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Combinatorial study of degree assortativity in networks
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Why are some networks degree-degree correlated (assortative), while most of the real-world ones are
anticorrelated (disassortative)? Here, we prove, by combinatorial methods, that the assortativity of a network
depends only on three structural factors: transitivity (clustering coefficient), intermodular connectivity, and
branching. Then, a network is assortative if the contributions of the first two factors are larger than that of the
third. Highly branched networks are likely to be disassortative.
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Networks represent the topological skeleton of many com-
plex systems in a variety of scenarios, including physical, tech-
nological, socioeconomic, and informational domains [1–4].
The understanding of the structure of these complex networks
is vital for comprehending the evolutionary, functional, and
dynamical processes taking place in these systems [4–6]. A
major role in many of these processes, such as epidemic
spreading, synchronization, percolation, social organization,

protein architecture, network robustness, among others [7–14],
is played by the degree assortativity [7]. A network is
assortative if high-degree nodes tend to attach to other high-
degree nodes, while it is disassortative if high-degree nodes
tend to attach to low-degree ones. A quantitative measure
of assortativity was defined by Newman [7] as the Pearson
coefficient of the degree-degree correlation in an undirected
network. Mathematically, it is usually written as
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where ki(e) and kj (e) are the degrees at both ends of link e and
m is the number of links. Obviously, r > 0 for assortative, and
r < 0 for disassortative networks.

Degree assortativity is a sort of rare property in networks.
For instance, only 8% of the 11 117 connected networks with
eight nodes are assortative. Then, for this property to be mani-
fested, a very specific structural characteristic must be present
in a network. More interestingly, despite the lack of abundance
of assortative networks in general, there are complete classes
of real-world networks, which are assortative. For instance,
many social networks, mainly collaboration networks, have
been found to be assortative [7,9]. Also, close-packed spatial
networks, such as protein residue networks, atomic (molec-
ular) systems, and micellar networks are assortative [13,14].
Transitivity (clustering coefficients) [15,16] and modularity
[17] are frequently found in empirical correlations with the
assortativity coefficient [7,8,18–20]. However, there are very
modular networks with very large clustering coefficients,
which are not assortative. Some difficulties are known to
exist when the assortativity coefficient is used for studying
complex networks. As a consequence, better measures have
been proposed in the literature, such as the average degree
of the nearest neighbors introduced by Pastor-Satorras et al.
[21]. Then, if this measure is an increasing function of the
degree, nodes with high degrees have a greater probability
to be connected among them. On the contrary, a decreasing
behavior indicates that high-degree nodes are preferentially
attached with low-degree ones. Despite the known fact that

the assortativity coefficient is a global measure that can lead to
flawed estimations of the correlations strengths, it continues to
be used widely in many complex network applications across
the biological, physical, and social sciences. Therefore, it is
necessary to understand the role played by different structural
factors on the assortativity of a network. The aim of this Brief
Report is to unfold such structural factors in an analytic way
as well as to provide evidence of the role played by them on
the assortativity coefficient of real-world networks.

Let us start our analysis by rewriting the assortative
coefficient in matrix form as follows:

r = 〈k|A|k〉 − 1
2m

(〈1|E|1〉)2

〈1|E2|1〉 − 〈k|A|k〉 − 1
2m

(〈1|E|1〉)2
, (2)

where |k〉 = 〈1|A is a vector of node degrees, with A being the
adjacency matrix of the network (Aij = 1 if nodes i and j are
linked, zero otherwise) and |1〉 is an all-ones vector. The matrix
E = ∇T ∇ where ∇ stands for the n × m incidence matrix of
the network (n is the number of nodes), whose entry ∇ue is 1
if the node u is incident with the link e or is zero otherwise.
The first term in the numerator of Eq. (2) easily corresponds
to 〈k|A|k〉 = 2

∑
e ki(e)kj (e). The nondiagonal entries of the

matrix E = ∇T ∇ represent the adjacency between links in
the network. Two links are adjacent if they are incident on
the same node, i.e., they have a common node. The diagonal
entries of this matrix are equal to 2 as every edge is only
incident to two nodes. Then, it is easy to see that the degree
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of a link, which is the sum of the nondiagonal entries of a
row or column of E, is given by δ(e) = ki(e) + kj (e) − 2.
Then, 〈1|E〉e = δ(e) + 2 = [ki(e) + kj (e)], and we have that
〈1|E|1〉2 = {∑e[ki(e) + kj (e)]}2. Then, the quadratic forms in
Eq. (2) can be expressed as

〈k|A|k〉 = 2|P1| + 4|P2| + 2|P3| + 6|C3|, (3)

1

2m
(〈1|E|1〉)2 = 2|P2|2

|P1| + 2|P1| + 4|P2|, (4)

