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Complex networks in natural, social, and technological systems generically exhibit an abundance of
rich information. Extracting meaningful structural features from data is one of the most challenging
tasks in network theory. Many methods and concepts have been proposed to address this problem
such as centrality statistics, motifs, community clusters, and backbones, but such schemes typically
rely on external and arbitrary parameters. It is unknown whether generic networks permit the
classification of elements without external intervention. Here we show that link salience is a robust
approach to classifying network elements based on a consensus estimate of all nodes. A wide range
of empirical networks exhibit a natural, network-implicit classification of links into qualitatively
distinct groups, and the salient skeletons have generic statistical properties. Salience also predicts
essential features of contagion phenomena on networks, and points towards a better understanding
of universal features in empirical networks that are masked by their complexity.

I. INTRODUCTION

Many systems in physics, biology, social science, eco-
nomics, and technology are best modeled as a collection
of discrete elements that interact through an intricate,
complex set of connections. Complex network theory, a
marriage of ideas and methods from statistical physics
and graph theory, has become one of the most successful
frameworks for studying these systems [1–7] and has led
to major advances in our understanding of transporta-
tion [8–11], ecological systems [12, 13], social and com-
munication networks [14], and metabolic and gene regu-
latory pathways in living cells [15–17].

One of the challenges in complex network research is
the identification of essential structural features that are
typically masked by the network’s topological complex-
ity [1, 6, 18–20]. Reducing a large-scale network to its
core components, filtering redundant information, and
extracting essential components are not only critical for
efficient network data management. More importantly,
these methods are often required to better understand
evolutionary and dynamical processes on networks and to
identify universal principles of network design or growth.
In this context, the notion of centrality measures accord-
ing to which nodes or links can be ranked is fundamental
and epitomized by the node degree k, the number of di-
rectly connected neighbors of a node. Many systems,
ranging from human sexual contacts [21] to computer
networks [22], are characterized by a power-law degree
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distribution p(k) ∼ k−(1+β) with an exponent 0 < β ≤ 2.
These networks are scale-free [23], meaning the majority
of nodes are weakly connected and dominated by a few
strongly connected nodes, known as hubs. Although a
variety of networks can be understood in terms of their
topological connectivity (the set of nodes and links), a
number of systems are better captured by weighted net-
works in which links carry weights w that quantify their
strengths [8, 24]. An important class of networks ex-
hibit both a scale-free degree distribution and broadly
distributed weights which in some cases follow a power-
law p(w) ∼ w−(1+α), with 1 < α ≤ 3 [25–27]. In addition
to hubs, these networks thus possess highways. Several
representative networks of this class are depicted in Fig-
ure 1. Understanding the essential underlying structures
in these networks is particularly challenging because of
the mix of link and node heterogeneity.

Although classifications of network elements accord-
ing to degree, weight, or other centrality measures have
been employed in many contexts [9, 30–32], this approach
comes with several drawbacks. The qualitative con-
cepts of hubs and highways suggest a clear-cut, network-
intrinsic categorization of elements. However, these cen-
trality measures are typically distributed continuously
and generally do not provide a straightforward separa-
tion of elements into qualitatively distinct groups. At
what precise degree does a node become a hub? At what
strength does a link become a highway? Despite sig-
nificant advances, current state-of-the-art methods rely
on system-specific thresholds, comparisons to null mod-
els, or imposed topological constraints [6, 11, 33–35].
Whether generic heterogeneous networks provide a way
to intrinsically segregate elements into qualitatively dis-
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Full network Salient skeleton

Network N ρ 〈k〉 CV(k) CV(w) r % links βHSS rHSS

Cash flow 3,106 0.076 237.0 1.08 7.72 -0.137 0.84 1.10 -0.255
Air traffic 1,227 0.024 29.4 1.30 2.25 -0.063 6.76 1.60 -0.302
Shipping 951 0.057 54.3 1.22 7.27 -0.143 3.66 1.37 -0.169
Commuting 3,141 0.027 82.3 1.04 20.80 0.017 2.44 2.50 -0.0813

Neural 297 0.049 14.5 0.87 1.42 -0.163 13.5 1.61 -0.308
Metabolic 311 0.027 8.4 1.80 8.56 -0.253 23.1 1.90 -0.381
Food web 125 0.246 30.5 0.47 11.80 -0.117 6.5 1.71 -0.437

Inter-industry 128 1.000 127.0 0.00 1.70 -0.022 1.08 1.58 -0.283
World trade 188 0.446 83.4 0.65 8.85 -0.602 2.39 1.71 -0.355
Collaboration 5,835 8.12×10−4 4.7 0.96 1.21 0.185 41.9 1.22 -0.242

Table I: Statistical features of the full empirical networks and their high-salience skeletons. Statistics for the full
networks include number of nodes N , link density ρ = 2L/(N2 − N) (where L is the number of links), mean node degree
〈k〉, coefficients of variation of node degree CV(k) and link weight CV(w), and the assortativity coefficient r [28]. For the
high-salience skeletons, the first column lists the percentage of links from the full network that are also in the HSS, an estimate
of the scaling exponent [29] βHSS and the assortativity coefficient rHSS. Further information on network statistics are provided
in Supplementary Table S1.

tinct groups remains an open question. In addition to
this fundamental question, centrality thresholding is par-
ticularly problematic in heterogeneous networks since key
properties of reduced networks can sensitively depend on
the chosen threshold.

