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To comprehend the multipartite organization of large-scale bio-
logical and social systems, we introduce an information theoretic
approach that reveals community structure in weighted and di-
rected networks. We use the probability flow of random walks on
a network as a proxy for information flows in the real system and
decompose the network into modules by compressing a descrip-
tion of the probability flow. The result is a map that both simplifies
and highlights the regularities in the structure and their relation-
ships. We illustrate the method by making a map of scientific
communication as captured in the citation patterns of >6,000
journals. We discover a multicentric organization with fields that
vary dramatically in size and degree of integration into the net-
work of science. Along the backbone of the network—including
physics, chemistry, molecular biology, and medicine—information
flows bidirectionally, but the map reveals a directional pattern of
citation from the applied fields to the basic sciences.

clustering � compression � information theory � map of science �
bibiometrics

B iological and social systems are differentiated, multipartite,
integrated, and dynamic. Data about these systems, now

available on unprecedented scales, often are schematized as
networks. Such abstractions are powerful (1, 2), but even as
abstractions they remain highly complex. It therefore is helpful
to decompose the myriad nodes and links into modules that
represent the network (3–5). A cogent representation will retain
the important information about the network and reflect the fact
that interactions between the elements in complex systems are
weighted, directional, interdependent, and conductive. Good
representations both simplify and highlight the underlying struc-
tures and the relationships that they depict; they are maps (6, 7).

To create a good map, the cartographer must attain a fine
balance between omitting important structures by oversimplifi-
cation and obscuring significant relationships in a barrage of
superfluous detail. The best maps convey a great deal of
information but require minimal bandwidth: the best maps are
also good compressions. By adopting an information-theoretic
approach, we can measure how efficiently a map represents the
underlying geography, and we can measure how much detail is
lost in the process of simplification, which allows us to quantify
and resolve the cartographer’s tradeoff.

Network Maps and Coding Theory
In this article, we use maps to describe the dynamics across the
links and nodes in directed, weighted networks that represent the
local interactions among the subunits of a system. These local
interactions induce a system-wide flow of information that
characterizes the behavior of the full system (8–12). Conse-
quently, if we want to understand how network structure relates
to system behavior, we need to understand the flow of infor-
mation on the network. We therefore identify the modules that
compose the network by finding an efficiently coarse-grained
description of how information flows on the network. A group
of nodes among which information flows quickly and easily can
be aggregated and described as a single well connected module;

the links between modules capture the avenues of information
flow between those modules.

Succinctly describing information flow is a coding or com-
pression problem. The key idea in coding theory is that a data
stream can be compressed by a code that exploits regularities in
the process that generates the stream (13). We use a random
walk as a proxy for the information flow, because a random walk
uses all of the information in the network representation and
nothing more. Thus, it provides a default mechanism for gen-
erating a dynamics from a network diagram alone (8).

Taking this approach, we develop an efficient code to describe
a random walk on a network. We thereby show that finding
community structure in networks is equivalent to solving a
coding problem (14–16). We exemplify this method by making
a map of science, based on how information flows among
scientific journals by means of citations.

Describing a Path on a Network. To illustrate what coding has to do
with map-making, consider the following communication game.
Suppose that you and I both know the structure of a weighted,
directed network. We aim to choose a code that will allow us to
efficiently describe paths on the network that arise from a
random walk process in a language that reflects the underlying
structure of the network. How should we design our code?

If maximal compression were our only objective, we could
encode the path at or near the entropy rate of the corresponding
Markov process. Shannon showed that one can achieve this rate
by assigning to each node a unique dictionary over the outgoing
transitions (17). But compression is not our only objective; here,
we want our language to reflect the network structure, we want
the words we use to refer to things in the world. Shannon’s
approach does not do this for us because every codeword would
have a different meaning depending on where it is used. Com-
pare maps: useful maps assign unique names to important
structures. Thus, we seek a way of describing or encoding the
random walk in which important structures indeed retain unique
names. Let us look at a concrete example. Fig. 1A shows a
weighted network with n � 25 nodes. The link thickness indicates
the relative probability that a random walk will traverse any
particular link. Overlaid on the network is a specific 71-step
realization of a random walk that we will use to illustrate our
communication game. In Fig. 1, we describe this walk with
increasing levels of compression (B–D), exploiting more and
more of the regularities in the network.

