
University of Ljubljana

Faculty of Computer and Information Science

Klemen Kloboves

Implementation of a SIC/XE

Processor on an FPGA and

Supporting System Software

BACHELOR’S THESIS

UNDERGRADUATE UNIVERSITY STUDY PROGRAM

COMPUTER SCIENCE AND MATHEMATICS

Advisor: Assist. Prof. Tomaž Dobravec, PhD

Co-advisor: Assoc. Prof. Patricio Bulić, PhD

Ljubljana 2014

Univerza v Ljubljani

Fakulteta za računalnǐstvo in informatiko

Klemen Kloboves

Implementacija procesorja SIC/XE

na FPGA in podporna sistemska

programska oprema

DIPLOMSKO DELO

UNIVERZITETNI INTERDISCIPLINARNI ŠTUDIJSKI

PROGRAM PRVE STOPNJE RAČUNALNIŠTVO IN

MATEMATIKA

Mentor: doc. dr. Tomaž Dobravec

Somentor: izr. prof. dr. Patricio Bulić

Ljubljana 2014

This work is licensed under a Creative Commons Attribution 4.0 International Li-

cense. Details about this license are available online at: http://creativecommons.

org

Source code of the hardware and software developed as part of this work is li-

cenced under the MIT License and is available online at: https://github.com/

kloboves/sicxe

http://creativecommons.org
http://creativecommons.org
https://github.com/kloboves/sicxe
https://github.com/kloboves/sicxe

The Faculty of Computer and Information Science issues the following thesis:

The Simplified Instruction Computer (SIC) is a hypothetical computer de-

signed for educational purposes. SIC/XE is an extended version of this com-

puter with additional features. Both computers were designed by Lelend

L. Beck and are used in many Systems Programming and Operating Sys-

tems courses at university level. In your thesis implement a computer on

the Digilent Nexys 2 FPGA development board. The computer should con-

tain a SIC/XE processor, device controllers and other auxiliary components.

To support the testing process, design and implement the system software

including assembler, linker and simulator utilities for programs written in

SIC/XE assembly language.

Fakulteta za računalnǐstvo in informatiko izdaja naslednjo nalogo:

SIC je hipotetični računalnik, ki se uporablja v učnem procesu za poučevanje

razvoja in uporabe sistemske programske opreme. SIC/XE je nadgradnja

osnovnega SIC računalnika in vsebuje večje število ukazov ter večji pomnil-

nik. Računalnika, ki ju je zasnoval Leland L. Beck, se uporabljata kot pri-

pomoček pri mnogih predmetih o sistemski programski opremi in o opera-

cijskih sistemih na univerzah po vsem svetu. V diplomski nalogi implemen-

tirajte računalnik na Digilent Nexys 2 FPGA razvojni plošči. Računalnik

naj vsebuje procesor SIC/XE, krmilnike naprav in pomožne komponente.

Razvijte tudi sistemsko programsko opremo za razvoj in testiranje SIC/XE

programov, vključno z zbirnikom, povezovalnikom in izvajalnim okoljem.

Programska oprema naj omogoča poganjanje in razhroščevanje programov

napisanih v SIC/XE zbirnem jeziku.

Izjava o avtorstvu diplomskega dela

Spodaj podpisani Klemen Kloboves, z vpisno številko 63110208, sem avtor

diplomskega dela z naslovom:

Implementacija procesorja SIC/XE na FPGA in

podporna sistemska programska oprema

S svojim podpisom zagotavljam, da:

• sem diplomsko delo izdelal samostojno pod mentorstvom doc. dr. Tomaža

Dobravca in somentorstvom izr. prof. dr. Patricia Bulića,

• so elektronska oblika diplomskega dela, naslov (slov., angl.), povzetek

(slov., angl.) ter ključne besede (slov., angl.) identični s tiskano obliko

diplomskega dela,

• soglašam z javno objavo elektronske oblike diplomskega dela na svetov-

nem spletu preko univerzitetnega spletnega arhiva.

V Ljubljani, dne 8. julija 2014 Podpis avtorja:

Contents

Abstract

Povzetek

Razširjeni povzetek

1 Introduction 1

2 About the SIC/XE Architecture 5

2.1 System Memory and Devices 5

2.2 Registers . 6

2.3 Instruction Formats . 7

2.4 Addressing Modes . 8

2.5 Interrupts . 10

2.6 Object File Format . 11

3 SIC/XE on a Xilinx Spartan 3E FPGA 15

3.1 Memory Controller . 17

3.2 Personal Computer Interface 18

3.3 Device Subsystem . 22

3.4 Central Processing Unit . 26

4 SIC/XE System Software 31

4.1 Simulator . 31

4.2 Assembler . 34

CONTENTS

4.3 Linker . 45

4.4 FPGA Interface Utility . 46

5 Conclusions 49

Table of Acronyms

acronym meaning

ALU arithmetic logic unit

CPU central processing unit

DRAM dynamic random-access memory

FPGA field-programmable gate array

FSM finite state machine

I/O input/output

LED light emitting diode

PSRAM pseudo-static DRAM

VHDL VHSIC hardware description language

VHSIC very high speed integrated circuit

Abstract

SIC/XE is a hypothetical computer architecture designed for teaching sys-

tems software programming. In this work, we present an educational SIC/XE

computer that we implemented on an FPGA development board. The system

consists of a SIC/XE processor, device controllers and other auxiliary com-

ponents. In addition, we also developed a suite of system software utilities

for use with our system. The suite includes assembler, linker and simulator

utilities which can be used to create and test programs for the SIC/XE com-

puter. Programs can be transferred from a personal computer to the FPGA

board over a serial connection, using a provided software tool.