Here we address these problems by introducing the
concept of link salience. The approach is based on an en-
semble of node-specific perspectives of the network, and
quantifies the extent to which a consensus among nodes
exists regarding the importance of a link. We show that
salience is fundamentally different from link betweenness
centrality and that it successfully classifies links into dis-
tinct groups without external parameters or thresholds.
Based on this classification we introduce the high-salience
skeleton (HSS) of a network and compute this structure
for a variety of networks from transportation, biology, so-
ciology, and economics. We show that despite major dif-
ferences between representative networks, the skeletons
of all networks exhibit similar statistical and topological
properties and significantly differ from alternative back-
bone structures such as minimal spanning trees. Analyz-
ing traditional random network models we demonstrate
that neither broad weight nor degree distributions alone
are sufficient to produce the patterns observed in real net-
works. Furthermore, we provide evidence that the emer-
gence of distinct link classes is the result of the interplay
of broadly-distributed node degrees and link weights. We
demonstrate how a static and deterministic analysis of a
network based on link salience can successfully predict
the behavior of dynamical processes. We conclude that
the large class of networks that exhibit broad weight and
degree distributions may evolve according to fundamen-
tally similar rules that give rise to similar core structures.

II. RESULTS

A. Link salience

Weighted networks like those depicted in Figure 1 can
be represented by a symmetric, weighted N ×N matrix
W where N is the number of nodes. Elements wij ≥ 0
quantify the coupling strength between nodes i and j.
Depending on the context, wij might reflect the passen-
ger flux between locations in transportation networks,
the synaptic strength between neurons in a neural net-
work, the value of assets exchanged between firms in a
trade network, or the contact rate between individuals in
a social network.

Our analysis is based on the concept of effective prox-
imity dij defined by the reciprocal coupling strength
dij = 1/wij . Effective proximity captures the intuitive
notion that strongly (weakly) coupled nodes are close to
(distant from) each other [36]. It also provides one way to
define the length of a path P that connects two terminal
nodes (n1, nK) and consists of K − 1 legs via a sequence
of intermediate nodes ni, and connections wnini+1

> 0.
The shortest path minimizes the total effective distance
l =

∑K−1
i=1 dnini+1 and can be interpreted as the most

efficient route between its terminal nodes [37, 38]; this
definition of shortest path is used throughout this pa-
per. In networks with homogeneous weights, shortest
paths are typically degenerate, and many different short-
est paths coexist for a given pair of terminal nodes. In
heterogeneous networks with real-valued weights shortest
paths are typically unique. For a fixed reference node r,
the collection of shortest paths to all other nodes defines
the shortest-path tree (SPT) T (r) which summarizes the
most effective routes from the reference node r to the
rest of the network. T (r) is conveniently represented by
a symmetric N × N matrix with elements tij(r) = 1 if
the link (i, j) is part of at least one of the shortest paths
and tij(r) = 0 if it is not.

The central idea of our approach is based on the no-



Figure 1: Generic statistical properties of heterogeneous complex networks. (a) Geographic representation of the
worldwide air traffic network (top), black dots represent airports, links represent passenger flux between them, link weights wij
are color encoded from dark (weak) to white (strong). Networks on the lower left and right represent the Florida bay food web
and the world trade network, respectively. Nodes in the food web are species and links represent the exchange of biomass; in the
trade network nodes are countries and links quantify exchange in assets measured in United States dollars (USD). (b) Relative
frequencies f(w) = 〈w〉 p(w/ 〈w〉) and p(b) of link weights w and link betweenness b of representative transportation, biological,
ecological, social, and economic networks. Link weights are normalized by the mean weight 〈w〉. Details on each network are
provided in Methods. In all networks link weights and betweenness are distributed across many orders of magnitude, and both
statistics exhibit heavy tails. The substantial variability in these quantities is also reflected in their coefficient of variation (see
Table I).

tion of the average shortest-path tree as illustrated in
Figure 2a. We define the salience S of a network as

S = 〈T 〉 =
1

N

∑
k

T (k) (1)

so that S is a linear superposition of all SPTs. S can be
calculated efficiently using a variant of a standard algo-
rithm (see Supplementary Methods). According to this
definition the element 0 ≤ sij ≤ 1 of the matrix S quan-
tifies the fraction of SPTs the link (i, j) participates in.
Since T (r) reflects the set of most efficient paths to the
rest of the network from the perspective of the reference
node, sij is a consensus variable defined by the ensem-
ble of root nodes. If sij = 1 then link (i, j) is essential
for all reference nodes, if sij = 0 the link plays no role
and if, say, sij = 1/2 then link (i, j) is important for
only half the root nodes. Note that although S is de-
fined as an average across the set of shortest-path trees,
it is itself not necessarily a tree and is typically different

from known structures such as minimal spanning trees
(see Supplementary Figure S1, Supplementary Table S3
and Supplementary Methods).

