University of Ljubljana, Faculty of Computer and Information Science

Formal languages

Tiny introduction

Prof Dr Marko Robnik-Šikonja
Natural language processing, Edition 2023

Lecture outline

- regular expressions
- context dependent grammars
- Chomsky hierarchy

Regular expressions - a quick resume 1/3

- standard notation for characterizing text sequences
- used in all kinds of text processing and information extraction tasks
- many different syntaxes (Perl, grep, sed, awk, Python, etc)
- let's use regular expressions (RE) from python
- if A and B are REs then $A B$ is RE
- $a, b, \ldots, z, A, B, \ldots Z, 0,1, \ldots, 9$ are REs
- e.g. abeceda is RE
- . matches any character, e.g.: va.a matches vaba or vaza or vaya
- ^ matches the start of a string; ^. oga matches noga or joga, but not nadloga
- \$ matches the end of a string
- * matches 0 or more repetitions of the previous RE: ab* matches $a, a b, a b b, \ldots$
- + matches 1 or more repetitions of the previous RE: $a b+$ matches $a b, a b b, \ldots$ but not a

Regular expressions 2/3

- ? matches 0 or 1 repetitions of the previous RE: ab? matches a or ab
- *, + and ? are greedy: they match the longest possible string, e.g., <.*> on the string <a> b <c> matches the whole string
- *?, +?, ?? cause minimal matching of *, +, and ?, e.g.,.: <.*?> on the string <a> b <c> will match <a>
- $\{m\}$ matches m repetitions of a previous RE: $b\{5\}$ matches only bbbbb
- $\{m, n\}$ matches from m to n repetitions of a previous RE
- $\{, n\}$ is the same as $\{0, n\}$
- $\{m$,$\} is the same as \{m, \infty\}$
- $\{m, n\}$? is a non-greedy variant of $\{m, n\}$
- \is an escape character, it makes the next character special, e.g., \backslash matches \}
* matches *

Regular expressions 3/3

- [] represents a set of characters, e.g., [abc] matches a, b, or c; with [] we can represent a sequence of characters, e.g., [a-z] matches all lowercase letters from a to z special characters inside the set are not special, e.g., ?,+,*
- [^] (^ as the first character) represents a complement of a set, e.g., [^abc] matches all characters except a, b, and c
- | in $A \mid B$, where A and B are REs, means that RE matches A or B, several REs separated with | is tested from left to right, operator | is not greedy
- (...) matches RE in the parenthesis and marks a group, which can be used later or retrieved with \group_number
- (?aiLmsux), where after ? there are one or more letters means: a - only ASCII matches, i - ignore lower/uppercase, L - depend on the local settings, m - multi-line, s - the dot matches everything, etc. - check the manual
- many other useful details

Example

- Find me all instances of the word "the" in a text.
the
Misses capitalized examples
[tT]he
Incorrectly returns other or theology
[^a-zA-Z][tT]he[^a-zA-Z]

Errors

- The process we just went through was based on fixing two kinds of errors:

1. Matching strings that we should not have matched (there, then, other)
False positives (Type I errors)
2. Not matching things that we should have matched (The) False negatives (Type II errors)

Errors cont.

- In NLP we are always dealing with these kinds of errors.
- Reducing the error rate for an application often involves two antagonistic efforts:
- Increasing accuracy or precision (minimizing false positives)
- Increasing coverage or recall (minimizing false negatives).

Substitutions

- Substitution in Python and UNIX commands:
-s/regexpl/pattern/
- e.g.:
-s/colour/color/

Simple Application: ELIZA

- Early NLP system that imitated a Rogerian psychotherapist (Weizenbaum, 1966).
- Uses pattern matching to match, e.g.,:
- "I need X"
and translates them into, e.g.
- "What would it mean to you if you got X?

