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Modelling dynamical processes in complex
socio-technical systems
Alessandro Vespignani1,2

In recent years the increasing availability of computer power and informatics tools has enabled the gathering of reliable data
quantifying the complexity of socio-technical systems.Data-driven computationalmodels have emerged as appropriate tools to
tackle the study of dynamical phenomena as diverse as epidemic outbreaks, information spreading and Internet packet routing.
These models aim at providing a rationale for understanding the emerging tipping points and nonlinear properties that often
underpin the most interesting characteristics of socio-technical systems. Here, using diffusion and contagion phenomena as
prototypical examples, we review some of the recent progress in modelling dynamical processes that integrates the complex
features and heterogeneities of real-world systems.

Questions concerning how pathogens spread in population
networks, how blackouts can spread on a nationwide scale,
or how efficiently we can search and retrieve data on large

information structures are generally related to the dynamics of
spreading and diffusion processes. Social behaviour, the spread
of cultural norms, or the emergence of consensus may often
be modelled as the dynamical interaction of a set of connected
agents. Phenomena as diverse as ecosystems or animal and insect
behaviour can all be described as the dynamic behaviour of
collections of coupled oscillators. Although all these phenomena
refer to very different systems, their mathematical description
relies on very similar models that depend on the definition
and characterization of a large number of individuals and their
interactions in spatially extended systems.

The modelling of dynamical processes is a research field that
crosses different disciplines and has developed an impressive array
of methods and approaches, ranging from simple explanatory
models to realistic approaches capable of providing quantitative
insight into real-world systems. Initially these models used
simplistic assumptions for the micro-processes of interaction and
were mostly concerned with the study of the emerging macro-level
behaviour. This interest has favoured the use of techniques akin
to statistical physics and the analysis of nonlinear, equilibrium
and non-equilibrium physical systems in the study of collective
behaviour in social and population systems. In recent years,
however, the increase in interdisciplinary work and the availability
of system-level high-quality data has opened the way to data-driven
models aimed at a realistic description of complex socio-technical
systems. Modelling approaches to dynamical processes in complex
systems have been expanded into schemes that explicitly include
spatial structures and have thus grown into a multiscale framework
in which the various possible granularities of the system are
considered through different approximations. These models offer
a number of interesting and sometimes unexpected behaviours
whose theoretical understanding represents a new challenge that
has considerably transformed the mathematical and conceptual
framework for the study of dynamical processes in complex systems.

Dynamical processes and phase transitions
The study of dynamical processes and the emergence of macro-
level collective behaviour in complex systems follows a conceptual
route essentially similar to the statistical physics approach to
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non-equilibrium phase transitions. A prototypical example is that
of contagion processes. Epidemiologists, computer scientists and
social scientists share a common interest in studying contagion
phenomena and rely on very similar spreading models for
the description of the diffusion of viruses, knowledge and
innovations1–5. All these processes define a contagion dynamics
that can be seen as an actual biological pathogen that spreads
from host to host, or a piece of information or knowledge that
is transmitted during social interactions. Let us consider the
simple susceptible–infected–recovered (SIR) epidemic model. In
this model, infected individuals (labelled with the state I ) can
propagate the contagion to susceptible neighbours (labelled with
the state S) with rate ⌦, while infected individuals recover with
rate µ and become removed from the population. This is the
prototypical model for the spread of infectious diseases where
individuals recover and are immune to disease after a typical
time that, on average, can be expressed as the inverse of the
recovery rate. A classic variation of this model is the susceptible–
infected–susceptible (SIS) model, in which individuals revert to
the susceptible state with rate µ, modelling the possibility of
re-infection of individuals. The mapping between epidemic models
and non-equilibrium phase transitions was pointed out in physics
long ago, making those models of very broad relevance also
outside the area of information and disease spreading. The static
properties of the SIR model can indeed be mapped to an edge-
percolation process6. Analogously, the SIS model can be regarded
as a generalization of the contact-process model7, widely studied
as the paradigmatic example of an absorbing-state phase transition
with a unique absorbing state8.

