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Network Sampling: Some First Steps' 

Mark Granovetter 
Harvard University 

Social network research has been confined to small groups because 
large networks are intractable, and no systematic theory of network 
sampling exists. This paper describes a practical method for sampling 
average acquaintance volume (the average number of people known 
by each person) from large populations and derives confidence limits 
on the resulting estimates. It is shown that this average figure also 
yields an estimate of what has been called "network density." Ap- 
plications of the procedure to community studies, hierarchical struc- 
tures, and interorganizational networks are proposed. Problems in 
developing a general theory of network sampling are discussed. 

Sociologists and anthropologists have discussed and studied communities 
since their disciplines began. As the communities studied have increased in 
size, the fact that not all community members have social relations with 
one another has become a matter of prominent theoretical focus. The 
metaphor most consistently chosen to represent this situation is that of the 
"social network"-a device for representing social structure which depicts 
persons as points and relations as connecting lines. (Good general dis- 
cussions are found in Barnes 1969; Bott 1957; Mitchell 1969; White, 
Boorman, and Breiger 1976). 

Most discussions of network ideas, however, have had practical applica- 
tion only to small groups. Inability to apply the ideas effectively to larger 
structures has stemmed in part from the lack of a theoretical framework 
in which to place the network metaphor and in part from the absence- 
and perceived difficulty-of methods applicable to and statistical under- 
standing of large networks. In an earlier paper (1973) I suggested some 
theoretical leads for the application of network ideas to macrosociology; 
here I explore some statistical and methodological avenues which, when 
more fully developed, should help to bring the network perspective more 
squarely into the mainstream of sociological research. 

It is clear why network methods have been confined to small groups: 
existing methods are extremely sensitive, in their practicality, to group 

1 An early version of this paper was delivered at the Mont Chateau conference on the 
anthropological study of social networks, sponsored by the Mathematical Social Science 
Board, Morgantown, West Virginia, May 16-19, 1974. Discussions begun at that con- 
ference led to crucial improvements. In particular, the progress reported here would 
not have been possible without the collaboration and stimulation of Paul Holland; 
remarks by Samuel Leinhardt triggered important parts of the work. I am also in- 
debted to Harrison White, Stanley Wasserman, and Ove Frank for valuable criticism. 
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size because they are population rather than sampling methods. In a 
group of size N, the number of potential (symmetric) ties is [N (N 
1)72] (i.e., proportional to N2), so that any method meant to deal with 
the total population faces insuperable obstacles for groups larger than a 
few hundred. A group of 5,000, for instance-which we might think of as 
a small town-contains over 12 million potential lines in its network. 
Yet most Americans live in much larger aggregates, which analysts never- 
theless, in community studies, persist in thinking relevant as social units. 
Implicitly, these studies often make arguments about the community's 
total network, but they rarely do so explicitly, because no methods exist 
for investigating such an object. Implicitly, again, what all such studies do, 
and must do, is to sample from that network. But because the procedure 
is not explicit and no statistical theory guides it, we are left guessing about 
the representativeness of the patterns of social relations found. This uncer- 
tainty is particularly noticeable when the "sampling" procedure is one of 
participant observation, but representativeness is problematic even if the 
procedure consists of asking a random sample of the community some 
sociometric questions. Just as an enormous advance in sociological work 
ensued when the general theory of random sampling was developed and 
applied to sociological problems, so the full development of network ideas 
in macrosociological perspective must await a comparable theory of net- 
work sampling. At present, only a few analysts have attacked this problem 
(Goodman 1961; Bloemena 1964; Capobianco 1970; Frank 1971), and 
only Frank attempts a comprehensive statistical treatment. 

In this paper, I show that for one simple but important property of 
social networks, "density," a straightforward and practical method can 
provide acceptable sampling estimates even for very large populations. I 
then suggest applications of the method and discuss the more general 
problems of sampling from networks.2 

Network density is the ratio of the number of ties actually observed to 
the number theoretically possible. In small groups, density is usually 
treated as a measure of group "cohesion" (Festinger, Schacter, and Back 
1950, chap. 5) and as a partial indication of the extent to which a group 

2 I should stress that the basic results here are made possible by the pathbreaking work 
of Ove Frank (1971), professor of statistics, University of Lund, Sweden. Even more 
important than his actual results is Frank's demonstration that network sampling 
problems can be attacked with relatively standard methods of statistical inference 
(e.g., the use of indexing variables), although their application requires a good deal 
of imagination. Another important breakthrough which deserves to be followed up is 
Goodman's paper on "snowball sampling" (1961). Snowball sampling is not appropri- 
ate in the present paper, however, because its practicality is limited to cases where 
respondents make a fairly small number of sociometric choices. I mean to develop 
methods relevant to respondents' entire friendship networks, including the many people 
they know whom it would not occur to them to choose in a limited-choice situation. 
On the general significance of "weak ties," see my 1973 paper in this Journal. 