Keywords: SIC/XE, FPGA, processor, assembler, linker, simulator.

Povzetek

SIC/XE je hipotetična računalnǐska arhitektura namenjena učenju sistem-

skega programiranja. V tem delu je predstavljen izobraževalni SIC/XE

računalnik, ki smo ga implementirali na FPGA razvojni plošči. Sistem je

sestavljen iz SIC/XE procesorja, krmilnikov naprav in ostalih pomožnih kom-

ponent. Poleg tega smo razvili tudi zbirko sistemskih programov namenje-

nih za uporabo s sistemom. Zbirka programov vključuje zbirnik, povezoval-

nik in simulator, s katerimi lahko ustvarjamo in preizkušamo programe za

računalnik SIC/XE. Programe lahko prenesemo iz osebnega računalnika na

FPGA ploščo preko serijske povezave z uporabo priloženega programa.

Ključne besede: SIC/XE, FPGA, procesor, zbirnik, povezovalnik, simula-

tor.

Razširjeni povzetek

V diplomski nalogi je predstavljen izobraževalni računalnǐski sistem SIC/XE,

ki smo ga implementirali na FPGA razvojni plošči. Razvili smo tudi zbirko

sistemskih programov za uporabo s sistemom. Zbirka programov vključuje

zbirnik, povezovalnik in simulator ter orodje za prenos programov z osebnega

računalnika na FPGA ploščo preko serijske povezave.

SIC/XE je hipotetični računalnǐski sistem namenjen poučevanju sistem-

skega programiranja. Predstavil ga je Leland L. Beck v svoji knjigi “Sy-

stem Software: An introduction to Systems Programming”. Arhitektura

ima večino funkcionalnosti, ki so prisotne v resničnih arhitekturah, vendar je

manj kompleksna, zaradi česar je bolj primerna za učenje sistemskega pro-

gramiranja. Ker je SIC/XE hipotetična računalnǐska arhitektura, ne obstaja

veliko strojnih računalnikov s to arhitekturo. Na voljo pa so programski

simulatorji, ki posnemajo delovanje SIC/XE računalnika na računalniku z

drugo arhitekturo.

Programski simulatorji imajo nekatere omejitve, zato smo želeli narediti

strojni SIC/XE računalnik. Pravi strojni sistem omogoča uporabnikom pisa-

nje programov, ki direktno komunicirajo s strojnimi napravami kot so ekrani,

tipke, stikala in lučke. Za izdelavo sistema smo uporabili FPGA tehnologijo

podjetja Xilinx. FPGA tehnologija omogoča hitro in cenovno ugodno iz-

delavo prototipov digitalnih vezij. Za osnovo sistema smo izbrali razvojno

ploščo Digilent Nexys 2. Na plošči je FPGA čip Xilinx Spartan 3E, PSRAM

pomnlinǐski čip in razne vhodno/izhodne naprave, zaradi česar je plošča pri-

merna izbira za naš sistem. Ker gre za izobraževalni sistem, smo želeli, da

je sistem čim bolj enostaven za uporabo in da je iskanje napak v programih

preprosto. Zagotoviti smo morali enostaven način prenosa programov na

ploščo, kot tudi način za pregledovanje glavnega pomnilnika. Sistem je zato

načrtovan za uporabo skupaj z osebnim računalnikom, s katerim se poveže s

serijsko povezavo, preko katere lahko osebni računalnik neposredno dostopa

do pomnilnika. Poleg dostopa do pomnilnika lahko osebni računalnik preko

povezave pošilja ukaze, s katerimi lahko uporabnik ustavi in zažene proce-

sor, sproži prekinitve ali ponovno zažene sistem. Sistem nima dolgotrajnega

pomnilnika, vendar to ne predstavlja težav saj se lahko programe kadarkoli

ponovno naloži v pomnilnik s povezanega osebnega računalnika.

Za načrtovanje sistema smo uporabili strojni opisni jezik VHDL. Načrt

je sestavljen iz štirih komponent: krmilnik pomnilnika, podsistem naprav,

enota za komuniciranje z osebnim računalnikom in CPE (centralna procesna

enota). Krmilnik pomnilnika je zadolžen za upravljanje pomnilnǐskega čipa

Micron PSRAM, ki služi kot glavni sistemski pomnilnik. Podsistem naprav

sestavlja več krmilnikov naprav, ki krmilijo vhodno/izhodne naprave, med

drugim tipke, stikala, lučke, priključek PS/2 in priključek VGA. Enota za

komuniciranje z osebnim računalnikom komunicira s priključenim osebnim

računalnikom preko serijske povezave, kot je opisano v preǰsnjem odstavku.

Najbolj pomembna komponenta pa je procesor SIC/XE, ki izvaja ukaze,

shranjene v glavnem pomnilniku. Procesor je ne-cevovoden in podpira neko-

liko spremenjeno različico arhitekture SIC/XE. Razlike med arhitekturama

so majhne in opisane v poglavju 2.

Poleg strojne implementacije sistema SIC/XE smo razvili tudi zbirko sis-

temskih programov za uporabo sistema. Programe so razvili v programskem

jeziku C++ za operacijski sistem Linux, vendar se bi jih brez večjih težav

dalo prilagoditi za druge operacijske sisteme podobne sistemu UNIX. Zbirka

programov vključuje naslednje programe: zbirnik, povezovalnik, simulator in

orodje za komunikacijo s FPGA ploščo.

Zbirnik je program za prevajanje kode iz zbirnega jezika v strojno kodo.