〈1|E2|1〉 = 2|P1| + 10|P2| + 2|P3| + 6|S1,3| + 6|C3|,
(5)

where the symbol | . . . | stands for the number of frag-
ments. The fragments (subgraphs) involved are paths and
cycles of i nodes Pi and Ci , respectively, and S1,3 rep-
resents a star graph of four nodes. The number of sub-
graphs that appear in Eqs. (3)–(5) can be calculated analyt-

ically as follows: |P1| = 1
2

∑n
i=1 ki,|P2| = ∑n

i=1( ki

2 ),|C3| =
1
6 tr(A3),|P3| = ∑

i,j∈E(ki − 1)(kj − 1) − 3|C3|, and|S1,3| =
∑n

i=1( ki

3 ). Let us introduce the following ratios: |Pr/s | =
|Pr |/|Ps | and C = 3|C3|/|P2|. Notice that C is exactly the
clustering coefficient or transitivity introduced by Newman
et al. [22]. Then, the assortativity coefficient can be written
combinatorially as follows:

r =
|P2|

(|P3/2| + 3|C3|
|P2| − |P2/1|

)

3|S1,3| − |P2|(|P2/1| − 1)

= |P2|(|P3/2| + C − |P2/1|)
3|S1,3| − |P2|(|P2/1| − 1)

. (6)

It is easy to see that the denominator of Eq. (6) is
non-negative such that the sign of the Pearson correlation
coefficient depends only on the sign of the numerator of
Eq. (6). Consequently, the fact that a network is assortative
or disassortative depends only upon the sign of the term
|P3/2| + C − |P2/1| in the numerator of Eq. (6). Then, our
main result here is that we can write the conditions for degree
assortativity as follows:

(1) assortative (r > 0): if and only if |P3/2| + C > |P2/1|,
(2) neutral (r = 0): if and only if |P3/2| + C = |P2/1| and

3|S1,3| − |P2|(|P2/1| − 1) �= 0,
(3) disassortative (r < 0): if and only if |P3/2| +

C < |P2/1|.
Then, there are only three structural factors that determine

the assortativity of a network. The transitivity coefficient C

measures the proportion of two paths that form triangles.
We recall that the transitivity is bounded as 0 � C � 1.
Then, the role played by the transitivity in the assortativity
of a network depends on the relative values of the other
two parameters |P3/2| and |P2/1|. In fact, if |P3/2| > |P2/1|,
the network will be assortative irrespective of its transitivity.
Otherwise, if |P3/2| < |P2/1| + 1, the network is disassortative
no matter how large the clustering coefficient is. The term
|P2/1| measures how relatively branched a network is by
accounting for the ratio of two paths to the number of links.
A linear chain (path) is the network with the least relative
branching and smallest |P2/1|. This ratio increases with an
increase in the number of pendant nodes so that, among trees,

FIG. 1. (Left) Network of type G′ obtained by linking a k-regular
graph and a single node. This network is disassortative as indicated
by its Pearson coefficient. (Right) Network of type G′′ in which a
k-regular graph is linked to another regular graph, e.g., a path of length
2. The network is assortative as indicated by its Pearson correlation
coefficient.

the star has the largest value of |P2/1|. Among all networks with
n nodes, the complete graph has the largest value of |P2/1|. The
third term determining the assortativity of a network |P3/2| is a
little bit trickier to interpret. In a regular network G of degree
k, it is easy to see that it only depends on the degree and
transitivity of the network P3/2(G) = (k − 1) − C. Now, let
us consider network G′, which is created by linking together
network G and a network formed by only one node (see Fig. 1,
left). It is easy to see that P3/2(G′) = P3/2(G) = (k − 1) − C.
We remark that network G′ is more branched than G as it
has P2/1(G′) ≈ k − (n − 3)/(n − 1) for n(G′) 	 2 instead of
P2/1(G) = k − 1. However, |P3/2| has not been affected by
the increase in branching. Now, let us create network G′′ by
linking together network G and a regular network consisting
of two nodes linked by a link (P2) (see Fig. 1, right). In
this case, the ratio |P3/2| changes to P3/2(G) ≈ (k − 1) +
2k/[(n − 2)(k − 1)] − C for n 	 k. The generalization of
this result to the linking of any two regular graphs will be
considered elsewhere. The important message, at this point, is
that, by linking together G and P2, we have created network G′′
consisting of two modules, and the value of |P3/2| reflects the
intermodular connectivity in this network [23]. This assumes
that the modules are well connected internally as is the general
case for the definition of modular networks. In closing, the
assortativity of a network is determined by three structural
factors: transitivity, intermodular connectivity, and relative
branching. We will analyze these factors in detail now.

Let us start our analysis by considering network G′, and
let us assume, for the sake of simplicity, that C ≡ 0. It is
straightforward to realize that (k − 1) < k − (n − 3)/(n − 1),
which means that P3/2(G′) + C(G′) < P2/1(G′) and network
G′ is disassortative (see Fig. 1). That is, the addition of
one pendant node to a regular network has increased the
branching but has not increased the intermodular connectivity
at all, resulting in disassortativity. In the case of network
G′′, the relative branching is given by P2/1(G) = (k − 1) −
[2(k − 1) − 4]/(nk − 2k + 4), and because (k − 1) + 2k/

[(n − 2)(k − 1)] > (k − 1) − [2(k − 1) − 4] / (nk − 2k + 4),
we have that P3/2(G′′) + C(G′′) > P2/1(G′′) for all k � 3,
which means that any network of type G′′ is assortative for
k � 3 (see Fig. 1). In other words, network G′′ displays larger
intermodular connectivity than branching, which is translated
into assortativity. To summarize, for a network being
assortative, it is enough that the intermodular connectivity
be larger than its relative branching. If both terms are almost
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TABLE I. Relative branching (|P2/1|), transitivity (C), intermod-
ular connectivity (|P3/2|) , and assortativity coefficient for real-world
networks.