1288 



Network Sampling 

is "primary" or "closed" (see Homans 1974; Bott 1957). In communities 
or larger settings, density has been used to indicate levels of "moderniza- 
tion" (see Mayer 1961; Tilly 1969). A good general discussion of density 
can be found in Barnes (1969). 

DENSITY AND THE "HOW-MANY-PEOPLE" PROBLEM 

Before discussing the sampling method, I want to make a detour to show 
that finding the density in networks is actually, given certain limitations, 
equivalent to answering the question "How many people do people know?" 
That question, though one might suppose its answer to be a fundamental 
social fact, has actually been studied very little, and no systematic in- 
formation exists for representative populations. 

Initially, the problem may seem straightforward: If we want to know 
how many people someone knows, why not ask him? To be quite frank, no 
direct evidence shows that this procedure would give poor results. In- 
direct evidence and everyday experience, however, suggest that most 
individuals could give only a very rudimentary estimate. The obvious 
method would be to ask a respondent to write out a list of all the people 
he knows and count the names. But such a substantial proportion of one's 
contacts are seen infrequently that they would come to mind only with 
some difficulty, particularly during the limited time one could allow or 
expect for the schedule to be filled out. 

Gurevitch (1961) used an ingenious extension of this method, which 
insured far greater accuracy. He asked each respondent to keep a daily 
diary over a period of 100 days, listing, each day, all the persons he came 
into contact with who also knew him by this criterion (p. 1, n). This time 
period was chosen because "the net increment during the tail end of this 
period was small enough to justify termination of the procedure" (p 43). 

The method, a variant of time-budget techniques, gives excellent results 
but has serious drawbacks. The most serious and obvious is that such 
sustained commitment of respondents can probably only be secured on 
a paid basis. Gurevitch's sample consisted of 15 individuals who responded 
to a notice offering pay for this activity and three unpaid volunteers (who 
presumably knew him). The size and character of his sample make 
generalization from it impossible, and the cost of the method makes reason- 
able samples impractical to draw. Another difficulty is that the method 
misses contacts seen less frequently than every 100 days. In a place where 
someone has lived for some years, there may be a substantial number of 
these. 

A very different method becomes available if we shift the focus away 
from the individuals to the communities in which they live. In this more 
macroscopic perspective, we may view acquaintance volume as a char- 
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acteristic not simply of individuals but of the entire community. In fact, 
if we are willing to sacrifice individual detail and investigate the average 
number of people known to people within a bounded community (in which 
case we also miss, of course, contacts outside the boundary we set), the 
question does reduce to that of network density, as follows: In a group 
of size N, where Nt ties are observed, the density measure, D, is Nt/ 
[N(N- 1)72], where all ties are assumed symmetric. But since each of 
the Nt observed ties represents two cases of someone knowing someone 
else, the total number of contacts in the group must be 2Nt, and the aver- 
age number per person 2Nt/N. Call this quantity V, for average acquaint- 
ance volume. Simple algebra now shows that V - (N-1)D. Hence, any 
method which finds density also finds average acquaintance volume. In 
what follows, I will often describe networks in terms of their average 
acquaintance volume instead of their density, given the greater intuitive 
appeal of the former. When I discuss applications, it will be clear that the 
equivalence also has substantive importance. 

THE SAMPLING METHOD 

Given a population of size N, the method proposed is to take a number 
of random samples from that population, each of size n (with replace- 
ment), and within each such sample ask each respondent some sociometric 
question about each other respondent. Which sociometric question is asked 
depends on the purpose of the particular investigation. If the main focus, 
for example, were the "how-many-people" question, it would be sufficient 
to ask whether the respondent knew each of the other n - 1 respon- 
dents by name. In this method, frequency of contact is irrelevant-people 
seen only every few years, or less often, have the same chance of being 
named as those seen every day. One could assure himself that results 
would be accurate for a given sample by providing as a stimulus not only 
the names of the n - 1 others, but also other relevant information such as 
address or occupation; even photographs could be used to be sure that 
acquaintances whose faces were better remembered than their names would 
be recognized. 