A cornerstone feature of epidemic processes is the presence of the
so-called epidemic threshold1. In a fully homogeneous population,
the behaviour of the SIR model is controlled by the reproductive
number R0 =�/µ, where � = ⌦hki is the per-capita spreading rate,
which takes into account the average number of contacts hki of each
individual. The reproductive number simply identifies the average
number of secondary cases generated by a primary case in an
entirely susceptible population and defines an epidemic threshold
such that only if R0 � 1 (� � µ) can epidemics reach an endemic
state and spread into a closed population. The SIS and SIR models
are indeed characterized by a threshold defining the transition
between two very different regimes. These regimes are determined
by the values of the disease parameters, and characterized by
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Figure 1 | Phase diagram of epidemic models. Illustration of the behaviour
of the prevalence i1 for the SIS and SIR model in a heterogeneous network
(solid line) as a function of the spreading rate �/µ, compared with the
theoretical prediction for a homogeneous network (dashed line). The figure
clearly shows the difference between homogeneous and heterogeneous
networks, where the epidemic threshold is shifted to very small values. For
scale-free networks with degree distribution exponent �  3, however, the
associated prevalence i1 is extremely small over a large range of values of
�/µ. In other words, as noted since the first work on epidemic spreading in
complex networks, the bad news about the suppression (or very small
value) of the epidemic threshold is balanced by the very low prevalence
attained by the epidemic46.

the global parameter i1, which identifies the density of infected
individuals (or nodes in a network) in the infinite-time limit. In
the limit of an infinitely large population, this density is zero
below the threshold and assumes a finite value above the threshold.
From this perspective we can consider the epidemic threshold as
the critical point of the system and i1 as representing the order
parameter characterizing the transition. Below the critical point the
system relaxes in a frozen state with null dynamics—the healthy
phase. Above this point, a dynamical state characterized by a
macroscopic number of infected individuals sets in, defining an
infected phase (Fig. 1).

Many other pioneering works in the area of social sciences use
simple dynamical models to explore the emergence of macro-level
collective behaviour as a function of themicro-level processes acting
among the agents of a large population9–11, and the incursions by
statistical physicists in the area of social sciences have become very
frequent (see, for example, the recent review by Castellano et al.12).
A first class of models is represented by behavioural models where
the attributes of agents are binary variables similar to Ising spins,
as in the case of the voter model13, the majority-rule model14,15
and the Sznajd model16. In other instances, further realism has
been introduced by the use of continuous opinion variables17–19.
Along the path opened by Axelrod11, models in which opinions or
cultures are represented by vectors of cultural traits have introduced
the notion of bounded confidence: an agent will not interact
with any other agent, independently of their opinions, unless the
opinions are close enough.

Finally, there is a vast class of models that focus on the analysis
of diffusion processes as a tool to study phase transitions and
emergent phenomena in simple models mimicking the routing
of information packets in technological systems and networks.
In this case the focus is on what lies behind the appearance of
congestion and traffic self-similarity20–26. In traffic problems, one
of the main issues is that the diffusion process is not random
but determined by recurrent patterns, reinforcing mechanisms
and routing strategies that represent formidable challenges to the
modelling of systems27. Interestingly, it is the study of traffic
dynamics in the Internet and the World Wide Web that has made
clear the central role of networks and their structural properties
in the understanding and characterization of dynamical processes
in real-world systems.

Box 1 |The heterogeneous mean-field approach.