B. Robust classification of links

The most important and surprising feature of link
salience is depicted in Figure 2c. For the representa-
tive set of networks, we find that the distribution p(s) of
link salience exhibits a characteristic bimodal shape on
the unit interval. The networks’ links naturally accumu-
late at the range boundaries with a vanishing fraction at
intermediate values. Salience thus successfully classifies
network links into two groups: salient (s ≈ 1) or non-
salient (s ≈ 0), and the large majority of nodes agree on
the importance of a given link. Since essentially no links
fall into the intermediate regime, the resulting classifica-
tion is insensitive to an imposed threshold, and is an in-



Figure 2: Computation of link salience and properties of the high-salience skeleton. (a) For each reference node
r in the weighted network on the left the shortest-path tree T (r) is computed. The superposition of all trees according to
Equation (1) assigns a value sij to each link in the original network. Salience values are shown on the right with link color:
red is high salience and grey is low. (b) The collection of high salience links (red) for the networks shown in Figure 1. The full
networks are shown in grey. (c) The relative frequency p(s) of non-zero salience values s. The distribution p(s) is bimodal in all
networks under consideration. This key feature of bimodality of p(s) provides a plausible, parameter-insensitive classification
of links, salient (s ≈ 1) vs. non-salient (s ≈ 0), and implies that nodes in these networks typically agree whether a link is
essential or not. The high-salience skeleton (HSS) is defined as the collection of links that accumulate near s ≈ 1. Upper and
lower insets depict, respectively, the degree distribution p(k) of the HSSs and mean next-neighbor degree 〈knn|k〉 as a function
of node degree k. The HSS degree distribution is typically scale-free (see Supplementary Figure S2) and the skeletons are
typically strongly disassortative. Note that although they may be, and often are, divided into multiple components, the largest
connected component of the skeleton typically dominates. This connectedness is not imposed, but is an emergent property of
salience. (See Supplementary Table S2).

trinsic and emergent network property characteristic of a
variety of strongly heterogeneous networks. This is fun-
damentally different from common link centrality mea-
sures such as weight or betweenness that possess broad
distributions (see Fig. 1b), and which require external
and often arbitrary threshold parameters for meaningful
classifications [34, 35].

The salience as defined by Eq. 1 permits an intuitive
definition of a network’s skeleton as a structure which
incorporates the collection of links that accumulate at
s ≈ 1. Figure 2b depicts the skeleton for the networks of
Figure 1a. For all networks considered, only a small frac-
tion of links are part of the high-salience skeleton (6.76%
for the air traffic network, 6.5% for the food web, and



2.39% for the world trade network), and the topologi-
cal properties of these skeletons are remarkably generic.
Note that technically a separation of links into groups ac-
cording to salience requires the definition of a threshold
(e.g. we chose the center of the salience range for con-
venience). The important feature is that the resulting
groups are robust against changes in the value, since al-
most no links fall into intermediate ranges. Consequently
the point of separation is almost arbitrary, yield almost
identical skeletons for threshold ranges of 80% of the en-
tire range. One of the common features of these skele-
tons is their strong disassortativity, irrespective of the
assortativity properties of the corresponding original net-
work (see Table I). Furthermore, all skeletons exhibit a
scale-free degree distribution

pHSS(k) ∼ k−(1+βHSS) (2)

with exponents 1.1 ≤ βHSS ≤ 2.5 (see Table I and Sup-
plementary Figure S2). Since only links with s ≈ 1 are
present in the HSS, the degree of a node in the skele-
ton can be interpreted as the total salience of the node.
The collapse onto a common scale-free topology is par-
ticularly striking since the original networks range from
quasi-planar topologies with small local connectivity (the
commuter network) to completely connected networks
(worldwide trade). Note that the lowest exponent (weak-
est tail) is observed for the commuter network, since in
a quasi-planar network the maximum number of salient
connections is limited by the comparatively small degree
of the original network. The scale-free structure of the
HSS consequently suggests that networks that possess
very different statistical and topological properties and
that have evolved in a variety of contexts seem to self-
organize into structures that possess a robust, disassor-
tative backbone, despite their typical link redundancy.

Although these properties of link salience are encour-
aging and suggest novel opportunities for filtering links
in complex weighted networks, for understanding hidden
core sub-structures, and suggest a new mechanism for
defining a network’s skeleton, a number of questions need
to be addressed and clarified in order for the approach to
be viable. First, a possible criticism concerns the defini-
tion of salience from shortest-path trees which suggests
that sij can be trivially obtained from link betweenness
bij , for example by means of a non-linear transform. Sec-
ondly, a bimodal p(s) may be a trivial consequence of
broad weight distributions, if for instance large weights
are typically those with s ≈ 1. Finally, the observed
bimodal shape of p(s) could be a property of any non-
trivial network topology such as simple random weighted
networks. In the following we will address each of these
concerns.