In the language of graph theory, each sample, once lines are drawn 
among respondents corresponding to their sociometric responses, is a 
"random subgraph" from the population.3 By averaging the densities 
found in the various samples taken, one arrives at an estimate of the 
density in the population network. (In the Appendix I give a proof that 
this estimate is unbiased.) 

Two sampling parameters need to be set: the number of samples taken 

3 The use of random subgraphs was first suggested to me by Samuel Leinhardt. 
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and the size of each sample. One can imagine taking a large number of 
small samples (e.g., thousands of random pairs) or a small number of 
large samples (e.g., a few samples of several hundred or more). Some 
previous work on network sampling has focused on the idea that the rele- 
vant sampling unit ought to be the "tie"-that one should sample not 
from the N individuals but from the N(N - 1)72 possible lines in the 
network, to see in which cases lines are actually observed (Capobianco 
1970; Niemeijer 1973; Tapiero, Capobianco, and Lewin 1975). This has a 
certain intuitive appeal but needs to be seen as a special case of sampling 
random subgraphs, with each subgraph containing two points. In effect, 
it is one example of the "large number of small samples" strategy referred 
to above. In this perspective, the calculations below make it clear that the 
"small number of large samples" is almost invariably a more efficient 
strategy. 

The crux of the statistical problem then, is to determine what com- 
binations of the two sampling parameters will insure a good estimate of 
acquaintance volume. 

The first step must be a formula for the variance of our density esti- 
mate. This can be derived easily from a crucial result obtained by Frank 
(1971, p. 92), who shows that when exactly one subgraph of size n is 
sampled from a population of size N, and T denotes a random variable, the 
number of ties observed in this subgraph, 

Var (T) -(N -n)n(n -l) (n -2)S2 (a)I(N -1) (N -2) (N -3) 
+ (N-n)(N - n 1)n(n- 1)s2(C)/2(N- 2)(N -3), (1) 

where s2(a) is the variance of the true vector of "outdegrees," that is, 
individual acquaintance volumes, and S2(C) is the variance of the true 
(population) sociomatrix. 

By definition, our density estimate, to be called Da is equal to T/( n). 
A2 

Thus, Var (D) Var (T)(4/[n2(n - 1)2]). Now, suppose more than 
one subgraph of size n is sampled-namely, w such samples-and we 

A 

average all their density estimates to get an overall estimate Da,. 
Neglecting the covariance among the pooled estimates,4 we then have 

Var (Dar) (1w) [ (N - 2)(N-3)(n 1) 

F 2(n -2) + (2) 
L (N 1)- I) (a) + (N n-1)S2(C) 

Equation (2) shows, as one might suspect, that the variance of the 

4 It is safe to neglect the covariances so long as n < N, or where n is moderate, so 
long as w is small. As will be shown below, these conditions apply in nearly all con- 
ceivable cases. 
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density estimate depends on the detailed structure of the actual population 
network, as given by S2(C) and s2(a). It is easily shown (see Frank 1971, 
pp. 70-72) that S2(C) D(1 - D) and that 

s2(a)= (N 1)s2(C) - N - {Ci - [aj/(N - 
N 

where a, is the number of ties involving person i, that is, the sum of row 
i in the sociomatrix. 

Since the parameter S2(C) is completely determined by the density, the 
first step in arriving at a density estimate is to guess at the true density 
for a given population; to fix s2 (a) requires more complex assumptions 
about how that density is distributed. First of all, since it is a variance, 
it must 0 if a1 _ a, -. . . an-that is, if every individual knows the 
same number of other people. The number, a1, would then be exactly the 

A 
average acquaintance volume and would hence minimize Var (D,,) and 
the required sample size, for fixed density and confidence limits. (This is 
also clear from inspection of eq. [2].) 