Huffman Coding. A straightforward method of giving names to
nodes is to use a Huffman code (18). Huffman codes save space
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Fig. 1. Detecting communities by compressing the description of information flows on networks. (A) We want to describe the trajectory of a random walk on
the network such that important structures have unique names. The orange line shows one sample trajectory. (B) A basic approach is to give a unique name to
every node in the network. The Huffman code illustrated here is an efficient way to do so. The 314 bits shown under the network describe the sample trajectory
in A, starting with 1111100 for the first node on the walk in the upper left corner, 1100 for the second node, etc., and ending with 00011 for the last node on
the walk in the lower right corner. (C) A two-level description of the random walk, in which major clusters receive unique names, but the names of nodes within
clusters are reused, yields on average a 32% shorter description for this network. The codes naming the modules and the codes used to indicate an exit from
each module are shown to the left and the right of the arrows under the network, respectively. Using this code, we can describe the walk in A by the 243 bits
shown under the network in C. The first three bits 111 indicate that the walk begins in the red module, the code 0000 specifies the first node on the walk, etc.
(D) Reporting only the module names, and not the locations within the modules, provides an efficient coarse graining of the network.
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by assigning short codewords to common events or objects and
long codewords to rare ones, much as common words are short
in spoken languages (19). Fig. 1B shows a prefix-free Huffman
coding for our sample network. Each codeword specifies a
particular node, and the codeword lengths are derived from the
ergodic node visit frequencies of an infinitely long random walk.
With the Huffman code pictured in Fig. 1B, we are able to
describe the specific 71-step walk in 314 bits. If we instead had
chosen a uniform code, in which all codewords are of equal
length, each codeword would be  log 25 � 5 bits long and 71�5 �
355 bits would have been required to describe the walk.

Although in this example we assign actual codewords to the
nodes for illustrative purposes, in general, we will not be
interested in the codewords themselves but rather in the theo-
retical limit of how concisely we can specify the path. Here, we
invoke Shannon’s source coding theorem (17), which implies that
when you use n codewords to describe the n states of a random
variable X that occur with frequencies pi, the average length of
a codeword can be no less than the entropy of the random
variable X itself: H(X) � ��1

n pi log(pi). This theorem provides
us with the necessary apparatus to see that, in our Huffman
illustration, the average number of bits needed to describe a
single step in the random walk is bounded below by the entropy
H(P), where P is the distribution of visit frequencies to the nodes
on the network. We define this lower bound on code length to
be L. For example, L � 4.50 bits per step in Fig. 1B.

Highlighting Important Objects. Matching the length of codewords
to the frequencies of their use gives us efficient codewords for
the nodes, but no map. Merely assigning appropriate-length
names to the nodes does little to simplify or highlight aspects of
the underlying structure. To make a map, we need to separate
the important structures from the insignificant details. We
therefore divide the network into two levels of description. We
retain unique names for large-scale objects, the clusters or
modules to be identified within our network, but we reuse the
names associated with fine-grain details, the individual nodes
within each module. This is a familiar approach for assigning
names to objects on maps: most U.S. cities have unique names,
but street names are reused from one city to the next, such that
each city has a Main Street and a Broadway and a Washington
Avenue and so forth. The reuse of street names rarely causes
confusion, because most routes remain within the bounds of a
single city.

A two-level description allows us to describe the path in fewer
bits than we could do with a one-level description. We capitalize
on the network’s structure and, in particular, on the fact that a
random walker is statistically likely to spend long periods of time
within certain clusters of nodes. Fig. 1C illustrates this approach.
We give each cluster a unique name but use a different Huffman
code to name the nodes within each cluster. A special codeword,
the exit code, is chosen as part of the within-cluster Huffman
coding and indicates that the walk is leaving the current cluster.
The exit code always is followed by the ‘‘name’’ or module code
of the new module into which the walk is moving [see supporting
information (SI) for more details]. Thus, we assign unique names
to coarse-grain structures (the cities in the city metaphor) but
reuse the names associated with fine-grain details (the streets in
the city metaphor). The savings are considerable; in the two-
level description of Fig. 1C the limit L is 3.05 bits per step
compared with 4.50 for the one-level description.