C. Salience and betweenness

The betweenness bij of a link (i, j) is the fraction
of all ∼ N2 shortest paths that pass though the link,

whereas the salience sij is the fraction of N shortest-
path trees T (r) the link is part of. Despite the appar-
ent similarity between these two definitions, both quan-
tities capture very different qualities of links, as illus-
trated in Figure 3. Betweenness is a centrality mea-
sure in the traditional sense [40], and is affected by the
topological position of a link. Networks often exhibit a
core-periphery structure [41] and the betweenness mea-
sure assigns greater weight to links that are closer to
the barycenter of the network [39]. Salience, on the
other hand, is insensitive to a link’s position, acting as
a uniform filter. This is illustrated schematically in the
random planar network of Figure 3a. High betweenness
links tend to be located in the center of the planar disk,
whereas high salience links are distributed uniformly. A
given shortest path is more likely to cross the center of
the disk, whereas the links of a shortest-path tree are
uniformly distributed, as they have to span the full net-
work by definition. A detailed mathematical comparison
of betweenness and salience is provided in the Methods.
Figure 3c depicts the typical relation of betweenness and
salience in a correlogram for the worldwide air traffic net-
work. The data cloud is broadly distributed within the
range of possible values given by the inequalities (see Sup-
plementary Methods)

s/N ≤ b ≤ s2/2. (3)

Within these bounds no functional relationship between
b and s exists. Given a link’s betweenness b one generally
cannot predict its salience and vice versa. In particular,
high-salience links (s ≈ 1) possess betweenness values
ranging over many scales. The spread of data points
within the theoretical bounds is typical for all the net-
works considered (see Supplementary Figure S3). Links
tend to collect at the right-hand edge, corresponding to
the upper peak in salience, and in particular at the lower
right corner of the wedge-shaped region, corresponding
to the heretofore-unexplained peak in betweenness ex-
hibited by several of the networks (cf. Figure 1 and the
dashed line in Figure 3b). These edges have maximal
salience (all nodes agree on their importance) but the
smallest betweenness possible given this restriction (they
are not well-represented in the set of shortest paths).
Such edges are the spokes in the hub-and-spoke structure:
they connect a single node to the rest of the network, but
are used by no others, and they are an essential piece of
the high-salience skeleton, since severing them removes
some node’s best link to the main body of the network.
The presence of such links in the high-salience skeleton
explains why the weight values of s ≈ 1 edges span such
a wide range, since a link may have relatively low weight
and yet be some node’s most important connection.

Figure 3d tests the hypothesis that strong link weights
may yield strong values for salience. We observe that link
betweenness is positively correlated with link weight and
roughly follows a scaling relation w ∼ bγ with γ ≈ 0.2,
in agreement with previous work on node centrality [42].
This is not surprising since high-weight links are by defi-



Figure 3: Salience and betweenness capture different
aspects of centrality. (a) A schematic planar network in
which the color of links quantifies betweenness b (left) and
salience s (right). High-betweenness links tend to be located
near the barycenter of the network [39], whereas high-salience
links are distributed evenly throughout the network. (b)
A simple linear chain shows the reason for this effect. A
link in the center serves as a shortest-path bridge between
all pairs of nodes, and so has the highest betweenness. But
since all shortest-path trees are identical, all links have iden-
tical salience. (c) A scatter plot (red dots) of link salience
s versus link betweenness b for the air traffic network (point
density is quantified in grey). The vertical dotted line marks
s = 1/2 and the solid curves represent the theoretical bounds
of Equation (3). The projected density p(b) is shown on the
left. The lack of any clear correlation in the scatter plot is
typical of all networks in Figure 1. (See Supplementary Fig-
ure S3 for additional correlograms.) (d) Scatter plots (in
light red) of betweenness b (left) and salience s (right) ver-
sus link weight w in the air traffic network. The bottom and
top of the lower whiskers, the dot, and the bottom and top
of the upper whiskers correspond to the 0, 25, 50, 75, and
100th percentiles, respectively. The dashed line indicates a
scaling relationship w ∼ bγ with γ ≈ 0.2. Although the net-
work exhibits a positive correlation between link weight and
link betweenness, the high-salience skeleton incorporates links
with weights spanning the entire range of observed values; no
clear correlation of weight with salience exists. These prop-
erties are observed in the other networks as well.

nition shorter and tend to attract shortest paths. In con-
trast, link weights exhibit no systematic dependence on
salience, and in particular large weights do not generally
imply large salience. In fact, for fixed link salience the
distribution of weights is broad with approximately the
same median. Consequently, salience can be considered
an independent centrality dimension that measures dif-
ferent features than correlated centrality measures such
as weight and betweenness.