The heterogeneousmean-field approach generalizes, for the case
of networks with arbitrary degree distribution, the equations
describing the dynamical process, by considering degree-block
variables grouping nodes within the same degree class k. If we
consider the SIS model, the variables describing the system are ik
and sk , which respectively represent the fraction of nodes with
degree k in the infected and susceptible class. The evolution
equation for the infected individual is

dik(t )
dt

= �µik +⌦[1� ik(t )]k2k(t )

The first term just expresses the fact that any node in the infected
state may recover with rateµ. The second term, which generates
new infected individuals, is proportional to the probability of
transmission ⌦, the degree k, the probability 1� ik that a vertex
with degree k is not infected, and the density 2k of infected
neighbours of vertices of degree k, which is the probability
of contacting an infected individuals. As we are still assuming
a mean-field description of the system, the latter term is the
average probability that any given neighbour of a vertex of
degree k is infected. This quantity can be expressed as 2k(t )=P

k 0 P(k 0|k)ik 0(t ), which is the average over all possible degrees
k 0 of the probability P(k 0|k) that any edge of a node of degree k
is pointing to a node of degree k 0 times the probability ik 0 that
the node is infected. This expression can be further simplified by
considering a random network in which the conditional proba-
bility does not depend on the originating node. In this case we
have that P(k 0|k)= k 0P(k 0)/hki, following simply from the fact
that any edge has a probability proportional to the degree itself
of pointing to a node with degree k 0 (see ref. 38). On substituting
the expression for 2 in the main equation and adopting the
early-epidemic assumption (that is, assuming that all second-
order terms of ik and rk can be neglected), we readily recover the
topology-dependent epidemic threshold result, ⌦/µ = hki/hk2i.

Following the results obtained with the HMF assumption, a
number of rigorous results that link the network topology to
the epidemic threshold have been derived53,57,58. These results
relate the epidemic threshold to the largest eigenvalue of the
adjacency matrix of the network, showing that the HMF does
not recover the correct behaviour for the SIS model when the
degree distribution of the graph P(k) ⇠ k�� has � > 3. The
rigorous results refer to quenched networks where the adjacency
matrix is fixed in time. The HMF assumption instead, in its
mean-field perspective, is equivalent to a system in which edges
are continuously reshuffled so that the elements of the adjacency
matrix are defined by the effective probabilities kikj/

P
i ki that

two nodes i and j with degree ki and kj , respectively, are
connected. This consideration clearly shows the shortcomings of
the HMF assumption in the case of systems where the timescale
of the transmission or infection is very short with respect to
the duration of the contact and the adjacency matrix can be
considered as quenched. The HMF can be considered, however,
as a description of the system closer to reality in situations where
the transmission occurs on rapidly varying networks; this is for
instance the case for many influenza-like illnesses, where the
infectious period is much longer than the duration of contacts
responsible for the transmission57.

Complex networks and dynamical processes
We live in an increasingly interconnected world, where infras-
tructures composed of different technological layers inter-operate
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Figure 2 | Progression of an epidemic process. The progression of a
susceptible–infected (SI) epidemic in a heavy-tailed network at three
snapshots of the process, corresponding to time t = 5, 10 and 20, measured
in unitary time integration steps of the model. The SI model assumes that
infected nodes will spread the infection indefinitely to neighbours with rate
↵. In this case we know that the system is eventually completely infected,
whatever the spreading rate of the infection. However, we can highlight the
effect of topological fluctuations on the spreading hierarchy. Susceptible
nodes are coloured blue and infected nodes are coloured from yellow to red
according to the time of infection (red corresponding to later times). The
size of a node is proportional to the node degree. In general, the first nodes
to be infected are the large hubs with high degree, then the epidemic
progresses in time by a dynamical cascade through degree classes, finally
affecting low-degree nodes.

within the social component that drives their use and development.
Examples are the Internet, the World Wide Web, mobile tech-
nologies, and transportation and mobility infrastructures28–34. The
multiscale nature and complexity of these networks are crucial
features in understanding and managing socio-technical systems
and the dynamical processes occurring on top of them. For this
reason, in the past decade, the study of models unfolding on
complex networks has generated a body of work that includes
results of conceptual and practical relevance35–40. The resilience of
networks, their vulnerability to attacks, and their synchronization
properties are all drastically affected by topological heterogeneities.
Consensus formation, disease spreading and the accessibility of
information can benefit or be impaired by the connectivity pattern
of the population or infrastructure we are looking at. Network
science has thus become pervasive in the study of complex sys-
tems and presented us with a number of surprising discoveries

that have steered our way of thinking on dynamical processes in
socio-technical systems.