Herein lies the duality between finding community structure
in networks and the coding problem: to find an efficient code, we
look for a module partition M of n nodes into m modules so as
to minimize the expected description length of a random walk.
By using the module partition M, the average description length
of a single step is given by

L�M� � q� H��� � �
i�1

m

p@
i H�� i� . [1]

This equation comprises two terms: first is the entropy of the
movement between modules, and second is the entropy of
movements within modules (where exiting the module also is
considered a movement). Each is weighted by the frequency with
which it occurs in the particular partitioning. Here, q� is the
probability that the random walk switches modules on any given
step. H(Q) is the entropy of the module names, i.e., the entropy
of the underlined codewords in Fig. 1D. H(P i) is the entropy of
the within-module movements, including the exit code for
module i. The weight p@

i is the fraction of within-module
movements that occur in module i, plus the probability of exiting
module i such that �i�1

m p@
i � 1 � q� (see SI for more details).

For all but the smallest networks, it is infeasible to check all
possible partitions to find the one that minimizes the description
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Q = 0.56
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Fig. 2. Mapping flow highlights different aspects of structure than does
optimizing modularity in directed and weighted networks. The coloring of
nodes illustrates alternative partitions of two sample networks. (Left) Parti-
tions show the modular structure as optimized by the map equation (mini-
mum L). (Right) Partitions show the structure as optimized by modularity
(maximum Q). In the network shown in A, the left-hand partition minimizes
the map equation because the persistence times in the modules are long; with
the weight of the bold links set to twice the weight of other links, a random
walker without teleportation takes on average three steps in a module before
exiting. The right-hand clustering gives a longer description length because a
random walker takes on average only 12/5 steps in a module before exiting.
The right-hand clustering maximizes the modularity because modularity
counts weights of links, the in-degree, and the out-degree in the modules; the
right-hand partitioning places the heavily weighted links inside of the mod-
ules. In B, for the same reason, the right-hand partition again maximizes
modularity, but not so the map equation. Because every node is either a sink
or a source in this network, the links do not induce any long-range flow, and
the one-step walks are best described as in the left-hand partition, with all
nodes in the same cluster.
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length in the map equation (Eq. 1). Instead, we use computa-
tional search. We first compute the fraction of time each node
is visited by a random walker using the power method, and, using
these visit frequencies, we explore the space of possible parti-
tions by using a deterministic greedy search algorithm (20, 21).
We refine the results with a simulated annealing approach (6)
using the heat-bath algorithm (see SI for more details).

Fig. 1D shows the map of the network, with the within-module
descriptors faded out; here the significant objects have been
highlighted and the details have been filtered away.

In the interest of visual simplicity, the illustrative network in
Fig. 1 has weighted but undirected links. Our method is devel-
oped more generally, so that we can extract information from
networks with links that are directed in addition to being
weighted. The map equation remains the same; only the path
that we aim to describe must be slightly modified to achieve
ergodicity. We introduce a small ‘‘teleportation probability’’ � in
the random walk: with probability �, the process jumps to a
random node anywhere in the network, which converts our
random walker into the sort of ‘‘random surfer’’ that drives
Google’s PageRank algorithm (22). Our clustering results are

highly robust to the particular choice of the small fraction �. For
example, so long as � � 0.45 the optimal partitioning of the
network in Fig. 1 remains exactly the same. In general, the more
significant the regularities, the higher � can be before frequent
teleportation swamps the network structure. We choose � � 0.15
corresponding to the well known damping factor d � 0.85 in the
PageRank algorithm (22).