Network |P2/1| |P3/2| C r

Prison 4.25 4.09 0.288 0.103
Protein residue 4.41 4.45 0.417 0.412
St. Marks 10.54 10.46 0.291 0.118
Geom 17.42 22.09 0.224 0.168
Corporate 19.42 20.60 0.498 0.268
Roget 9.55 10.08 0.134 0.174
Jazz 127.30 144.84 0.771 0.412
Zachary 6.77 4.49 0.256 −0.476
Drugs 14.58 12.84 0.368 −0.118
Transcription 12.51 3.01 0.016 −0.410
Bridge Brook 22.42 17.31 0.191 −0.664
USAir97 43.36 36.97 0.396 −0.208
Internet 91.00 11.53 0.015 −0.229

identical, then the transitivity will make the difference
between assortativity and disassortativity. We remark, without
proof, that, for increasing intermodular connectivity over
branching, the two modules linked together must be of
different sizes.

There are some empirical rules that can guide under-
standing assortativity in complex networks. For instance, the
existence of cliques or quasicliques increases both branching
and clustering. Then, a first rule is that, if these cliques
(quasicliques) are separated at relatively large distances,
the increase in branching is much larger than that of the
intermodular connectivity, and the network is likely to
be disassortative. However, if many cliques (quasicliques)
are linked together, the network is likely to be assortative. On
the other hand, starlike structures tend to increase branching
more than intermodular connectivity. Therefore, a second
empirical rule is that the networks with many such structures
are likely to be disassortative. A third rule is that, in an almost
regular network |P3/2| ≈ |P2/1|, the network can be assortative
if its transitivityis large enough. In order to analyze this
empirical evidence in light of the results obtained in this Brief
Report, we propose studying several real-world networks.

Here, we study 13 undirected real-world networks, in-
cluding social networks representing the corporate elite in
the United States (Corporate), a scientific collaboration net-
work in computational geometry (Geom), inmates in prison
(Prison), injectable drug users (Drugs), the Zachary karate
club (Zachary), and the collaboration between jazz musicians
(Jazz); four biological networks representing the transcription
interaction networks in yeast (Transcription), a protein residue

network (Protein residue), and the food webs of Bridge Brook
and St. Marks; a network based on Roget’s Thesaurus of
English (Roget), two technological networks representing the
airport transportation network in the United States in 1997
(USAir97), and the Internet at the autonomous systems (AS)
level as from April 1997. Details and references can be found in
Ref. [24]. In Table I, we illustrate the results for these networks.
The first three networks display clustering-driven assortativity
as they have |P3/2| ≈ |P2/1| but display large enough clustering
as to perform |P3/2| + C > |P2/1|. However, the structural
causes for their assortativity are different. The first two
networks (Prison and Protein residue) are characterized by
a few cliques (quasicliques), which are not connected directly
to each other, but somehow spread across the networks
(first empirical rule). The third network (St. Marks) is an
almost-regular network with large clustering (third empirical
rule). The next four networks in Table I display modularity-
driven assortativity as they have |P3/2| > |P2/1|. That is, these
networks display larger intermodularity than their relative
branching. In general, they can be seen as networks formed
by many relatively small cliques (quasicliques), which are
relatively close to each other (first empirical rule). For instance,
in the collaboration network of jazz musicians, there are two
cliques of 171 and 110 musicians, respectively, to which
almost all others of the more than 1600 small cliques are
linked to by a few ties. These cliques increase branching very
much (see |P2/1| in Table I), but the way in which they are
connected makes the intermodule connectivity very large and
|P3/2| > |P2/1|. Finally, all disassortative networks shown in
Table I are branched very much as to make |P2/1| > |P3/2|
(second empirical rule). In particular, the network of Internet
at AS and the transcription network of yeast display a large
unbalance between branching and intermodularity. In the
Internet network, there are many starlike subgraphs having
up to 169 pendant nodes connected to the same hub. This, of
course, dramatically increases |P2/1| with very little impact on
|P3/2|.

To conclude, in this Brief Report, we have found a
combinatorial expression for the assortativity coefficient in
terms of network structural parameters. The assortativity of
a network depends on the balance between three structural
factors: transitivity (clustering), intermodular connectivity,
and relative branching. The first two perform a positive
contribution to the assortativity of a network, while branching
is more likely associated with disassortative networks. We have
found analytical and empirical evidence about the different
topological organizations of networks that contribute to each of
these factors. These results can be useful in understanding the
relationship between assortativity and other network structural
(dynamical) parameters.
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