Correspondingly, s2(a) is maximized, for a given density, when all the 
acquaintanceship is concentrated in the smallest possible number of peo- 
ple, and everyone else knows no one. In order to say what this "smallest 
possible number" is, we must first specify the maximum number of people 
anyone might know. The larger this number, the higher the variance of 
s2(a), since the number who know any people can then be quite small 
compared to population size. A conservative procedure would be to set 
this number high and imagine that, in our maximum baseline population, 
if someone knows any people, he knows the maximum number. I will set 
this figure at 2,000. (In the Gurevitch 100-day diary study [1961] the 
largest number of acquaintances reported by any respondent was 658.) 
In a population of 100,000, then, with average acquaintance volume of 
100, the maximal case would exist if 95,000 people knew no one, and each 
of the 5,000 others knew 2,000 from among one another. If (N * V)/2,000 
<2,000, some modification is needed in the definition of "maximal." For 
instance, where N -10,000 and V -100, the present definition suggests 
a maximal graph as one with 9,500 people who know no one and 500 who 
each know 2,000 others. But this is internally inconsistent, since "know- 
ing" is symmetric. In such cases, the logical procedure is to take (N V) 2 
as the number of people who know anyone at all, and assume that each 
of them knows each other person in the group, and no one else knows any- 
one. Utilization of this procedure yields, if N - 10,000 and V - 100, a 
graph in which a set of 1,000 people know each other and 9,000 know no one. 

A 

Given fixed D (or V) this condition maximizes the variance of D. The 
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overall result is plausible: Variance (and hence required sample size) is 
minimized in the fully homogeneous network and maximized in the max- 
imally cliqued one. 

It seems clear to me that the latter situation is much further from 
reality than the former. Even people who moved into a community yes- 
terday are not isolates, and the great majority are likely to know some 
moderate number of people. Although I have no direct evidence, I would 
be surprised if more than, say, 20% of a population knew many more 
than the average number of people. Let me, then, arbitrarily define a 
"typical" population as one in which this is so. Specifically, let fk be the 
proportion of the population whose acquaintance volume is equal to k 
times the average. For volume of 100 or 500, suppose 1O.5 - 0.4, fI = 0.4, 
11.5 0.1, 12 0.075, 14 0.02 5. For volume of 1,000, 14 should be zero, 
in keeping with our stricture that no one knows more than 2,000 others; 
for that case, let 1o.5 = 0.3, = 0.5, f< , 0.1, f2 0.1. Using this some- 
what arbitrary notion of a typical population distribution of acquaintance 
volume, and the previously defined minima and maxima, we can arrive at 
some idea of what sample size will be needed to get a decent density esti- 
mate. 

Let our idea of "decent" correspond to permitting a 20% error. While 
statisticians will blanch at this definition of decent, I argue that such a 
range will serve most purposes well enough. When two communities are 
compared whose true acquaintance volumes fall within the range of one 
another's 20% error limits, it seems doubtful that the true difference 
would be of much substantive significance anyway. In any case, formula 
(3) below can be modified to permit more narrow error limits. 

Suppose the density estimates from a subgraph of size n are approxi- 
mately normally distributed about the true density. Then 95% of the es- 
timates will fall within 1.96 SD of the true density. That is, our 95% 
confidence interval of 20% tolerable error requires that 

(1 2 (N -n) 
0.2D > 1.96{ ? ., . w (N -2) (N -3)n(n -1)_ 

r2(n -2) Y2 (3) 
F2(N-12) s2(a) + (N- n 1)D(1 - D) 
L(N - 1) J 

For specified N, n, D, and s2(a), we can solve the inequality for w, giving 
us the minimum number of samples of size n needed to come within the 
specified limits. (Changes in degree of error tolerated or in level of con- 
fidence required can be introduced by substituting the desired values for 
0.2 or 1.96.) 
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FIG. 1.-Sample size required for 95% confidence limits on network acquaintance 
volume, 20% error, for population sizes from 100 to 1,000,000, and true volume (V) 
of 100, 500, and 1,000. 

Figure 1 gives the values of n for which w - 1 (i.e., only one sample 
of size n is needed) under various assumptions about acquaintance vol- 
ume (density) and population size (N). In this graph, the population is 
assumed to show the "typical" distributions of acquaintance volumes out- 
lined above, except that where volume is 500 and N - 1,000, the 0.3, 
0.5, 0.1, 0.1 pattern is used. With the exception of new towns in very 
early stages, it seems unlikely that any communities would fall outside the 
acquaintance volume range of 100-1,000 used in figure 1. 