Simple Application: ELIZA

Men are all alike.
IN WHAT WAY
They're always bugging us about something or other. CAN YOU THINK OF A SPECIFIC EXAMPLE

Well, my boyfriend made me come here. YOUR BOYFRIEND MADE YOU COME HERE

He says I'm depressed much of the time.
I AM SORRY TO HEAR YOU ARE DEPRESSED

How ELIZA works

- s/.* I'M (depressed|sad) .*/I AM SORRY TO HEAR YOU ARE \1/
- s/.* I AM (depressed|sad) .*/WHY DO YOU THINK YOU ARE \1/
- s/.* all .*/IN WHAT WAY?/
- s/.* always .*/CAN YOU THINK OF A SPECIFIC EXAMPLE?/

Summary

- Regular expressions play a surprisingly large role
- Sophisticated sequences of regular expressions are often the first model for any text processing text
- For hard tasks, we use machine learning classifiers
- But regular expressions are still used for pre-processing, or as features in the classifiers
- Can be very useful in capturing generalizations

RE exercises

Write regular expressions for the following languages

- the set of all alphabetic strings;
- the set of all lower case alphabetic strings ending in ab
- the set of all strings with two consecutive repeated words (e.g., "Humbert
- Humbert" and "the the" but not "the bug" or "the big bug");
- the set of all strings from the alphabet a, b such that each a is immediately
- preceded by and immediately followed by a b;
- all strings that start at the beginning of the line with an integer and that end at the end of the line with a word;
- all strings that have both the word grotto and the word raven in them (but not, e.g., words like grottos that merely contain the word grotto);

Formal Languages and Models

- Language: a (possibly infinite) set of strings made up of symbols from a finite alphabet
- Model of a language: can recognize and generate all and only the strings from the language
- Serves as a definition of the formal language
- Alphabet Σ is a finite set of symbols, e.g., $\Sigma=\{0,1\}$ or $\Sigma=\{a, b, c, d\}$.
- String is a sequence of symbols from alphabet
- ε is an empty set
- $\Sigma \cup \Sigma \Sigma$ is a set of all strings of length 1 or 2
- Σ^{*} is a set of all strings from alphabet
- imprecise notation, e.g., 0 is a symbol and 0 is a string, depending on the context

Merrill, W., 2021. Formal Language Theory Meets Modern NLP. arXiv preprint arXiv:2102.10094. About formal languages and their relation with neural networks.

Language

- Language is a subset of Σ^{*} for an alphabet Σ.
- Example: language of 0 and 1 , where there are no two consecutive 1s
- $L=\{\varepsilon, 0,1,00,01,10,000,001,010,100,101$, 0000, 0001, 0010, 0100, 0101, 1000, 1001, 1010, . . . $\}$

Chomsky Hierarchy

- Regular language
- Model: regular expressions, finite state automata
- Context free language
- Context sensitive language
- Unrestricted language
- Model: Turning Machine

Regular Expressions and Languages

- A regular expression pattern can be mapped to a set of strings
- A regular expression pattern defines a language (in the formal sense) - the class of this type of languages is called a regular language

An example of non-regular language

$$
L_{1}=\left\{0^{n} 1^{n} \mid n \geq 1\right\}
$$

$L_{1}=\{01,0011,000111, \ldots\}$

An example

$L_{2}=\left\{w \mid w \in\{(,)\}^{*}\right.$ with balanced brackets $\}$.
E.g.: (), ()(), (()), (()()),...

Context Free Grammars (CFG)

- A context-free grammar is a notation for describing languages.
- It is more powerful than finite automata or RE's, but still cannot define all possible languages.
- Useful for nested structures, e.g., parentheses in programming languages.
- Basic idea is to use "variables" to stand for sets of strings (i.e., languages).
- These variables are defined recursively, in terms of one another.
- Recursive rules ("productions") involve only concatenation.
- Alternative rules for a variable allow union.

Example: CFG for $\left\{0^{n} 1^{n} \mid n \geq 1\right\}$

- Productions:

S -> 01
S -> OS1

- 01 is part of a language
- if w is in the language, so is $0 w 1$

Syntax

- Syntax = rules describing how words can connect to each other
- that and after year last
- I saw you yesterday
- colorless green ideas sleep furiously
- the kind of implicit knowledge of your native language that you had mastered by the time you were 3 or 4 years old without explicit instruction
- not necessarily the type of rules you were later taught in school.

Syntax

-Why should you care?