Naš zbirnik podpira večino funkcionalnosti zbirnega jezika SIC/XE, med dru-

gim literale, programske bloke in zunanje simbole. Zbirnik strojno kodo izpǐse

v objektne datoteke. Poleg objektnih datotek pa lahko izpǐse tudi dnevnǐske

datoteke, ki vsebujejo izpis izvorne kode skupaj s pripadajočo strojno kodo,

in izpis simbolne tabele, tabele blokov in tabele literalov.

Povezovalnik je program za združevanje več objektnih datotek v en izvršljiv

program. Programerju omogoča, da lahko večje programe razbije v več iz-

vornih datotek, ki jih posamezno prevede v objektne datoteke z zbirnikom,

te pa nato združi v končni program s povezovalnikom.

Simulator je program, ki omogoča izvajanje SIC/XE programov na splošno

namenskem računalniku. Kompatibilen je z našim FPGA sistemom, podpira

pa tudi nekaj dodatnih funkcionalnosti, kot naprimer računanje s števili v

plavajoči vejici. Simulator ima interaktivni vmesnik z ukazno vrstico. Upo-

rabnik nadzira izvajanje programa v simulatorju z vpisovanjem ukazov. Na

voljo so tudi raznovrstni ukazi, s katerimi lahko uporabnik pregleduje in

spreminja stanje procesorja in vsebino pomnilnika. Za lažje iskanje napak

v programih pa je vgrajen tudi povratni zbirnik, mehanizem prekinitvenih

točk in mehanizem za nadzor spremenljivk.

Razvili smo tudi podporni program za komuniciranje s FPGA ploščo

preko serijske povezave. To orodje ima enak interaktivni vmesnik z ukazno

vrstico, kot ga ima naš simulator. Ko program vzpostavi povezavo s ploščo,

lahko uporabnik pregleduje in spreminja vsebino glavnega pomnilnika, tako

kot v simulatorju. Vsakič, ko uporabnik vpǐse ukaz, program avtomatsko

prenaša potrebne podatke med ploščo in osebnim računalnikom. Obstajajo

tudi ukazi, s katerimi lahko ustavimo in zaženemo procesor ali sprožimo pre-

kinitve.

Chapter 1

Introduction

In this work, we present an educational computer system based on the

SIC/XE architecture, which we implemented on an FPGA development board.

We also developed a suite of system software utilities for use with the sys-

tem. The suite includes assembler, linker and simulator programs, as well as

a utility for transferring programs from a personal computer to the FPGA

board over a serial connection.

SIC/XE is a hypothetical computer system architecture designed for

teaching computer systems programming. It was introduced by Leland L.

Beck in his book “System Software: An Introduction to Systems Program-

ming” [1]. The architecture has most of the features present in real world

architectures but is less complex, making it better suited for those wanting

to learn about systems programming. Because SIC/XE is a hypothetical

architecture, there are very few hardware implementations of the architec-

ture. Most people use software emulators, which simulate a virtual SIC/XE

computer on a regular general purpose computer.

We wanted to create an educational hardware SIC/XE computer system

because software emulators have certain limitations. A hardware system

allows users to experiment with writing programs that directly interact with

physical hardware devices like screens, buttons, switches and lights. To build

our system, we used FPGA technology from Xilinx. FPGA technology allows

1

2 CHAPTER 1. INTRODUCTION

fast and cost effective prototyping of digital circuits. The Digilent Nexys 2

development board was chosen as the basis for the system, because it has a

Xilinx Spartan 3E FPGA, a PSRAM (pseudo-static dynamic random access

memory) chip and various input/output devices making it a great fit for

our design. Because we were developing an educational computer system, we

wanted to make it easy to use and make debugging of programs as convenient

as possible. We needed to provide an easy way of transferring programs to the

system, as well as a way of inspecting the contents of main system memory

for debugging. This is why we designed our system to be used together with

a personal computer. The system is connected to a personal computer with

a serial connection, through which the personal computer can directly access

the contents of main system memory. In addition to memory access, the

personal computer can send commands through the connection, which allow

the user to suspend or resume the processor, trigger interrupts or reset the

system. There is no non-volatile storage, as programs can be transferred

directly into main system memory from the personal computer whenever

they are needed.

We implemented the design of our system using the VHDL hardware

description language. The design comprises of the following components:

memory controller, device subsystem, personal computer interface and the

SIC/XE processor. The memory controller component is responsible for op-

erating the Micron PSRAM memory chip, which is used as main system mem-

ory. Input/output devices including buttons, LEDs (light emitting diodes),

switches, the VGA port and the PS/2 port are managed by device controllers

which make up the device subsystem. The personal computer interface com-

puter component handles communication with the personal computer over

a serial connection, as described in the previous paragraph. The most im-

portant component of the design is the SIC/XE processor, which executes

instructions stored in main system memory. The processor is non-pipelined

and supports a slightly modified version of the SIC/XE architecture. The dif-

ferences between our version of the architecture and the original architecture

3

are described in Chapter 2.

In addition to the hardware SIC/XE system, we developed a suite of sys-

tem software utilities for use with the system. The programs were developed

in C++ programming language for the Linux operating system, but should

be easy to port to other UNIX-like systems. The suite contains the following

programs: assembler, linker, simulator and FPGA interface utility.

The assembler is a program for translating code from assembly language

to binary machine code. It supports most features of the SIC/XE assembly

language including literals, program blocks and external symbols. In addition

to writing code to object files, it can output nicely formatted log files, which

include code and the contents of the symbol table, block table and literal

table.

The linker utility combines multiple object files together into a single exe-

cutable program. The programmer can split up larger programs into multiple

assembly source files, convert them to object files using the assembler, and

then use the linker utility to combine them together to get the completed

program.

The simulator utility emulates a hardware SIC/XE system in software.