The numbers here suggest that even for rather large populations the 
sample size required for the estimate is modest. Some empirical experience 
will be needed before we can say what the largest sample is in which we 
can, as a practical matter, expect each individual to answer sociometric 
questions about each other. I would think that this could be done easily 

1294 



Network Sampling 

for samples of 500.5 Figure 1 shows that only for the community of 1 mil- 
lion would a larger sample be needed. In such cases, if indeed 500 were 
the practical cutoff for this method, the difficulty could be met by taking 
multiple samples of size 500. With a population of 1 million and true 
average acquaintance volume of 500, two such samples would suffice; 
where true volume drops to 100, eight would be needed. 

A nice irony of the method outlined is that it is of only marginal value 
for small populations, unlike all other network techniques. For a popula- 
tion of size 50, for example, one would need a random sample of at least 
25 for a decent estimate. While this might occasionally be of some value, 
the real power of the method appears only for larger networks, ones at 
least in the hundreds. 

Table 1 shows these computations not only for the "typical" case, but 

TABLE 1 
SAMPLE SIZES NEEDED TO MEET 20% ERROR, 95% CONFIDENCE LIMITS, FOR W- 1 

Value of n for Which 
Average 

Acquaintance w 1 
Population Size (N) Volume Minimum "Typical" Maximum 

1,000,000 ........ 100 1,382 (7.69) 1,465 (8.01) 7,460 (22.24) 
1,000,000 ........ 500 619 (1.54) 705 (1.86) 1,415 (3.83) 
1,000,000 ........ 1,000 438 477 668 (1.53) 
100,000 ........ 100 436 522 (1.08) 6,800 (15.25) 
100,000 ........ 500 195 292 1,165 (2.44) 
100,000 ........ 1,000 138 181 425 
10,000 ........ 100 136 233 2,570 (6.62) 
10,000 ........ 500 60 178 1,030 (2.20) 
10,000 ........ 1,000 41 93 370 
1,000 ........ 100 40 145 454 
1,000 ........ 500 14 72 137 
1,000 ........ 1,000 ... ... ... 

NOTE.-Where a single sample larger than 500 would be needed, the number of samples required 
of size 500 is given in parentheses. 

also for the minimum and maximum variance conditions specified above. 
Where n > 500, the number of samples of size 500 needed to meet the 
criterion is indicated in parentheses. As one might expect, required sam- 
ple size goes down as population size goes down and as acquaintance vol- 
ume goes up. The figures for "typical" populations are much closer to the 
minimum than the maximum. An analyst with a population suspected to 
be highly cliqued, however, can take comfort from the fact that even the 
sample size required for the maximum degree of cliquing is within practi- 
cal bounds, for most cases. 

5 In some situations this may be doubled (see the section below on one-way ques- 
tioning). 
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One final issue, mentioned above, is the trade-off between sample size 
and number of samples. At the beginning of my work, I was intrigued by 
the idea that a large number of samples of pairs or triads would provide 
the key to network sampling. Table 2 shows why this is not so. For pair 

TABLE 2 

Two ILLUSTRATIONS OF TRADE-OFF BETWEEN SAMPLE SIZE (n) AND NUMBER OF 
SAMPLES TAKEN (W) 

Maximum Maximum 
Number in Number of 

n w Samples Questions Asked 

N = 100,000; V 500; 20% Error, "Typical" Variance of V 

2 .................... 19,112 38,224 38,224 
3 .................... 6,398 19,194 38,388 

10 .................... 439 4,390 39,510 
50 .................... 19 950 46,550 

100 .................... 5 500 49,500 
200 .................... 2 400 79,600 
292 .................... 1 292 84,972 

N = 1,000,000; V 500; 20% Error, "Typical" Variance of V 

2 .................... 191,984 383,968 383,968 
3 .................... 64,022 192,066 384,132 

10 .................... 4,281 42,810 385,290 
50 .................... 160 8,000 392,000 