D. Origin of bimodal salience

All the networks we consider feature broad link weight
distributions p(w) (see Figure 1b), some of which can be
reasonably modeled by power laws p(w) ∼ w−(α+1) with
exponents for many empirical data sets typically in the
range 1 < α < 3 [29] (smaller α corresponds to broader
p(w)). Although it may seem plausible that strong links
in the tail of these distributions dominate the structure of
shortest-path trees and thus cause the characteristic bi-
modal distribution of link salience, evidence against this
hypothesis is already apparent in Fig 3d: links with high
salience exhibit weights across many scales, and in par-



Figure 4: Salience in random networks. (a) Salience dis-
tributions p(s) in fully connected networks with 1,000 nodes
and weights assigned using a power law p(w) ∼ w−(1+α) for
various tail exponents α. Complete networks serve as mod-
els of systems with all-to-all interactions, such as the inter-
industry trade network. Only for unrealistically broad weight
distributions (α . 1) does p(s) exhibit a bimodal character.
If α > 1 bimodality is absent. (b) Salience distributions
in preferential attachment networks (1,000 nodes) [23] with
degree distribution p(k) ∼ k−3 and uniform weights do not
exhibit bimodal salience (heavy dashed line). If however the
power-law weight distribution is superimposed on the pref-
erential attachment topology, bimodal salience emerges for
realistic values of α. (c) For the range of tail exponents α
and β the color code quantifies the magnitude χ of bimodal-
ity in the salience distribution pα.β(s) of a network with a
scale-free degree distribution with exponent β (constructed
using the configuration model [4]) and a scale-free weight dis-
tribution with exponent α. Small values of χ correspond to
a bimodal pα,β(s). The bimodality measure χ was computed
using Kolmogorov-Smirnov distance between pα,β(s) for s > 0
and the idealized reference distribution q(s) = δ(s− 1).

ticular low-weight links may possess high salience. Fur-
ther evidence is provided in Figure 4a, which depicts the
salience distribution for fully connected networks for a se-
quence of tail parameters α. For values of α in the range
observed in real networks, p(s) is peaked near s = 0 and
decreases with increasing s. A bimodal distribution of s
only emerges when α is unrealistically small (α < 1), and
is much less pronounced than in real networks (cf. Fig-
ure 2). We conclude that broad, scale-free weight distri-
butions p(w) alone are insufficient to cause the natural,
bimodal distribution p(s) observed in real networks.

Another potential source of the observed bimodal-
ity in p(s) is the topological heterogeneity of a scale-
free degree distribution p(k) ∼ k−(1+β) with 0 < β <
2 [22, 23, 43]. Figure 4b provides evidence that also a
scale-free topology alone does not yield the characteristic
bimodal salience distribution. In fact, the generic pref-

erential attachment network [23] (β = 2) with uniform
weights exhibits a distribution of salience that is almost
the complement of the observed pattern with mostly in-
termediate values of link salience. The presence of hubs
implies that any shortest paths seeking out a node in
a hub’s region will most likely route through that hub,
and links emanating from this hub are more likely to
appear in many shortest-path trees. However, the hub-
and-spoke structure of a preferential attachment network
is only approximate; nodes that are at the end of a spoke
are still likely to have random links to other areas of the
network. For this reason, it is not typical in the uniform-
weight preferential attachment network to find links that
appear in nearly all shortest-path trees.

However, the observed bimodal distribution p(s) can
be generated in random networks by a combination of
weight and degree variability, a property characteristic of
the class of networks discussed here. Figure 4b also de-
picts p(s) for preferential attachment networks that pos-
sess a scale-free distribution of both degree k and weight
w. As the weight distribution becomes broader (decreas-
ing α), and even in the absence of explicit degree-weight
correlations, we see the emergence of bimodality in the
salience distribution in these networks. Topological hubs
are more likely to have extremely high-weight links sim-
ply because they have more links. Even when there is a
topologically short path terminating at a spoke node that
does not pass through the corresponding hub, it is less
likely to be the shortest weighted path. Extreme weights
amplify the effects of hubs by drawing more shortest
paths through them. Moreover, Figure 4c demonstrates
that the emergence of bimodal salience does depend on
the interplay between degree and weight distributions:
the broader the degree distribution, the narrower the re-
quired weight distribution.

All of these results support the conclusion that a bi-
modal salience distribution is characteristic of networks
with strong heterogeneity in both topology and interac-
tion strength, but that unweighted networks do not ex-
hibit this property.