One of the most important features affecting dynamical
processes in real-world networks is the presence of dynamic
self-organization and the lack of characteristic scales—typical
hallmarks of complex systems40–44. Although those characteristics
have long been acknowledged as a relevant factor in determining
the properties of dynamical processes, many real-world networks
exhibit levels of heterogeneity that were not anticipated until a
few years ago. In particular, the various statistical distributions
characterizing these networks are generally heavy-tailed, skewed,
and varying over several orders of magnitude. This is a very
peculiar feature, typical of many natural and artificial complex
networks, characterized by virtually infinite degree fluctuations,
where the degree k of a given node represents its number of
connections to other nodes. In contrast to regular lattices and
homogeneous graphs, characterized by nodes having a typical
degree k close to the average hki, such networks are structured in
a hierarchy where a few nodes (the hubs) have very high degree
whereas the vast majority of nodes have lower degrees. This feature
is usually manifest in a heavy-tailed degree distribution, often
approximated by a power-law behaviour of the form P(k)⇠ k�� ,
which implies a non-negligible probability of finding vertices
with very high degree40,42–44. Furthermore, the presence of large-
scale fluctuations associated with heavy-tail distributions is also
observed for the intensity carried by the connecting links, transport
flows, and other basic quantities that go beyond the connectivity
description of the network45.

The presence of large-scale fluctuations virtually acting at all
scales of the network connectivity pattern calls for a mathematical
analysis where the variables characterizing each node of the network
explicitly enter the description of the system. Unfortunately, the
general solution, handling the master equation of the system, is
hardly, if ever, achievable—even for very simple dynamical pro-
cesses. For this reason, a viable theoretical approach has to be based
on techniques such as mean-field and deterministic continuum
approximations, which usually provide the understanding of the
basic phenomenology and phase diagram of the process under
study. In both cases, the heterogeneous nature of the network-
connectivity pattern is introduced by aggregating variables accord-
ing to a degree-block formalism that assumes that all nodes with
the same degree k are statistically equivalent38,46,47. This assumption
allows the grouping of nodes in degree classes, yielding a convenient
representation of the system. For instance, if for each node i
we associate a corresponding state �i characterizing its dynamical
state, a convenient representation of the system is provided by the
quantity Sk , which indicates the number of nodes of degree k in the
dynamical state � = s, and the corresponding degree-block density
of nodes of degree k in the state s

sk = Sk
Vk

where Vk is the number of nodes of degree k. Finally, the global
averages on the network are given by the expression

⇢s =
X

k

P(k)sk

where ⇢s is the probability that any given node is in the state s. This
formalism defines a mean-field approximation within each degree
class, relaxing, however, the overall homogeneity assumption on
the degree distribution38. This framework, first introduced for the
description of epidemic processes, is at the basis of the heteroge-
neous mean-field (HMF) approach that allows the analytical study
of dynamical processes in complex networks by writing mean-field
dynamical equations for each degree class variable. An example
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Box 2 |The particle–network framework.

The particle–network framework extends the HMF approach to
the case of a reaction–diffusion system in which particles (or
individuals) diffuse on a network with arbitrary topology. A
convenient representation of the system is therefore provided by
quantities defined in terms of the degree k

Nk = 1
Vk

X

i|ki=k

Ni

where Vk is the number of nodes with degree k and the sums
run over all nodes i having degree ki equal to k. The degree-block
variable Nk represents the average number of particles in nodes
with degree k. The use of the HMF approach amounts to the
assumption that nodes with degree k, and thus the particles in
those nodes, are statistically equivalent. In this approximation the
dynamics of particles randomly diffusing on the network is given
by a mean-field dynamical equation expressing the variation in
time of the particle subpopulations Nk(t ) in each degree block k.
This can simply be written as:

@Nk

@t
= �dkNk(t )+k

X

k 0
P(k 0|k)dk 0kNk 0(t )

The first term of the equation just considers that only a fraction
of particles dk moves out of the node per unit time. The second
term accounts for particles diffusing from its neighbours into the
node of degree k. This term is proportional to the number of
links k times the average number of particles coming from each
neighbour. The number of particles arriving from each neighbour
is thus equal to that of particles dk 0kNk 0(t ) diffusing on any edge
connecting a node of degree k 0 with a node of degree k, averaged
over the conditional probability P(k 0|k) that an edge belonging to
a node of degree k is pointing to a node of degree k 0. Here the term
dk 0k is the diffusion rate along the edges connecting nodes of degree
k and k 0. The rate at which individuals leave a subpopulation
with degree k is then given by dk = k

P
k 0P(k 0|k)dkk 0 . The function

P(k 0|k) encodes the topological connectivity properties of the
network and allows the study of different topologies and mixing
patterns. The above equation explicitly introduces the diffusion
of particles into the description of the system. The equation
can easily be generalized to particles with different states, and
reacting among themselves, by adding a reaction term to the
above equations. For instance, the generalization of the SIRmodel
described in the main text would consider three types of particle,
denoting infected, susceptible and recovered individuals. The
reaction taking place among individuals in the same node would
be the usual contagion process among susceptibles and infected
individuals, and the spontaneous recovery of infected individuals.

The analysis of a simple diffusion process immediately indi-
cates the importance of network topology. In a random network
with arbitrary degree distribution, the stationary state reached by
a swarm of particles diffusing with the same diffusive rate yields
Nk ⇠ k and the probability to find a single diffusing walker in a
node of degree k is

pk = k
hki

1
V

where V is the total number of nodes in the network. This
expression implies that the higher the degree of the nodes,
the greater the probability to be visited by the walker. This
observation has profound consequences for the way we can
discover, retrieve and rank information in complex networks.
The PageRank algorithm117 is in this respect a major break-
through, based on the idea that a viable ranking depends on
the topological structure of the network, and is defined by
essentially simulating the random surfing process on the web
graph. The most important pages are simply those with the
highest probability of being discovered if the web-surfer had
infinite time to explore the web. Analogously, search processes
can take advantage of this property using degree-biased searching
algorithms that bias the routing of messages towards nodes with
high degree115,116.

of the HMF approach is given in Box 1 for the case of the SIS
model. The HMF technique is often the first line of attack towards
understanding the effects of complex connectivity patterns on
dynamical processes and it has been used widely in a broad range of
phenomena, although with different names and specific assump-
tions, depending on the problem at hand. Although it contains
several approximations, the HMF approach readily shows that the
heterogeneity found in the connectivity pattern of many networks
may drastically affect the unfolding of the dynamical process.

The classic example for the effect of degree heterogeneity on
dynamical processes in complex networks is epidemic spreading.
The previously discussed result of the presence of an epidemic
threshold in the SIR and SIS models is obtained under the
assumption that each individual in the system has, to a first
approximation, the same number of connections k'hki. However,
social heterogeneity and the existence of ‘super-spreaders’ have long
been known in the epidemics literature48. Generally, it is possible to
show that the reproductive rateR0 is renormalized by fluctuations in
the transmissibility or contact pattern as R0 !R0(1+ f (⌫)), where
f (⌫) is a positive and increasing function of the standard deviation
⌫ of the individual transmissibility or connectivity pattern49. In
particular, by generalizing the dynamical equations of the SIS
model, the HMF approach yields that the disease will affect a
finite fraction of the population only if �/µ � hki2/hk2i, that is