Our simulator is fully compatible with the FPGA based system described

earlier and also has some additional features like floating point support. The

simulator has an interactive command line interface. Various commands are

available which allow the user to inspect the state of the processor, view

the contents of memory and step through the program. The simulator has

a built-in disassembler that can print out instructions in assembly language

form as they are executed. There is also a breakpoint feature which allows

the user to specify addresses at which to stop the program, as well as a

watch-list feature which makes it easy to keep an eye on memory locations of

interest. These features make the simulator a very useful tool for debugging

programs before running them on the FPGA board.

Finally, the FPGA interface utility is used to communicate with the

FPGA board over a serial connection. It has the same kind of interactive

4 CHAPTER 1. INTRODUCTION

easy to use command line interface as the simulator. Once connected to the

board, contents of the board’s main system memory can be viewed and mod-

ified, just like in the simulator. Every time a command is issued, the utility

automatically transfers data to and from the FPGA board. There are also

control commands available which can be used to suspend, resume or reset

the processor.

Chapter 2

About the SIC/XE Architecture

Our SIC/XE computer is based on a slightly modified version of the SIC/XE

architecture. We decided to make some changes to the architecture because

implementing certain features of the original architecture would significantly

complicate the design of our system, yet not make it notably more useful.

Most core features of the architecture are left unchanged — main registers,

all instruction formats and addressing modes, system memory and I/O (in-

put/output) devices are all present and work the same as in the original

architecture. The following features were removed: I/O channels, privileged

execution mode and support for multiple processes (there is no process iden-

tifier). Interrupts are supported, but are implemented in a different way

than in the original architecture. Floating point operations and integer divi-

sion instructions are available in the simulator, but not on the FPGA based

system described in Chapter 3. The modified version of the SIC/XE archi-

tecture used in our system is described in this chapter. There is also a short

description of the SIC/XE object file format at the end of the chapter.

2.1 System Memory and Devices

Main system memory is used to store programs and data. There is 1 megabyte

(220 8-bit bytes) of main system memory available. Three types of memory

5

6 CHAPTER 2. ABOUT THE SIC/XE ARCHITECTURE

operands are supported: bytes, words and floats. Words are 24 bits wide (3

bytes) and there are no alignment restrictions. Floating point operands are

48 bits wide (6 bytes) and there are also no alignment restrictions. Mem-

ory operands are addressed with their lowest byte and have Big-Endian byte

order (the most significant byte has the lowest address).

In addition to the memory address space, there is a separate device ad-

dress space. There are 28 (256) device addresses. Data can be sent to and

from devices using I/O instructions WD (write to device) and RD (read from

device), one byte at a time.

2.2 Registers

Registers available on the SIC/XE processor are listed in Table 2.1.

name width (bits) description

A 24 accumulator

X 24 index register

L 24 linkage register

B 24 base register

S 24 general purpose register

T 24 general purpose register

F 48 floating point register

PC 20 program counter

CC 2 condition code register

I 1 interrupt enable register

IL 20 interrupt linkage register

ICC 2 interrupt condition code register

Table 2.1: SIC/XE registers

Registers A through T contain 24 bits wide signed integers. They can

be used as general purpose registers, although registers A, X, L and B have

2.3. INSTRUCTION FORMATS 7

special functions. Register A (accumulator) is used for storing results of many

arithmetic and logical instructions. Register L (linkage register) is used for

storing the return address when calling subroutines. The JSUB (jump to

subroutine) instruction jumps to a given address and stores the previous

value of the program counter register to register L. Returning back from the

subroutine is accomplished with the RSUB instruction, which copies the value

of register L back to the program counter register. Register B (base register) is

used as the base address for base relative addressing. The X (index register) is

added to the target address when indexed addressing is used. The condition

code register (CC) is used to store the result of comparison operations. It

can be in one of the following 3 states: 002 (less), 012 (equal), 102 (greater).

Conditional jump instructions (JEQ, JLT, JGT) perform a jump only if the

condition code register is in the correct state — for instance, JEQ jumps only

when the CC register has state 012 (equal), and so on.

Registers I, IL and ICC are not present in the original SIC/XE archi-

tecture. They were added to our modified SIC/XE architecture as part of

the interrupt mechanism. Register I controls whether or not interrupts are

enabled. When an interrupt is triggered, the processor starts executing an

interrupt handler. After the interrupt handler finishes, it is important that

the processor can be restored back to its previous state. Registers IL (inter-

rupt linkage register) and ICC (interrupt condition code register) are used to

store old values of registers PC and CC, respectively. The values of all other

registers must be saved and restored manually in the interrupt handler.

2.3 Instruction Formats

SIC/XE instructions can be in one of the following 5 formats:

Format 1 (1 byte):

opcode

8

8 CHAPTER 2. ABOUT THE SIC/XE ARCHITECTURE

Format 2 (2 bytes):

opcode r1 r2

8 4 4

SIC compatibility format (3 bytes): n = 0 ∧ i = 0

opcode n i address

6 1 1 15

x

1

Format 3 (3 bytes): (n 6= 0 ∨ i 6= 0) ∧ e = 0

opcode n i x b p e address

6 1 1 1 1 1 1 12

Format 4 (4 bytes): (n 6= 0 ∨ i 6= 0) ∧ e = 1

opcode n i x b p e address

6 1 1 1 1 1 1 20

Instructions in formats 1 and 2 have an 8-bit opcode, while instructions in

formats SIC, 3 and 4 have a shorter 6-bit opcode. Format 1 instructions have

no operands. Format 2 instructions operate on registers, fields r1 and r2 are

used to select one of the registers A, X, L, B, S or T. An exception to this rule

are bit shift instructions, where field r2 is used to specify the number of bits

register r1 should be shifted.