E. Applications to network dynamical systems

The relevance of link salience to dynamical processes
that evolve on networks is an important issue, and one
area of particular interest in network research is conta-
gion phenomena. In this context, individuals in a popula-
tion are represented by nodes, and interaction propensi-
ties between pairs of nodes by a weighted network. Con-
tagion phenomena are modeled by transmissions between
nodes along the links of the network, where the likeli-
hood of transmission is quantified by the link weights.
The central question in this class of models is how the
topological properties of the network shape the dynam-
ics of the process. Link salience can also provide useful
information about the behavior of such a dynamical sys-
tem. To illustrate this, we consider a simple stochastic SI



Figure 5: Salience predicts infection pathways in
stochastic epidemic models. The scatter plots show the
directed salience sd against the normalized frequency of ap-
pearance in infection pathways h for each link in an ensemble
of 100 networks, averaged over 1,000 epidemic realizations
for each member of the ensemble. As in Figure 3, the plots
are divided horizontally into bins, with the heavy black lines
indicating quartiles within each bin. Insets show link bet-
weenness b versus h, and correlation coefficients are listed in
Table III. top, Weights distributed narrowly and uniformly
around a constant w0. bottom, Weights distributed accord-
ing to p(w) ∼ w−(1+α) with α = 2.

epidemic model. At any given point in time, an infected
node i can transmit a disease to susceptible nodes at a
rate determined by the link weight wji. The details of the
model are provided in the Methods. We consider an epi-
demic on a planar disk network similar to that shown in
Figure 3a. A single node is chosen at random for the out-
break location. At every step of the process each infected
node randomly selects a neighbor to infect with probabil-
ity proportional to the link weight; eventually the entire
network is infected. By keeping track of which links were
used in the infection process one obtains the infection hi-
erarchy H, a directed tree structure that represents the
epidemic pathway through the network. Since the pro-
cess is stochastic, each realization of the process gener-
ates a different infection hierarchy. For different initial
outbreak nodes and realizations of the process we calcu-
late an infection frequency h for each link: The number
of times that link is used in the infection process, nor-
malized by the number of realizations. The question is,
how successfully can link salience, a topological quantity,
predict infection frequency h, a dynamic quantity. Fig-
ure 5 shows the results for the two different link weight
scenarios described in the Methods. The top panel shows
networks with link weights narrowly and uniformly dis-
tributed around a constant value w0; in the bottom panel
link weights are broadly distributed according to a power
law. In both cases, link salience is highly correlated with
the frequency of a link’s appearance in infection hierar-
chies h, while alternative link centrality measures such as
weight and betweenness are not (see Figure 5 insets and
SI). The link salience on average gives a much more accu-
rate prediction of the virulence of a link than other avail-
able measures of centrality, suggesting that this type of
completely deterministic, static analysis could nonethe-
less play an important role in considering how best to
slow spreading processes in real networks.

III. DISCUSSION

As much recent work in network theory has shown [19,
20, 33, 34], there is tremendous potential for extracting
heretofore hidden information from the complex interac-
tions between the elements of a system. However, un-
til now these methods have relied on externally imposed
parameters or null models. Here we have shown that
typical empirical networks taken from a variety of fields
do in fact permit the robust classification of links ac-
cording to the node-consensus procedure we introduce,
and that this leads naturally to the definition of a high-
salience skeleton in these networks. Because vanishingly
few links in empirical networks have intermediate values
of salience, the identification of the skeleton is insensi-
tive to a salience threshold; indeed, if a tunable filtering
procedure is desired other methods may be more appro-
priate. Not all networks possess a skeleton; simple un-
weighted models have a shortest-path structure spread
throughout the links. However, the presence of a skeleton



is a generic feature of many heterogeneously weighted,
empirical networks. We suggest that the likely cause in
real networks is a hub-and-spoke topological structure
along with a broad weight distribution, which amplifies
the tendency of hubs to capture shortest paths.

We believe that the concept of salience and the high-
salience skeleton will become a vital component in un-
derstanding networks of the type discussed here and the
development of network-based dynamical models. The
simple SI model we investigate here is only a starting
point; it may be possible to leverage knowledge of a net-
work’s high-salience skeleton to develop dynamical mod-
els that do not require simulation on (or even knowledge
of) the full network. The generic bimodal salience dis-
tribution in this context also implies that in contagion
phenomena only a small subset of links might typically
be active even if the process is stochastic. Those links,
however, are almost certainly active irrespective of the
outbreak location and the stochasticity of the process,
which implies that in this regime the process becomes
more predictable and the impact of stochasticity is de-
creased. This effect may shed a new light on the impact
of stochastic factors in disease dynamical processes that
evolve in strongly heterogeneous networks.

Many of the networks we considered evolved over
long periods of time subject to external constraints and
unknown optimization principles. The discovery that
pronounced weight and degree heterogeneity, which are
defining properties of the investigated networks, go hand
in hand with generic properties in their underlying skele-
ton indicate that looking for common evolution principles
could be another promising direction of further research.

IV. METHODS

A. Network data sources

Table II gives a brief definition of each network we
examine here, and below we provide a summary of the
networks along with data sources and references.