100 .................... 40 4,000 396,000 
500 .................... 2 1,000 499,000 
705 .................... 1 705 496,320 

sampling, a prohibitive number of people would have to be contacted. 
The total number of people one would have in all samples goes down 
steadily as the size of the samples increases. (Since sampling is with 
replacement, 19,112 samples of two from a population of 100,000 would 
involve fewer than 38,224 persons, but the expected number is not far 
from the maximum, so that this offers little help.)6 The maximum number 
of questions asked of all respondents is arrived at by multiplying the 
maximum number of respondents by (n - 1). This number increases with 
n, but the decline in the total number of respondents sampled is far more 
rapid. Since so much of an interviewer's time consists of finding respon- 
dents, the strategy of taking many small samples would therefore be much 
less practical than that of taking a lesser number of larger ones.7 

6 This calculation results from formulas developed by Paul Holland and Stanley 
Wasserman. 
7 I am indebted to James Beniger for pointing out errors in an earlier draft of this 
paragraph and of table 2. 
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More important, at a theoretical level, the larger the sample, the more 
properties of the population network can be estimated. In pair sampling, 
for instance, nothing but density could be estimated, since the subgraphs 
sampled have no structural properties other than the 1-0, yes-no question 
about the one potential tie. In a single, large random subgraph, by con- 
trast, nearly all relevant properties appear. On the question of estimating 
the full distribution of acquaintance volumes, for example, Frank shows 
that the problem is simplified (although it is still not solved) if the sample 
size is "so large that all the frequencies that it is intended to estimate 
will have a chance of being represented in the sample graph" (1971, 
p. 114). 

For both theoretical and practical reasons, then, I believe that network 
sampling must go in the direction of a few large samples rather than many 
small ones. 

ONE-WAY QUESTIONING8 

The above discussion is conservative, in that it assumes a method in which 
each possible tie is asked about from both ends-that is, each of the n 
sampled individuals is asked about each other one, so that i is asked about 
j as well as j about i. This means that we are asking [n(n - 1) ] questions 
to find out about [n(n - 1) ]/2 ties. In most cases we will want to do 
this, either because we are interested in the symmetry or asymmetry of 
the sociometric choices or because we have more confidence in the valid- 
ity of the information when both ends of a tie affirm its existence. If we 
are not interested in symmetry, however, and are willing to assume that 
a tie exists whenever one participant says it does, the sampling work can 
be cut in half. It is easy to arrange for each of the n sampled individuals 
to be asked, not about each of the n - 1 others, but about roughly 
(n - 1)72 others; information is still obtained about each possible tie. 
Where, for example, 500 people are sampled, table 3 shows one simple 
scheme for using this method. 

Such a procedure might be especially reasonable in obtaining acquain- 
tance volume estimates for large cities. Whereas in a sample of 1,000 it 
might not be practical to ask each member questions about 999 others, 
questions about 500 others could probably be managed. 

SOME APPLICATIONS 

The applications that follow are illustrative only; they are far from ex- 
haustive. 

8 This section was suggested by comments of Harry Collins. 
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TABLE 3 
SOCIOMETRIC QUESTIONS FOR 500 RESPONDENTS UNDER ONE-WAY QUESTIONING 

Respondent No. Is Asked about Respondents No. 

1 .......................................... 2-251 
2 .......................................... 3-252 
3 .......................................... 4-253 

.......................................... 

.......................................... 

250.251-500 
251 .......................................... 252-500 
252 .......................................... 253-500, 1 
253 .......................................... 254-500, 1-2 23.......................................... 2450 - 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...................................... F. 

498 .499-500, 1-247 
499 .......................................... 500, 1-248 
500 .......................................... 1-249 

NOTE.-Since n - 1 is an odd number, each respondent cannot be asked exactly (t - 1)/2 quiestions. 
half are asked (n/2) and half (n - 2)12 since n/2[(n/2) + (n - 2)/2] = [n(n - 1)]/2. 

1. Sense of community. A central focus of community studies has 
long been the question of what determines whether residents feel a "sense 
of community" where they live (e.g., Nisbet 1953; Stein 1960). While 
this concept is ambiguous and involves many intangibles, a central part 
of all analysts' notion of "sense of community" is the existence of a rela- 
tively dense network of social ties over the specified area. Ethnographic 
studies make it clear that a crucial part of the sense of "belonging" in a 
place is the constant encounter with familiar, friendly faces in the course 
of everyday life. Young and Willmott (1962) found, after analyzing the 
close-knit Bethnal Green area of East London, that residents who had 
moved to "Greenleigh," a government-sponsored suburban new town, were 
extremely unhappy. Their number of social contacts fell precipitously, and 
they consequently experienced the general atmosphere as cold and "un- 
friendly." Young and Willmott explained the contrast by the differing 
ecology of the two areas the city being more densely packed and inter- 
mixing residential and commercial functions. This arrangement facilitates 
sociability, whereas the suburban one makes it difficult and artificial (cf. 
Jacobs 1961, chaps. 1-12). 