Instructions in formats SIC, 3 and 4 have a memory operand. Instructions

with a 6-bit opcode can be in any of these three formats. Addressing bits n,

i, x, b, p and e determine the format and addressing mode used.

2.4 Addressing Modes

Instructions that have a memory operand may be in formats SIC, 3 or 4 and

support many different memory addressing modes. The addressing mode is

determined by addressing bits from the instruction. All available addressing

2.4. ADDRESSING MODES 9

n i x b p e format operand addressing

1 1 0 0 0 0 3 [address]1 direct

1 1 0 0 0 1 4 [address] direct

1 1 0 0 1 0 3 [PC + sgn(address)] PC-relative

1 1 0 1 0 0 3 [B + address] base relative

1 1 1 0 0 0 3 [X + address] indexed

1 1 1 0 0 1 4 [X + address] indexed

1 1 1 0 1 0 3 [PC + X + sgn(address)] PC-rel. indexed

1 1 1 1 0 0 3 [B + X + address] base rel. inexed

0 0 0 - - - SIC [address] direct

0 0 1 - - - SIC [X + address] indexed

1 0 0 0 0 0 3 [[address]] indirect

1 0 0 0 0 1 4 [[address]] indirect

1 0 0 0 1 0 3 [[PC + sgn(address)]] indirect PC-rel.

1 0 0 1 0 0 3 [[B + address]] indirect base rel.

0 1 0 0 0 0 3 address immediate

0 1 0 0 0 1 4 address immediate

0 1 0 0 1 0 3 PC + sgn(address) immed. PC-rel.

0 1 0 1 0 0 3 B + address immed. base rel.

Table 2.2: SIC/XE addressing modes

modes are listed in Table 2.2. Combinations of addressing bits not present

in the table are considered invalid and trigger an invalid addressing error.

To access a memory operand, its actual address needs to be calculated

first. This address is called the target address, and is obtained as follows.

The target address is first set to the value of the address field from the

instruction. The address field is sign extended when PC-relative addressing

is selected — it is interpreted as an unsigned integer otherwise. Depending

on the addressing mode selected, values of registers PC (PC-relative), B (base

1[x] denotes value at memory address x

10 CHAPTER 2. ABOUT THE SIC/XE ARCHITECTURE

relative) or X (indexed) are added to the target address. Addressing bits p,

b and x determine which of these relative addressing modes are enabled.

The main three types of addressing modes are immediate, simple and

indirect. Addressing bits n and i determine which one is used. In immediate

addressing mode, the target address itself is the operand. This mode cannot

be used with store instructions (triggers invalid addressing error). In simple

addressing mode, the memory location pointed to by the target address is

the operand. In indirect addressing mode, the memory location pointed to

by the target address contains the address of the operand.

If addressing bit e is set, the instruction is in format 4 instead of in

format 3. Format 4 instructions have a 20 bit long address field, which

means all memory locations can be addressed directly. PC-relative addressing

and base addressing are not allowed in format 4.

2.5 Interrupts

Interrupts make it possible for the processor to respond to asynchronous

events. The original SIC/XE architecture described in Leland Beck’s book [1]

features an interrupt mechanism, but we decided not to use it in our system.

Instead, we used our own simpler interrupt mechanism. The main difference

between our mechanism and the mechanism used in the original SIC/XE ar-

chitecture is that our system has fewer interrupts and in the way the system

saves and restores the state of the processor. The original SIC/XE architec-

ture has four maskable interrupts. The state of all registers is automatically

saved to predefined locations in memory when an interrupt is triggered. In

contrast, our system only has one maskable interrupt. When an interrupt

is triggered, registers are not automatically saved to memory, but must be

manually saved and restored in the interrupt handler by the programmer.

Register I controls whether or not interrupts are enabled. All interrupt

requests are ignored while interrupts are disabled. The value of register I

can be changed using instructions EINT (enable interrupt) and DINT (disable

2.6. OBJECT FILE FORMAT 11

interrupt).

If register I has a value of 1 and an interrupt request is received, the

processor stops its current task and jumps to the interrupt handler. The

processor first saves the current program counter to register IL and copies

register CC to register ICC. It then sets register I to 0, disabling further inter-

rupts. Finally, the interrupt handler address is loaded from address 0xffffd

and copied to the program counter register. Execution then continues at the

beginning of the interrupt handler.

The processor does not automatically save any other registers, which is

why the interrupt handler must restore any registers that were changed back

to their prior state before returning. When the interrupt handler wishes to

return control back to the program that was interrupted, it can do so using

the RINT instruction. This instruction restores register CC from register ICC

and register PC from register IL. The processor then resumes execution of

the program from the point where it was interrupted.

2.6 Object File Format

Object files are used to store machine code. They also contain metadata,

which make it possible to link and relocate code contained in the object file.

Although the majority of commonly used object file formats are binary files,

SIC/XE object files are plain text files. This is inefficient in terms of file size,

but makes it easy to read and modify files using a simple text editor.

SIC/XE object files are composed of multiple sections, each line of the

file is one section. The first character of each line determines which type of

section the line represents. There are 6 types of sections: start section, text

section, symbol export section, symbol import section, modification section

and end section. Every program must have exactly one start section and

one end section, which must be the first and the last sections in the file,

respectively.

12 CHAPTER 2. ABOUT THE SIC/XE ARCHITECTURE

An example object file is given below.