The Cash flow network was constructed from data col-
lected through the Where’s George bill-tracking website
(http://www.wheresgeorge.com). The nodes are the
3,106 counties in the 48 United States excluding Alaska
and Hawaii, and the links measure the number of bills
passing between pairs of counties per time. This network
has been previously analyzed [6, 10, 26]; see in particular
the supplement to [6] for a wealth of detailed information
regarding the construction and statistics of this network,
as well as strong evidence for interpreting it as proxy
for individual mobility. The network of cash flow is con-
structed from approximately 10 million individual bank
notes that circulate in the United States.

The Air traffic network measures global air traffic
based on flight data provided by OAG Worldwide Ltd.
(http://www.oag.com) and includes all scheduled com-
mercial flights in the world. Nodes represent airports

worldwide. Link weights measures the total number of
passengers traveling between a pair of networks by direct
flights per year. This network is well-represented in the
literature [8, 9, 25, 43, 44]; we reduce it to 95% flux as
described in [45]. Total traffic in this network amounts
to approximately 3 billion passengers per year.

The Shipping network quantifies international
marine freight traffic based on data provided by
IHS Fairplay (http://www.ihs.com/products/
maritime-information/index.aspx) which in-
cludes itineraries for 16,363 container ships. Nodes
represent ports, and links measure the number of
commercial cargo vessels traveling between those
ports during 2007. The network is available at
http://www.mathmod.icbm.de/45365.html and fur-
ther discussion can be found in [46].

The Commuting network is based on surveys
conducted by the US Census Bureau during the
2000 census, and reflects the daily commuter traf-
fic between US counties; the data is publicly
available at http://www.census.gov/population/www/
cen2000/commuting/files/2KRESCO_US.zip. Nodes in
this network represent the counties of the 48 states ex-
cluding Alaska and Hawaii, and links measure the num-
ber of people commuting between pairs of counties per
day.

The Neural network is derived from the Caenorhab-
ditis elegans nematode. Nodes represent neurons, and
links measure the number of synapses or gap junctions
connecting a pair of neurons. Experimental data is de-
scribed in Ref. [47] and analyzed in Ref. [48]; the net-
work is available at http://www-personal.umich.edu/
~mejn/netdata/.

The metabolic network measures interactions in the
bacterium Escherichia coli [16, 49]. Nodes represent
metabolites and links measure effective kinetic rates of
reactions a pair of metabolites participates in. We use
only the largest connected component of this network.

The Food web network is a representative food
web from a list of publicly available data sets
of the same type (see http://vlado.fmf.uni-lj.
si/pub/networks/data/bio/foodweb/foodweb.htm for
networks in Pajek format, a report [50] on trophic analy-
sis of the Florida Bay food web available at http://www.
cbl.umces.edu/~atlss/FBay701.html, and Refs. [34,
35]). Nodes represent species in the Florida Bay ecosys-
tem, and links measure the consumed biomass in grams
of carbon per year across a link.

In the Inter-industry network, nodes represent indus-
trial sectors in the United States and their connections
are computed from input-output tables prepared by the
US Bureau of Economic Analysis available at http:
//www.bea.gov/industry/io_benchmark.htm. We use
data from 2002, the most recent year for which mea-
surements are available. Nodes in this network repre-
sent particular industries (for example, “tobacco produc-
tion” or “cutlery and hand tool manufacturing”) and links
measure an average interaction between two industries.

http://www.wheresgeorge.com
http://www.oag.com
http://www.ihs.com/products/maritime-information/index.aspx
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http://www.bea.gov/industry/io_benchmark.htm
http://www.bea.gov/industry/io_benchmark.htm


Network Nodes Link units
Cash flow Counties, continental United States Number of bills/time
Air traffic Airports, worldwide Number of passengers/time
Shipping Ports, worldwide Number of cargo ships/time
Commuting Counties, continental United States Number of commuters/times

Neural Neurons, C. elegans Number of synapses and gap junctions
Metabolic Metabolites, E. coli Effective kinetic reaction rate
Food web Species, Florida Bay food web Exchanged biomass/time

Inter-industry Industrial sectors, United States Average input required for fixed output (USD)
World trade Countries Average value of traded assets/time (USD)
Collaboration Scientists Number of co-authored papers

Table II: Definition of nodes and links in empirical networks. The entities represented by nodes, as well as the units
measured by link weight, are listed for every network.

Given two industries x and y, input-output data mea-
sures the amount (USD) of input x demands from y in
order to produce one dollar of output, and we take the
weight of the link connecting x and y to be the geometric
mean of the input-output demand of x on y and y on x.

The World trade network is based on data prepared by
the United States National Bureau of Economic Research
and measures the value (in nominal thousands of USD) of
goods traded between countries from 1962-2000. Nodes
represent countries and links measure the value of goods
traded between countries. The data and extensive docu-
mentation are available at http://cid.econ.ucdavis.
edu/data/undata/undata.html. A series of papers ana-
lyzes a similar data set from a different source [35, 51–53].

The Collaboration network is based on co-authorship
of academic papers in the high-energy physics commu-
nity from 1995-1999. Nodes represent individuals and
links measure the number of papers co-authored [54].
The data is publicly available at http://www-personal.
umich.edu/~mejn/netdata/.