the ratio between the first and second moments of the degree
distribution38,46,47. This readily suggests that the topology of the
network enters the very definition of the epidemic threshold.
Furthermore, this implies that in heavy-tailed networks such that
hk2i ! 1, in the limit of infinite network size, we have a null
epidemic threshold. Although this is not the case in any finite-size
real-world network50,51, larger heterogeneity levels lead to smaller
epidemic thresholds (Fig. 1). This is an important result, which
indicates that heterogeneous networks behave very differently from
homogeneous networks with respect to physical and dynamical
processes. Indeed, the heterogeneous connectivity pattern of
networks affects also the dynamical progression of the epidemic
process, which results in a striking hierarchical dynamics in
which the infection propagates from higher-degree to lower-degree
classes. The infection first takes control of the high-degree vertices
in the network, then rapidly invades the network via a cascade
through progressively lower-degree classes (Fig. 2). It also turns
out that the time behaviour of epidemic outbreaks and the growth
of the number of infected individuals are governed by a timescale
⌧ proportional to the ratio between the first and second moment
of the network’s degree distribution, thus suggesting a velocity of
progression that increaseswith the heterogeneity of the network52.

The change of framework suggested by the network heterogene-
ity in the case of epidemic processes has triggered many studies
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Figure 3 | Illustration of the global threshold in reaction–diffusion processes. a, Schematic of the simplified modelling framework based on the
particle–network scheme. At the macroscopic level the system is composed of a heterogeneous network of subpopulations. The contagion process
in one subpopulation (marked in red) can spread to other subpopulations as particles diffuse across subpopulations. b, At the microscopic level,
each subpopulation contains a population of individuals. The dynamical process, for instance a contagion phenomena, is described by a simple
compartmentalization (compartments are indicated by different coloured dots). Within each subpopulation, individuals can mix homogeneously, or
according to a subnetwork, and can diffuse with rate d from one subpopulation to another, following the edges of the network. c, A critical value dc of the
diffusion strength for individuals or particles identifies a phase transition between a regime in which the contagion affects a large fraction of the system
and one in which only a small fraction is affected (see the discussion in the text). Panels a and b reproduced from ref. 118.

aimed at providing a more rigorous analytical basis for the results
obtained with the HMF and other approximate methods exploring
different spreading models53–58. Equally important is the research
activity concerned with developing dynamical ad hoc strategies for
network protection; targeted immunization strategies and targeted
prophylaxis that evolve with time might be particularly effective
in the control of epidemics on heterogeneous patterns, compared
with massive uniform vaccinations or stationary interventions59–62.
Following the results on epidemic processes, an avalanche of studies
addressed the study of the effect of the network’s structure on the
behaviour of the most widely used classes of dynamical processes.
For instance, in the area of synchronization it has been shown
that networks with heavy-tailed degree distributions, and therefore
a large number of hubs, are more difficult to synchronize than
homogeneous networks, a counterintuitive insight dubbed the
paradox of heterogeneity63–66. In the case of packet-traffic routing,
homogeneous networks have typically much larger congestion
thresholds than heterogeneous graphs67–69. Finally, a wealth of
surprising results, often overturning the commonwisdom obtained
by studies on regular networks, have been harvested on the voter
and the Axelrod models70–73, and many other models for the
emergence of cooperation38,74.

Reaction–diffusion processes and computational thinking
Although most approaches assume systems in which each node
of the network corresponds to a single individual, it is of crucial
importance for the study of many phenomena to provide a general
understanding of processes where the multiple occupancy of nodes
is a key feature. Examples of multiple occupancy are provided by
chemical reactions, in which different molecules or atoms diffuse
in space and may react whenever in close contact. Mechanistic
metapopulation epidemic models, where particles represent people
moving between different locations, and the routing of information

packets in technological networks provides relevant examples in the
case of socio-technical systems75–79. All those phenomena fall into
the category of reaction–diffusion processes, where each node i is
allowed to have any non-negative integer number of particles Ni
so that the total particle population of the system is N = P

Ni.
The particle–network framework extends the heterogeneous mean-
field approach to reaction–diffusion systems in networks with
arbitrary degree distribution (Box 2). Particles diffuse along the
edges connecting nodes, with a diffusion coefficient that depends on
the node degree and/or other nodes’ attributes. Within each node,
particles may react according to different schemes characterizing
the interaction dynamic of the system.