HSAMPLE0003E8000BBB
T0003E812030FA09010C094014B100000031000009040
T0003FB16A0453320033F2FED900173200040934A456D5C3F2FFD
T000FA003123456
DBAZ 0003F0QUX 000403SAMPLE0003E8
RBAR FOO
M0003E903
M0003F105+FOO
M0003F505+BAR
E0003E8

start section

text sections

sym. export section

sym. import section

modification
sections

end section

There are three fields in a start section: program name, start address and

code size. The program name must be 6 characters long. The start address

and code size are 6 character long hexadecimal numbers.

HSAMPLE0003E8000BBB
program

name
start

address
code
size

Each text section contains a small fragment of program code. Text sections

start with an address field followed by a size field. The address field deter-

mines at which address the section should be loaded into memory. The size

field determines the number of bytes of data in the code field. The code field

contains program data in hexadecimal format.

T0003FB16A0453320033F2FED900173200040934A456D5C3F2FFD
address size code

Symbol export sections tell the linker which symbols are defined in the object

file. A symbol export section can contain more than one symbol as shown in

the example below. Each symbol has a name field and an address field.

DBAZ 0003F0QUX 000403SAMPLE0003E8
symbol
name

symbol
address

symbol
name

symbol
address

symbol
name

symbol
address

Symbol import sections tell the linker which external symbols are referenced

from the object file. Symbol import sections can also contain more than one

symbol.

RBAR FOO
symbol
name

symbol
name

2.6. OBJECT FILE FORMAT 13

Modification sections make it possible to link and relocate code. There are

two types of modification sections: simple modification sections and symbol

modification sections. Both have an address field and a size field. The address

field determines the address at which code should be modified. The number

of nibbles (half bytes) that need to be modified is given in the size field.

Simple modification records tell the linker to add the start address of the

program to a memory location. They are used to correct instructions with

absolute addressing when the program is linked or relocated.

M0003E903
address size

Symbol modification sections tell the linker to add (or subtract) the address

of a symbol to a memory location. The sign field determines whether the

address should be added or subtracted. They are used to correct instructions

that reference memory locations from other object files.

M0003F105+FOO
address size symbol

name
sign

The end section marks the end of an object file. The only field in the end

section is the entry point field, which is the address where program execution

should begin.

E0003E8
entry
point

14 CHAPTER 2. ABOUT THE SIC/XE ARCHITECTURE

Chapter 3

SIC/XE on a Xilinx

Spartan 3E FPGA

In this chapter we present the design of an educational SIC/XE computer

system we implemented on a Digilent Nexys 2 development board. In addi-

tion to the Xilinx Spartan 3E FPGA chip, the board has a Micron PSRAM

memory chip and various I/O devices, which we incorporated into the design

of our system. The clock signal is provided by a 50 MHz crystal oscillator

installed on the board [3]. An overview schematic of the system is shown in

Figure 3.1.

The system is composed of four main components: the SIC/XE proces-

sor, memory controller, device subsystem and personal computer interface.

The most important component is the CPU (central processing unit), which

executes instructions stored in main system memory. It is connected to the

memory controller, through which it accesses system memory, and to the

device subsystem so it can communicate with device controllers. When the

enable signal is inactive, the processor enters a suspended state and temporar-

ily pauses program execution. This signal can be toggled on or off using a

button on the board. Device controllers can make interrupt requests using

the interrupt signal. When the processor encounters an error like a mal-

formed instruction, it stops and activates the error signal which displays an

15

16 CHAPTER 3. SIC/XE ON A XILINX SPARTAN 3E FPGA

memory
controller

SIC/XE
CPU

personal
computer
interface

address20

data out8

data in8

ad
dr

es
s

da
ta

 o
ut

da
ta

 in

20 8 8

serial
decoder

serial
encoder

device subsystem

po
rt

id

po
rt

ou
t

po
rt

in

8 8 8

7 segment
display

controller

VGA
controller

PS/2
controller

general
I/O

controller

reset

st
ar

t

st
op

in
te

rr
up

t

re
se

t

RST

interrupt

in
te

rr
up

t

CPU toggle
FSM

enable

cp
u

di
sa

bl
ed

er
ro

r

error

st
ar

t /
 s

to
p

to
gg

le

co
nt

ro
l

ad
dr

es
s

da
ta

 b
us

Micron
PSRAMserial port

start / stop
toggle button

7 segment
display

VGA PS/2 leds, buttons,
switches

Figure 3.1: System design schematic

3.1. MEMORY CONTROLLER 17

error message on the 7 segment display. The 7 segment display also displays

a “STOP” message when the processor is suspended.

The system is connected to a personal computer with a serial connec-

tion, which allows the contents of main system memory to be accessed from

the personal computer. The personal computer interface component handles

communication with the personal computer. A simple communication pro-

tocol described later in this chapter is used to transmit data and commands

over the connection. The component is connected to the memory controller,

through which it can access system memory.

The memory controller is responsible for operating the Micron PSRAM

chip, which is used for main system memory. It is designed to allow the pro-

cessor and the desktop computer interface to access memory interchangeably.

In case both devices simultaneously initiate a memory cycle, the personal

computer interface is given priority while the processor has to wait.

The device subsystem is composed of four device controllers. They control

I/O devices present on the board, including buttons, switches, LEDs and a 7

segment display. An external PS/2 keyboard and a VGA display can also be

connected. Interrupts are triggered whenever an input device receives new

data.

3.1 Memory Controller

The SIC/XE architecture requires the system to have 1 megabyte of main

system memory. To accommodate this, we decided to use the Micron PSRAM

chip present on the board [3] for main system memory. The chip has 16

megabytes of capacity which is much more than we needed. However, the

chip has a 16 bit wide data bus, which would make accessing unaligned 3 byte

SIC/XE words problematic. We decided to use a simple solution to overcome

the problem. We only use the lower 8 bits of the data bus, essentially using

the chip as if it was half the size and only had an 8 bit data bus. In this

arrangement, our system occupies the lower 2 megabytes of available space

18 CHAPTER 3. SIC/XE ON A XILINX SPARTAN 3E FPGA

on the chip. Three memory operations are needed to access a 3 byte word.