B. Link salience and betweenness centrality

Link salience s and betweenness centrality b are based
on the notion of shortest paths in weighted networks.
Given a weighted network defined by the weight matrix
wij (not necessarily symmetric) and a shortest path that
originates at node x and terminates at node y it is con-
venient to define the indicator function

σij(y, x) =


1 if link i→ j is on the shortest path

from x to y
0 otherwise

A shortest path tree T (x) rooted at node x can be rep-
resented as a matrix with elements

Tij(x) =

{
1 if

∑
y σij(y, x) > 0

0 otherwise,

and salience sij of link i→ j is given by

sij =
1

N

∑
x

Tij(x) = 〈Tij(x)〉V (4)

where 〈·〉V denotes the average across the set of root
nodes x.

Betweenness, on the other hand, is defined according
to

bij =
1

N2

∑
x,y

σij(y, x) = 〈σij(y, x)〉V 2

where 〈·〉V 2 denotes the average over all N2 pairs of ter-
minal nodes. The relation of betweenness and salience
can be made more transparent by rewriting this expec-
tation value as a sequential average over all nodes,

bij =
1

N

∑
x

bij(x)

with

bij(x) =
1

N

∑
y

σij(y, x) = 〈σij(y, x)〉V

fixing root node x. Thus bij(x) is the conditional bet-
weenness of link i → j if the set of shortest paths is
restricted to those terminating at x. From this it follows
that

bij =
〈
〈σij(x, y)〉V

〉
V

(5)

Comparing (5) with (4) we see that the difference of
salience and betweenness is equivalent to the difference
in the shortest path trees Tij(x) and the conditional bet-
weenness bij(x). Whereas all links in the shortest path
tree are weighted equally, links with non-zero conditional
betweenness tend to become less central as the links be-
come further separated from the root node x. Formally
we can write

sij =
〈
Θ
[
〈σij(x, y)〉V

]〉
V

bij =
〈
〈σij(x, y)〉V

〉
V
, (6)

with Θ(x) = 1 if x > 0 and Θ(x) = 0 otherwise.

http://cid.econ.ucdavis.edu/data/undata/undata.html
http://cid.econ.ucdavis.edu/data/undata/undata.html
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C. Epidemic simulations

In order to determine the relevance of link salience to
contagion phenomena on networks, we investigated the
correlation of link salience and the frequency at which
links participate in a generic contagion process that
spreads through planar, random triangular networks.

Each network consists of N = 100 nodes distributed
uniformly at random in a planar disk; the links of the
network are given by the Delaunay triangulation of the
nodes. The planar distance between nodes is roughly
proportional to the number of links in a shortest (net-
work) path between them. A representative example of
this type of topology is shown in Figure 3a. We consider
two different weight scenarios:

1. Quasi-homogeneous weights: Each link is assigned
a unit weight w modified by an additive, small per-
turbation ξ

w = 1 + ξ

where ξ is uniformly distributed in the interval
[−0.01, 0.01]

2. Broadly distributed weights: Each link is assigned
a random weight from the distribution with PDF

p(w) ∼ w−3.

We simulate a stochastic Susceptible-Infected (SI) epi-
demic process. A single stochastic realization of the pro-
cess is generated as follows: Given a network represented
by the symmetric weight matrix wij which quantifies the
interaction strength of a pair of nodes, we define the prob-
ability Pij that node j infects node i in a fixed time in-
terval ∆t

Pij = γpij i 6= j.

where γ � 1/∆t is the infection rate, and pij =
wij/

∑
i wij . Time proceeds in discrete steps; at each

step each infected node j chooses an adjacent node to
infect at random with probabilities given by Pij . If node
j infects a susceptible node i, then the link (j, i) is added
to the infection hierarchy H, which can be represented
as a matrix Hji. In the long time limit every node is
infected, and H is a tree structure recording the first in-
fection paths from the outbreak location s to every other
node.

For a given network, we compute R = 1, 000 different
epidemic realizations with random outbreak locations sk,
resulting in an ensemble of infection hierarchies H(k)

mn.
The key question is, how frequently does a link in the
network participate in an epidemic, and we define the
infection frequency of a link as

hmn =
1

R

R∑
k=1

H(k)
mn

We compute the infection frequency for 100 random net-
works under each weight scenario, and Figure 5 illustrates
the degree to which the directed salience smn is a predic-
tor of the dynamic quantity hmn. The correlation of hmn
with directed salience and the two measures of centrality
we consider here, weight wmn and betweenness bmn, is
shown in Table III.

Weight scenario sd vs h b vs h w vs h
Homogeneous 0.734 0.0756 0.005 45

Broad 0.803 0.329 0.393

Table III: Correlation of other measures with infection
frequency. The Pearson correlation coefficients of salience
sd, betweenness b, and weight w with infection pathway fre-
quency h are shown.
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