- Grammar checkers
- Question answering
- Information extraction
- Machine translation

CFG Formalism

- Terminals = symbols of the alphabet of the language being defined.
- Variables = nonterminals = a finite set of other symbols, each of which represents a language.
- Start symbol = the variable whose language is the one being defined.
- A production has the form variable -> string of variables and terminals.
- Convention:
- A, B, C, \ldots are variables.
- a, b, c, \ldots are terminals.
- ..., $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$ are either terminals or variables.
- ..., w, x, y, z are strings of terminals only.
- $\alpha, \beta, \gamma, \ldots$ are strings of terminals and/or variables.

Example: Formal CFG

- Here is a formal CFG for $\left\{0^{n} 1^{n} \mid n \geq 1\right\}$.
- Terminals $=\{0,1\}$.
- Variables $=\{\mathrm{S}\}$.
- Start symbol = S.
- Productions =

S $->01$
S -> OS1

Derivations - Intuition

- We derive strings in the language of a CFG by starting with the start symbol, and repeatedly replacing some variable A by the right side of one of its productions.
- That is, the "productions for A" are those that have A on the left side of the ->.

Derivations - Formalism

- We say $\alpha A \beta=>\alpha \gamma \beta$ if $A->\gamma$ is a production.
- Example: S -> 01; S -> 0 S1.
- S => 0 S1 $=>00 \mathrm{~S} 11$ => 000111.

Iterated Derivation

-=>* means "zero or more derivation steps."

- Basis: $\alpha=>^{*} \alpha$ for any string α.
- Induction: if $\alpha=>^{*} \beta$ and $\beta=>\gamma$, then $\alpha=>^{*} \gamma$.

Example: Iterated Derivation

- S -> 01; S -> OS1.
- S => 0 S 1 => 00 S 11 => 000111.
- So S =>* S; S =>* 0S1; S =>* 00S11; S =>* 000111.

Language of a Grammar

- If G is a CFG, then $L(G)$, the language of G, is $\left\{w \mid S=>^{*} w\right\}$.
- Note: w must be a terminal string, S is the start symbol.
- Example: G has productions S -> ϵ and S -> OS1.
- $L(G)=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$.
- Note: ϵ is a legitimate right side.

Context-Free Languages

- A language that is defined by some CFG is called a context-free language.
- There are CFL's that are not regular languages, such as the example just given.
- But not all languages are CFL's.
- Intuitively: CFL’s can count two things, not three.

Parse Trees

- Parse trees are trees labeled by symbols of a particular CFG.
- Leaves: labeled by a terminal or ϵ.
- Interior nodes: labeled by a variable.
- Children are labeled by the right side of a production for the parent.
- Root: must be labeled by the start symbol.

Example: Parse Tree

S -> SS \| (S) \| ()

Ambiguous Grammars

- A CFG is ambiguous if there is a string in the language that is the yield of two or more parse trees.
- Example: S -> SS | (S) | ()
- Two parse trees for ()()() on next slide.

Example

Ambiguity is a Property of Grammars, not Languages

- For the balanced-parentheses language, here is another CFG, which is unambiguous.
$B \rightarrow(R B \mid$
B, the start symbol, derives balanced strings.
$\mathrm{R} \rightarrow \mathrm{P}) \mid$ R
have one more right bracket than left.

Inherent Ambiguity

- It would be nice if for every ambiguous grammar, there were some way to "fix" the ambiguity, as we did for the balanced-parentheses grammar.
- Unfortunately, certain CFL's are inherently ambiguous, meaning that every grammar for the language is ambiguous.

Example: Inherent Ambiguity

- The language $\left\{0^{i} 1^{1} 2^{k} \mid i=j\right.$ or $\left.j=k\right\}$ is inherently ambiguous.
- Intuitively, at least some of the strings of the form $0^{n} 1^{n} 2^{n}$ must be generated by two different parse trees, one based on checking the 0's and 1's, the other based on checking the 1's and 2's.