The Micron PSRAM chip has multiple modes of operation including asyn-

chronous mode, burst mode and page mode. We chose to use asynchronous

mode as it is the simplest. The access time is 70 ns [5], which means a mem-

ory operation can be completed in 5 clock cycles at 50 MHz (one clock cycle

is 20 ns).

In our system, both the processor and the personal computer interface

need to access main system memory. To make this possible, we created

the memory controller component. In addition to allowing both devices to

access memory interchangeably, it also takes care of the details of operating

the Micron PSRAM chip. Internally, the memory controller is made up of a

few multiplexers controlled by a simple FSM (finite state machine). When a

device requests a memory operation, it waits until it receives a signal from the

memory controller indicating that the operation was successfully completed.

If a device requests a memory operation while another memory operation is

in progress, the memory controller makes it wait until both operations are

finished. If both devices request a memory operation at the same time, the

personal computer interface is given priority. This decision was made because

it accesses memory far less frequently than the processor and thus causes little

disruption. It also guarantees that the personal computer interface can not

be blocked off by the processor continuously accessing memory.

3.2 Personal Computer Interface

The personal computer interface component communicates with the desktop

computer and services requests on its behalf. The desktop computer is con-

nected to the board with a serial cable. A serial encoder circuit and a serial

decoder circuit handle the details of serial communication. The speed of

transmission used on the serial connection is 115200 baud (bits per second).

A simple communication protocol is used to transfer data over the serial

connection. The personal computer starts a session by transmitting a one

3.2. PERSONAL COMPUTER INTERFACE 19

byte command. The device responds to the command by either acknowledg-

ing it or rejecting it. Depending on the command, additional data may be

transmitted by the personal computer or the device to follow up the com-

mand. After a command is fully executed the session is over and the device

goes back to listening for new commands. The device never initiates a session,

it only listens and responds to commands from the personal computer.

personal
computer

SIC/XE
system

start session

00

20 03 3f 2f d0 6d ae

58

no operation (ping)

command rejected (locked)

start unlock

53 49 43 58 45

41 43 4b

unlock sequence (“SICXE” in ASCII)

unlock success (”ACK” in ASCII)

start session

01

4b

read from memory

command accepted

time

00 01 3c 00 07
address (0x13c), size (7)

data

Figure 3.2: Communication protocol illustration

The communication protocol is illustrated in Figure 3.2. The personal

computer starts out by sending a one byte command to the device. The

20 CHAPTER 3. SIC/XE ON A XILINX SPARTAN 3E FPGA

device replies with a one byte response containing the value 0x4b (ASCII

letter ”K”) if the command is accepted, or the value 0x58 (ASCII letter

”X”) if the command is rejected. The device starts up in a locked state,

in which it rejects all incoming commands as shown in the first example

in Figure 3.2. Before any commands can be accepted, the device needs to

be unlocked by sending an unlock sequence (ASCII letters ”SICXE”). The

device responds to the unlock sequence by responding with an unlock success

sequence (ASCII letters ”ACK”) and transitioning to the unlocked state in

which it accepts commands.

The unlock sequence mechanism has been implemented to prevent unin-

tended commands from being executed in case the personal computer sends

unexpected data. The unlock procedure only has to be done once, after which

any number of commands can be executed. In case the personal computer

somehow breaks the protocol (for example by sending an invalid command)

the device returns to the locked state. If this happens, the device has to be

unlocked again before more commands can be executed.

cmd. description follow up (computer) follow up (device)

0x00 no operation (ping)

0x01 read from memory address, size data

0x02 write to memory address, size, data

0x10 reset CPU

0x11 start CPU

0x12 stop CPU

0x13 interrupt

0xff back to locked state

Table 3.1: Computer interface commands

Table 3.1 lists all available commands. Most commands are completed

when the device responds with the acknowledgement value 0x58. However,

the read and write commands require follow up data to be sent from the

3.2. PERSONAL COMPUTER INTERFACE 21

personal computer. In both commands, the computer must send a 3 byte

address indicating at which memory address data should be read or written,

followed by a 2 byte size indicating how many bytes should be transferred.

When performing a write command, the computer proceeds to send the re-

quired number of bytes which are then written to memory. In the case of a

read command, the device reads memory contents and transmits the required

number of bytes back to the personal computer (shown in the last example

in Figure 3.2)

Our FPGA interface utility described in Chapter 4.4 implements the pro-

tocol described above and can be used to communicate with the device, but

users can also write their own programs to communicate with the device as

long as they follow the described protocol.

LOCKED KEY_GET1 KEY_GET2 KEY_GET3

KEY_GET4

UNLOCKED KEY_SEND3 KEY_SEND2 KEY_SEND1

PROTO_ERROR

CMD_ACCEPT

GET_ADDR0

GET_ADDR1

GET_ADDR2

GET_COUNT0

GET_COUNT1

READ_START

READ_MEM

READ_OUT

WRITE_START

WRITE_IN

WRITE_MEM

start

Figure 3.3: Control FSM state diagram

22 CHAPTER 3. SIC/XE ON A XILINX SPARTAN 3E FPGA

Internally, the personal computer interface component is made up of a

number of registers which temporarily store data and an FSM which controls

the operation of the component. The state diagram of the control FSM is

shown in Figure 3.3.