Mapping Flow Compared with Maximizing Modularity
The traditional way of identifying community structure in di-
rected and weighted networks has been simply to disregard the
directions and the weights of the links. But such approaches
discard valuable information about the network structure. By
mapping the system-wide flow induced by local interactions
between nodes, we retain the information about the directions
and the weights of the links. We also acknowledge their inter-
dependence in networks inherently characterized by flows. This
distinction makes it interesting to compare our flow-based
approach with recent topological approaches based on modu-
larity optimization that also makes use of information about
weight and direction (23–26). In its most general form, the
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Fig. 3. A map of science based on citation patterns. We partitioned 6,128 journals connected by 6,434,916 citations into 88 modules and 3,024 directed and
weighted links. For visual simplicity, we show only the links that the random surfer traverses �1/5,000th of her time, and we only show the modules that are
visited via these links (see SI for the complete list). Because of the automatic ranking of nodes and links by the random surfer (22), we are assured of showing
the most important links and nodes. For this particular level of detail, we capture 98% of the node weights and 94% of all flow.
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modularity for a given partitioning of the network into m
modules is the sum of the total weight of all links in each module
minus the expected weight

Q � �
i�1

m wii

w
�

wi
inwi

out

w2 . [2]

Here, wii is the total weight of links starting and ending in module
i, wi

in and wi
out are the total in- and out-weight of links in module

i, and w is the total weight of all links in the network. To estimate
the community structure in a network, Eq. 2 is maximized over
all possible assignments of nodes into any number m of modules.
Eqs. 1 and 2 reflect two different senses of what it means to have
a network. The former, which we pursue here, finds the essence
of a network in the patterns of flow that its structure induces.
The latter effectively situates the essence of network in the
topological properties of its links (as we did in ref. 16).

Does this conceptual distinction make any practical differ-
ence? Fig. 2 illustrates two simple networks for which the map
equation and modularity give different partitionings. The
weighted, directed links shown in the network in Fig. 2 A induce
a structured pattern of flow with long persistence times in, and
limited flow between, the four clusters as highlighted on the left.
The map equation picks up on these structural regularities, and
thus the description length is much shorter for the partitioning
in Fig. 2 A Left (2.67 bits per step) than for Fig. 2 A Right (4.13
bits per step). Modularity is blind to the interdependence in
networks characterized by flows and thus cannot pick up on this
type of structural regularity. It only counts weights of links,
in-degree, and out-degree in the modules, and thus prefers to
partition the network as shown in Fig. 2 A Right with the heavily
weighted links inside of the modules.

In Fig. 2B, by contrast, there is no pattern of extended flow at
all. Every node is either a source or a sink, and no movement

along the links on the network can exceed more than one step
in length. As a result, random teleportation will dominate
(irrespective of teleportation rate), and any partition into mul-
tiple modules will lead to a high flow between the modules. For
a network such as in Fig. 2B, where the links do not induce a
pattern of flow, the map equation always will partition the
network into one single module. Modularity, because it looks at
pattern in the links and in- and out-degree, separates the
network into the clusters shown at right.

Which method should a researcher use? It depends on which
of the two senses of network, described above, that the re-
searcher is studying. For analyzing network data where links
represent patterns of movement among nodes, f low-based ap-
proaches such as the map equation are likely to identify the most
important aspects of structure. For analyzing network data
where links represent not flows but rather pairwise relationships,
it may be useful to detect structure even where no flow exists.
For these systems, topological methods such as modularity (11)
or cluster-based compression (16) may be preferable.

Mapping Scientific Communication
Science is a highly organized and parallel human endeavor to
find patterns in nature; the process of communicating research
findings is as essential to progress as is the act of conducting the
research in the first place. Thus, science is not merely a set of
ideas but also the flow of these ideas through a multipartite and
highly differentiated social system. Citation patterns among
journals allow us to glimpse this f low and provide the trace of
communication between scientists (27–31). To highlight impor-
tant fields and their relationships, to uncover differences and
changes, to simplify and make the system comprehensible—we
need a good map of science.

Using the information theoretic approach presented above, we
map the flow of citations among 6,128 journals in the sciences
(Fig. 3) and social sciences (Fig. 4). The 6,434,916 citations in this
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Fig. 4. A map of the social sciences. The journals listed in the 2004 social science edition of Journal Citation Reports (32) are a subset of those illustrated in Fig.
3, totaling 1,431 journals and 217,287 citations. When we map this subset on its own, we get a finer level of resolution. The 10 modules that correspond to the
social sciences now are partitioned into 54 modules, but for simplicity we show only links that the random surfer visits at least 1/2,000th of her times together
with the modules they connect (see SI for the complete list). For this particular level of detail, we capture 97% of the node weights and 90% of all flow.
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cross-citation network represent a trace of the scientific activity
during 2004 (32). Our data tally on a journal-by-journal basis the
citations from articles published in 2004 to articles published in
the previous 5 years. We exclude journals that publish �12
articles per year and those that do not cite other journals within
the data set. We also exclude the only three major journals that
span a broad range of scientific disciplines: Science, Nature, and
Proceedings of the National Academy of Sciences; the broad scope
of these journals otherwise creates an illusion of tighter con-
nections among disciplines, when in fact few readers of the
physics articles in Science also are close readers of the biomedical
articles therein. Because we are interested in relationships
between journals, we also exclude journal self-citations.