But Willmott later studied Dagenham, a community very similar to 
Greenleigh except that it had been settled in the 1920s. He was surprised, 
after the study of Greenleigh, to see the extent to which Dagenham's 
residents had reestablished a sense of community more typical of urban 
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East London; most people felt the atmosphere to be friendly, and con- 
siderable visiting was reported (Willmott 1963, pp. 58-64). His conclu- 
sion is that earlier studies, such as that of Greenleigh, "have put altogether 
too little emphasis on sheer length of residence" (p. 111). The implica- 
tion is that the six or seven years of Greenleigh's existence, although it 
seemed a substantial time to the authors, was actually brief in relation to 
the time required to build up dense social networks from scratch. But we 
are left guessing about how "sheer length of residence" has its effect. 
Other studies of new towns, or suburbs where a substantial influx arrives 
at one time, report far more cheerful social results than those found in 
Greenleigh (see Berger 1960; Gans 1967). What explains these differ- 
ences? What is the process by which a sense of community develops, and 
what determines the requisite time? 

The sampling method outlined in this paper offers a useful research tool 
for these issues. A time series of average acquaintance volume in a new 
town, beginning early and continuing for a number of years, would, in 
conjunction with ethnographic work, yield important insights. The statis- 
tical comparisons made possible by the sampling method would allow in- 
teresting questions to be posed which could not be answered by a single 
case study. For example: how important is initial acquaintance volume in 
determining the rate of community development? It may be that new 
towns in which there exist, at the outset, a substantial number of inter- 
personal ties are successful far more quickly than others. The initial ties 
may serve a pump-priming function-satisfying people's interim need for 
sociability and smoothing the way for new ties-since existing friends are 
a crucial source of new ones. Initial ties may come about in a variety of 
ways; for example, people may be more likely to move to a new town if 
they already know someone who lives there (see MacDonald and MacDon- 
ald [1964] on "chain migration"), or economic factors, such as plant re- 
locations, may prompt a considerable migration from one place to another 
(see Berger 1960). Substantive questions such as that of the source of 
initial ties can easily be incorporated into a survey using the sampling 
method proposed here. When a respondent is given the stimulus of an- 
other nam.e from the sample, and the response indicates some relationship, 
a variety of questions about the relationship-its origin, intensity, dura- 
tion-can be asked, depending on the nature of the inquiry. 

In this case, a comparative study could relate initial network density 
to the subsequent rate of increase. Different patterns of increase or de- 
crease might be found to correlate with changes in a community's politi- 
cal or economic structure. In this connection, measures of average acquain- 
tance volume for any communities, old or new, might be of great potential 
value as social indicators. Use of them would extend the recent wave of 

1299 



American Journal of Sociology 

interest in such indicators to interactional measures. Most indicators cur- 
rently in use consist, by contrast, of individual characteristics (happiness, 
income, illness) aggregated over large numbers. 

2. Hierarchy. Recent theoretical work on acquaintance networks 
makes a good argument for the idea that unreciprocated sociometric 
choices indicate a status differential, the chooser occupying a lower status 
(Davis and Leinhardt 1972; Holland and Leinhardt 1971; Bernard 1974). 
Investigations thus far have been limited to groups of a couple of hun- 
dred, given data-processing difficulties. The sampling device discussed here 
offers an entree into this question for larger populations. My statistical 
analysis is unchanged if the tie in question is unreciprocated instead of 
symmetric. Estimates for the density of both types are yielded by a single 
sample as follows: From the sample sociomatrix, construct two subma- 
trices, one containing only the symmetric, the other only the asymmetric 
ties. Use each submatrix to arrive at a density estimate for its type of 
tie.9 The ratio of the asymmetric density to the overall density might be 
an interesting measure of the degree of dyadic hierarchy in the group and 
a useful parameter for comparison of groups. For a single group, a time 
series of the measure would offer some insight into the evolution, stability, 
or disintegration of hierarchy. (A fuller treatment of hierarchy would re- 
quire methods for sampling the average properties not only of dyads, as 
in this paper, but also of triads, which I do not deal with here.) 

