = 0, (3)

v · x− v · y = 0.

We will obtain the solution x1 of this system by using the Newton’s iteration with initial
guess y. Expectation is, of course, that x1 is close y. (If it is not, our choice of h was too
large.)

With x1 on K obtained we continue with the numerical solving of (1).
A minor problem regarding the sensibility of this construction: In practice the starting

point x0 ∈ K is not known, we only know an approximation y for x0. A quick remedy: Solve
the system (3) with this approximation, get x0 ∈ K, and use the method described above.

Task

1. Write down the vector-valued function G : R3 → R3 and its Jacobi matrix JG corre-
sponding to the system (3). (Both can be expressed using fi, grad fi, y, and v.)

2. Write an octave function

X = presekPloskevEuler(f1, gradf1, f2, gradf2, X0, h, n, tol, maxit, epsilon)
X = presekPloskevRK4(f1, gradf1, f2, gradf2, X0, h, n, tol, maxit, epsilon),

which given:

• functions f1, f2 : R3 → R, functions of a vector argument x ∈ R3,

• gradients grad f1, grad f2 : R3 → R3, vector-valued functions R3 → R3,

• approximation X0 for the initial point on the curve (this has to be ‘adjusted’ using
the system (3) first),

• step length h,

• the number n of consecutive points on the curve to be constructed,

• the tolerance tol for Newton’s iteration, and

• maximum allowed number of iteration steps maxit for Newton’s iteration

• maximum allowed distance (in the sense of (2)) from the intersection epsilon.

returns a 3 × (n + 1) matrix X containing the points on the curve K as columns, ie.
X = [x0,x1, . . . ,xn]. The first function uses Eulers method and the second uses the
Runge-Kutta method of the 4th order. Stick to specifications!
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3. Compare how often on average the functions presekPloskevEuler and presekPloske-
vRK4 perform the correction described above for a few examples of surfaces and choices
of step size h.

Submission

Use the online classroom to submit the following:

1. file presekPloskev.m, which should be well commented and contain at least one test,

2. a report file solution.pdf which contains the necessary derivations and answers to
questions.

While you can discuss solutions of the problems with your colleagues, the programs and
report must be your own creation. You can use all octave functions from problem sessions.
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