The consideration of complex networks in reaction–diffusion
systems has broadened our knowledge of non-equilibrium
reaction–diffusion systems in heterogeneous systems. For instance,
the Turing mechanism represents a classical model for the
formation of self-organized spatial structures in non-equilibrium
activator–inhibitor systems. By studying the Turingmechanism80 in
systems with heterogeneous connectivity patterns it has been found
that the relevant instabilities of the systems are localized in a set
of vertices with degree inversely proportional to the characteristic
scale of diffusion81. Interestingly, and contrary to other models and
systems where the hubs are the playmakers, the segregation process
takes place mainly in vertices of low degree.

Another interesting example is that of simple epidemic pro-
cesses, such as the SIR model in a metapopulation context79,82–90.
In this case, each node of the network is a subpopulation (ideally an
urban area) connected by a transportation system (the edges of the
network) that allows individuals to move from one subpopulation
to another (Fig. 3). If we assume a diffusion rate d for each individ-
ual and consider that the single-population reproductive number
of the SIR model is R0 > 1, we can easily identify two different
limits. If d = 0, any epidemic occurring in a given subpopulation
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will remain confined; no individual could travel to a different
subpopulation and spread the infection across the system. In the
limit d ! 1 we have that individuals are constantly wandering
from one subpopulation to the other and the system is in practice
equivalent to awell-mixed unique population. In this case, asR0 >1,
the epidemic will spread across the entire system. A transition
point between these two regimes occurs at a threshold value dc
of the diffusion rate, identifying a global invasion threshold. This
threshold cannot be uncovered by continuousmodels as it is related
to the stochastic diffusion rate of single individuals. Furthermore,
the global invasion threshold is affected by the connectivity fluctu-
ations of the metapopulation network. In particular, the greater the
network heterogeneity, the smaller the value of the diffusion rate
above which the epidemic may globally invade the metapopulation
system. This result assumes a particular relevance, as it explains
why travel restrictions seem to be highly ineffective in containing
epidemics: the complexity and heterogeneity of present-day trans-
port networks favour considerably the global spread of infectious
diseases. Only infeasibly tight mobility restrictions, reducing global
travel fluxes by 90% ormore, would be effective84,91,92.

Reaction–diffusion models lend themselves to the implemen-
tation of large-scale computer simulations (Monte-Carlo and
individual-based simulations) that allow one to track microscop-
ically the state of each node and the evolution of the dynamical
process. At the most detailed level, the introduction of agent-based
models has enabled the usual modelling perspective to be extended
further by simulating the population and embedding environment
on an individual-by-individual basis. An example is epidemic mod-
elling, where spatially structured and agent-basedmodels at various
granularities (country, inter-city, intra-city) have been pushed to
the computational limits with the integration of huge amount
of data describing the flows of people and/or animals93–97. These
models can generate results at an unprecedented level of detail and
have been used successfully in the analysis and anticipation of real
epidemics, such as the 2009 H1N1 pandemic98,99. Computer simu-
lations thus become valuable in allowing both in silico experiments
that would be infeasible in real systems and the capability to analyse
and forecast scenarios. This computational approach is also helping
to guide researchers in identifying typical nonlinear behaviour
and tipping points100 not accessible by analytical means, using the
numerical simulations as a novel experimental workbench101,102.