3. Interorganizational networks.-Networks whose nodes are organiza- 
tions have recently generated increasing interest. Often, however, a net- 
work comprises too many organizations for any study to be feasible. In a 
given industry, say electronics, it might be of interest to know the extent 
to which firms interchange personnel. (In Granovetter 1974 I discuss the 
substantive significance of this question.) The degree of such interchange 
might be a nice parameter in comparison of different industries. All that 
would be needed to apply the findings of the present paper is adoption of 
some minimum level of personnel flow between a pair of companies as 
constituting a "tie" between them. A square sociometric matrix for the 
set of firms could then be filled in with the usual 1-0 entries. Insofar as 
flow were asymmetric, it might be possible to infer hierarchy, making this 
application a special case of the one suggested above. 

DISCUSSION 

In this paper I have argued that sociologists interested in the idea of so- 
cial networks must attend to the development of a related theory of sam- 

9 But notice that dividing ties found into any set of categories requires a larger sample 
size, the increase to be determined by the category of tie with lowest (assumed) true 
density. Otherwise, estimates for the various categories will carry errors larger than 
would be tolerable when all ties are considered identical in quality. 
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pling, if they are to incorporate macrolevel concerns into the framework. 
Building on results in Frank (1971), I have shown that a relatively sim- 
ple sampling procedure will yield good estimates of network density, or 
average acquaintance volume. 

This is only a small step in network-sampling theory, however, since 
density is a crude, global measure of interaction structures. It is, in fact, 
the global aspect of density which makes it comparatively simple to esti- 
mate by a method which is both intuitively appealing and practicable. 
More detailed measures of network structure, especially measures of local 
variations and inhomogeneities in the network, are necessarily more diffi- 
cult to estimate from small samples, since such samples, tapping only 
average properties of the entire graph, give poor representation to rare 
events. Moreover, when an estimating procedure is found which yields an 
unbiased estimate of such parameters, great computational and conceptual 
difficulty ensues in finding the variance of such estimates, without which 
no confidence limits can be established. Frank, for example (1971, pp. 
109-15), develops formulas for estimating from the sample graph the 
exact distribution of acquaintances in the population. The unbiased esti- 
mator, however, no longer has the intuitive flavor that our density esti- 
mate has but depends instead on complex sets of equations. Moreover, 
the variance of the estimate "is of no practical use, because it involves un- 
known population parameters that seem hard to estimate" (Frank 1971, 
p. 112). 

Nevertheless, the realization that some good results can be achieved 
without recourse to wholly new methods should be an incentive to those 
with good mathematical and statistical skills to push ahead in an area 
which promises considerable rewards for the time invested. 

APPENDIX 

In this Appendix I prove that density estimates from random subgraphs 
provide an unbiased estimate of true population network density. 

To prove that the estimate is unbiased, consider w sets of n individuals, 
each set a random sample from a population of size N, with replacement. 

Let Ti be a random variable, the number of ties actually observed in 
sample i, where i (1, 2 . . . w). Let Pk the probability (based on em- 
pirical relative frequencies) of observing k ties in such a set of size n, 
wherek =0, 1, 2,... [n(n -1)]/2, Pk 1 
Then: 

n (it-1) /2 

E(T)_ = kPk. (Al) 
k=l 

In the population graph, there are Pk (N) sets of n people with k ties in 
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the set. Since any given tie appears in (N 2) different sets of size n, the 
total number of ties in the population is: 

kPk (n)/n_ 2 ) (A2) 
k=l 

This quantity divided by (p) gives an expression for network density 
(D). Then, substituting from (Al), we have: 

D - E(T)/( 2 E FLTt( )] (A3) 

Thus, Til (2), which is the density observed in sample i, gives an un- 
2 ~~~~~~~~~~~~~~A 

biased estimate of the population density. Call this estimate Di. Now if w 
separate samples are taken, we have E(D1) E(D2) . . E(D1W) D. 

( A A A A~~~A (A 

Since E(D1 + D2 +. . . Dw) - E(D1) + E(D,) +. . . E(Dw), it fol- 
lows that 

E f (D+ D2 + . .. Dw)lw] _- wDlw - Di (A4) 

that is, the average density estimate from the w samples also unbiasedly 
estimates population density. 
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