One Possible Ambiguous Grammar

```
S -> AB | CD
A -> 0A1 | 01
B -> 2B | 2
C -> OC | O
D -> 1D2 | 12
```

```
A generates equal 0's and 1's
B generates any number of 2's
C generates any number of 0's
D generates equal 1's and 2's
```

And there are two derivations of every string with equal numbers of 0's, 1's, and 2's. E.g.:
$S=>A B=>01 B=>012$
$S=>C D=>0 D=>012$

Exercises

- Write CFG for a language
- $L(G)=\left\{\right.$ all words of a form $a^{n} b^{m} c^{k}$, where $n+$ $m=k\}$
- $L(G)=\left\{\right.$ all words of a form $a^{n} b^{m} c^{k}$, where $n+$ $k=m\}$

Chomsky Normal Form

- A CFG is said to be in Chomsky Normal Form if every production is of one of these two forms:

1. $A->B C$ (right side is two variables).
2. $A->a$ (right side is a single terminal).

- Theorem: If L is a CFL, then $L-\{\epsilon\}$ has a CFG in CNF.

Decision properties of CFG

1. $w \in L$
2. $L=\{ \}$
3. L is infinite
4. $L_{1}=L_{2}$
5. $L_{1} \cap L_{2}=\{ \}$

Algorithm CYK - testing membership

- CYK: Cocke - Younger - Kasami
- CFG=\{V,T,S,P\}
- answers the question $x \in L$ (or equivalently $S \Rightarrow^{*} x$)
- examples
- is a given program correct according to the given grammar
- is the given sentence grammatically correct
- requires CFG in Chomsky normal form
- $\mathrm{O}\left(\mathrm{n}^{3}\right)$, where $\mathrm{n}=|\mathrm{w}|$.

CYK Algorithm

- Let $w=a_{1} \ldots a_{n}$.
- We construct an n-by-n triangular array of sets of variables.
- $\mathrm{X}_{\mathrm{ij}}=\left\{\right.$ variables $\left.\mathrm{A} \mid \mathrm{A}=>^{*} \mathrm{a}_{\mathrm{i}} \ldots \mathrm{a}_{\mathrm{j}}\right\}$.
- Induction on $\mathrm{j}-\mathrm{i}+1$.
- The length of the derived string.
- Finally, ask if S is in $X_{1 n}$.

CYK Algorithm - (2)

- Basis: $\mathrm{X}_{\mathrm{ii}}=\left\{\mathrm{A} \mid \mathrm{A}->\mathrm{a}_{\mathrm{i}}\right.$ is a production $\}$.
- Induction: $\mathrm{X}_{\mathrm{ij}}=\{\mathrm{A} \mid$ there is a production $\mathrm{A}->\mathrm{BC}$ and an integer k , with $i \leq k<j$, such that B is in $X_{i k}$ and C is in $X_{k+1, j}$.

CYK example

- $S \rightarrow A B$
$A \rightarrow B C \mid a$
$\mathrm{B} \rightarrow \mathrm{CC} \mid \mathrm{b}$
$\mathrm{C} \rightarrow \mathrm{a}$
- ? S \rightarrow aaab

	a	a	a	b
1	A, C	A, C	A, C	B
2	B	B	S	
3	S,A	/		
4	S			

CYK exercises

\author{

- $S \rightarrow P N \mid$ other $P \rightarrow I E$ I \rightarrow if
 $\mathrm{E} \rightarrow$ expression
 $\mathrm{N} \rightarrow \mathrm{T}$ S
 $\mathrm{T} \rightarrow$ then
}
- is the sentence correct
$\mathrm{S} \rightarrow$ if expression then if expression then other

Tools for grammars

- gnu programs bison and yacc
- based on CFG, they generate a recognizer code in C, C++, or java

Chomsky hierarchy

Order 3

- Order 3 grammars are regular languages
- Grammars of the form
$\mathrm{S} \rightarrow \mathrm{aA}$
$S \rightarrow a$

Order 2

- CFGs
- Form A $\rightarrow \alpha$
- α is a string of terminals and nonterminals
- programming languages

Order 1

- Context dependent grammars CDG
- Form $\alpha \mathrm{A} \beta \rightarrow \alpha \gamma \beta$
- A is a variable, α, β, and γ are strings of terminals and nonterminals
- α and β can be empty, γ has to be non-empty
- natural languages

Order 0

- Unbounded (Turing) grammars and Turing languages, i.e., languages recognizable by Turing machines
- Form $\alpha \rightarrow \beta$
- There are languages unrecognizable with Turing machines - diagonal proof