Through the operation of our algorithm, the fields and the
boundaries between them emerge directly from the citation data
rather than from our preconceived notions of scientific taxon-
omy (see Figs. 3 and 4). Our only subjective contribution has
been to suggest reasonable names for each cluster of journals
that the algorithm identifies: economics, mathematics, geo-
sciences, and so forth.

The physical size of each module or ‘‘field’’ on the map reflects
the fraction of time that a random surfer spends following
citations within that module. Field sizes vary dramatically.
Molecular biology includes 723 journals that span the areas of
genetics, cell biology, biochemistry, immunology, and develop-
mental biology; a random surfer spends 26% of her time in this
field, indicated by the size of the module. Tribology (the study
of friction) includes only seven journals, in which a random
surfer spends 0.064% of her time.

The weighted and directed links between fields represent
citation flow, with the color and width of the arrows indicating
flow volume. The heavy arrows between medicine and molecular
biology indicate a massive traffic of citations between these
disciplines. The arrows point in the direction of citation: A3 B
means ‘‘A cites B’’ as shown in the key. These directed links
reveal the relationship between applied and basic sciences. We
find that the former cite the latter extensively, but the reverse is
not true, as we see, for example, with geotechnology citing
geosciences, plastic surgery citing general medicine, and power
systems citing general physics. The thickness of the module
borders reflect the probability that a random surfer within the
module will follow a citation to a journal outside of the module.
These outflows show a large variation; for example the outflow
is 30% in general medicine but only 12% in economics.

The map reveals a ring-like structure in which all major
disciplines are connected to one another by chains of citations,
but these connections are not always direct because fields on
opposite sides of the ring are linked only through intermediate

fields. For example, although psychology rarely cites general
physics or vice versa, psychology and general physics are con-
nected via the strong links to and between the intermediaries
molecular biology and chemistry. Once we consider the weights
of the links among fields, however, it becomes clear that the
structure of science is more like the letter U than like a ring, with
the social sciences at one terminal and engineering at the other,
joined mainly by a backbone of medicine, molecular biology,
chemistry, and physics. Because our map shows the pattern of
citations to research articles published within 5 years, it repre-
sents what de Solla Price called the ‘‘research frontier’’ (27)
rather than the long-term interdependencies among fields. For
example, although mathematics are essential to all natural
sciences, the field of mathematics is not central in our map
because only certain subfields (e.g., areas of physics and statis-
tics) rely heavily on the most recent developments in pure
mathematics and contribute in return to the research agenda in
that field.

When a cartographer designs a map, the scale or scope of the
map influences the choice of which objects are represented. A
regional map omits many of the details that appear on a city map.
Similarly, in the approach that we have developed here, the
appropriate size or resolution of the modules depends on the
universe of nodes that are included in the network. If we
compare the map of a network to a map of a subset of the same
network, we would expect to see the map of the subset reveal
finer divisions, with modules composed of fewer nodes. Fig. 4
illustrates this by partitioning a subset of the journals included
in the map of science: the 1,431 journals in the social sciences.
The basic structure of the fields and their relations remains
unchanged, with psychiatry and psychology linked via sociology
and management to economics and political science, but the map
also reveals further details. Anthropology fractures along the
physical/cultural divide. Sociology divides into behavioral and
institutional clusters. Marketing secedes from management.
Psychology and psychiatry reveal a set of applied subdisciplines.

The additional level of detail in the more narrowly focused
map would have been clutter on the full map of science. When
we design maps to help us comprehend the world, we must find
that balance where we eliminate extraneous detail but highlight
the relationships among important structures. Here, we have
shown how to formalize this cartographer’s precept by using the
mathematical apparatus of information theory.
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