Co-evolution, timescale and control
Although in recent years our understanding of dynamical processes
in complex networks has progressed at an exponential pace, there
are still a number of major challenges that keep the research
community actively engaged. The first challenge stems from the
fact that the analysis of dynamical processes is generally performed
in the presence of a timescale separation between the network
evolution and the dynamical process unfolding on its structure.
In one limit we can consider the network as quenched in its
connectivity pattern, thus evolving on a timescale that is much
longer that the dynamical process itself. In the other limiting case,
the network evolves on a timescalemuch shorter than the dynamical
process, which thus effectively disappears from the definition of
the interaction among individuals such that this interaction can
be conveniently replaced by effective random coupling. Although
the timescale separation is extremely convenient with a view to
the numerical and analytical tractability of the models, networks
generally evolve on a timescale that might be comparable to that
of the dynamical process. Furthermore, the network properties
used in defining models generally represent a time-integrated
static snapshot of the system. However, in many systems the
timing and duration of interactions define processes on a timescale
very different from, and often conflicting with, those of the

Figure 4 |Visualization of the dynamical network generated by Twitter
interactions. Twitter is a microblogging tool that allows users to post and
relay (’re-tweet’) short messages. The topic of the message is signalled by
short identifiers (@mentions, #hash-tags and urls). This feature allows one
to trace the spreading of specific discussion topics (also called memes).
The figure shows the diffusion network for the tag #gop. Each node
corresponds to an individual user. Blue edges represent re-tweets and
orange edges represent mentions. Two communities are clearly visible,
corresponding to politically left- and right-leaning users113.
Communications between the two communities take place primarily
through the use of mentions, while within a group communication occurs
through re-tweets. The figure, obtained using the Truthy infrastructure114,
clearly exemplifies the co-evolution of the communication network with the
spreading process.

time-integrated view. This highlights the importance of considering
the concurrency of network evolution and dynamical processes in
realisticmodels to avoidmisleading conclusions103–106.

A second challenge is the co-evolution of networks with the
dynamical process. Access to the mathematical and statistical laws
that characterize the interplay and feedback mechanisms between
the network evolution and the dynamical processes is extremely
important, especially in social systems, where the adaptive nature
of agents is of paramount importance106–108. The spreading of an
opinion is affected by the interaction among individuals, but the
presence and/or establishment of interaction among individuals is
affected by their opinion. This issue is increasingly relevant in the
area of the modern social networks populating the information-
technology ecosystem, such as those defined by the Facebook and
Twitter applications. In this case the network and the spread of
information cannot be defined in isolation, because of rapidly
changing interactions and modes of communication that depend
on the type of information exchanged and the adaptive behaviour
of individuals (Fig. 4).

The adaptive behaviour of individuals to the dynamical
processes they are involved in represents another modelling
challenge, as it calls for the understanding of the feedback
among different and competing dynamical processes. For instance,
relatively little systematic work has been done to provide coupled
behaviour–disease models able to close the feedback loop between
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behavioural changes triggered in the population by an individual’s
perception of the disease spread and the actual disease spread109,110.
Similar issues arise in many areas where we find competing
processes of adaptation and awareness to information or knowledge
spreading in a population111.

Finally, the overall goal is not only to understand complex
systems, mathematically describe their structure and dynamics,
and predict their behaviour, but also to control their dynamics.
Also in this case, although control theory offers a large set of
mathematical tools for steering engineered and natural systems, we
are just taking the first steps towards a full understanding of how the
network heterogeneities influence our ability to control the network
dynamics andhow the network evolution impacts controllability112.

Conclusions
There are no doubts that a complete understanding of complex
socio-technical systems requires diving into the specifics of each
system by adopting a domain-specific perspective. Data-driven
models, however, are generating new questions, the answers to
which should preferably be analytical and applicable to a wide range
of systems. What are the fundamental limits to predictability with
computational modelling? How does our understanding depend
on the level of accuracy of our description and knowledge of the
state of the system? The research community needs, nowmore than
ever, the kind of basic theoretical understanding that would help
discriminate betweenwhat is relevant andwhat is superfluous in the
description of socio-technical systems. This is a crucial endeavour if
we want to complement data-driven approaches with a conceptual
understanding that would help guide the management, prediction
and control of dynamical processes in complex systems—a
conceptual understanding that necessarily descends from the study
of the dynamicalmodels and processes presented here.
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