3.3 Device Subsystem

The device subsystem consists of four device controller circuits which are

responsible for operating I/O devices present on the board. As mentioned in

Chapter 2.1, devices can be accessed from SIC/XE programs using instruc-

tions WD and RD. These instructions allow one byte of data to be transfered

to or from a device at a given 8 bit wide device address. The device address

space is separate from the memory address space.

device address type description

0x02 input switches

0x03 input buttons

0x04 input PS/2

0x05 output LEDs

0x06 output seven-segment display mode

0x07 output seven-segment hex right half

0x08 output seven-segment hex left half

0x09 output seven-segment digit 0

0x0a output seven-segment digit 1

0x0b output seven-segment digit 2

0x0c output seven-segment digit 3

0x0d output VGA row

0x0e output VGA column

0x0f output VGA color

Table 3.2: Device address bindings

3.3. DEVICE SUBSYSTEM 23

Table 3.2 shows device address assignments on our system. A single device

controller may be assigned multiple device addresses which control different

aspects of the device it controls. Accessing a device address not present in

Table 3.2 does not result in an error but is simply ignored. Input devices will

request an interrupt whenever they receive new input, which will result in

interrupts being triggered if they are enabled. Details on how to use devices

in programs and descriptions of their respective device controllers are given

in the following chapters.

3.3.1 Seven-Segment Display Controller

The Nexys 2 board features a four-digit seven-segment display [3]. It is

controlled by the seven segment display controller circuit (see Figure 3.1).

For convenience, the controller supports two modes of display operation. In

the hexadecimal operating mode, a two byte value is displayed in hexadecimal

representation across all four digits of the display. An alternative direct

operating mode is provided in case full manual control of individual display

segments is needed.

The controller allows the operating mode to be set individually for the

left and right halves of the display. The mode can be set by writing a byte to

device address 0x06. The lower two bits of the value written determine the

modes of the left and right halves of the display. For example, the user might

choose to operate the left half (digits 2 and 3) of the display in hexadecimal

mode, while the right half of the display (digits 0 and 1) operates in direct

mode. This arrangement can be achieved by writing value 0x03 to device

address 0x06 (bit 1 is set, indicating hexadecimal mode, while bit 0 is not

set, indicating direct mode).

The display controller refreshes the value on the display from a set of 6

internal 8 bit wide control registers. These registers can be set by writing to

device addresses 0x07 through 0x0c, as shown in Table 3.2. When the display

operates in hexadecimal mode it displays values from control registers at

addresses 0x07 (right half) and 0x08 (left half). Similarly, it displays values

24 CHAPTER 3. SIC/XE ON A XILINX SPARTAN 3E FPGA

from registers at addresses 0x09 through 0x0c when operating in direct mode;

each control register corresponds to one digit on the display. In direct mode,

display segments can be individually turned on or off. Figure 3.4 shows the

mapping of display segments to bits in the control register corresponding to

the digit.

7 6 5 4 3 2 1 0

control register

7
6

54

3
21

0

Figure 3.4: Control register bits and display digit segments

In addition to the two normal modes of operation described above, there

are two special modes of operation which are activated in certain circum-

stances. If the processor is suspended, “STOP” is displayed on the display.

The display goes back to displaying its previous value after the processor re-

sumes execution. Likewise, “Err” is displayed on the display if the processor

encounters an error. These special states were implemented to make it easy

for the user to see the current state of the system.

3.3.2 VGA Controller

The VGA controller draws a 40× 30 pixel 256 color image from an internal

frame-buffer to the VGA output port. The actual output resolution is 640

pixels × 480 pixels — each pixel from the frame-buffer is drawn as a 16× 16

square to the screen. Pixel colors are represented by 8 bit values, which are

interpreted as RRRGGGBB2 (3 bits for red, 3 bits for green and 2 bits for

blue components).

The number of pixels in the frame-buffer exceeds the number of available

device addresses, which means pixels can not be mapped into the device

3.3. DEVICE SUBSYSTEM 25

address space. To overcome this problem, the VGA controller has 2 internal

control registers: the row register and the column register. They can be set

by writing to device addresses 0x0d (row) and 0x0e (column). Writing to

device address 0x0f sets the color of the pixel at the position determined by

the current values of the row and column control registers. This makes it

possible to set the color of any pixel in the frame-buffer by first setting the

row and column control registers to the desired coordinates, and then writing

the desired color to device address 0x0f.

3.3.3 PS/2 Controller

The PS/2 controller is responsible for the PS/2 port, which allows a keyboard

to be connected to the board. As keys are pressed on the keyboard, the

keyboard sends 8 bit scan codes to the board which are decoded by the PS/2

controller [2].

The controller has an internal control register, which stores the value of

the last scan code received from the keyboard. The value of this register can

be accessed by reading from device address 0x04. Every time a scan code is

decoded, the controller makes an interrupt request.

3.3.4 General I/O Controller

The general I/O controller is a simple circuit that controls LEDs, switches

and buttons. There are 8 LEDs present on the board, which display the

value of an internal 8 bit register which is part of the controller. The value

of this register can be set by writing to device address 0x05.

In addition to LEDs, there are also 8 switches and 4 buttons present on

the board. Two of the buttons have special functions (reset and start/stop

toggle), which is why only the remaining two buttons are available for general

purpose use. The current state of switches can be read as an 8 bit value from

device address 0x02. Similarly, the current state of buttons can be read from

device address 0x3. The controller makes an interrupt request when buttons

26 CHAPTER 3. SIC/XE ON A XILINX SPARTAN 3E FPGA

are pressed and when the state of switches changes.

To prevent misreads, each switch and button has a small de-bouncer

circuit which prevents rapid state changes. Changes are registered only when

the button remains in one state for a certain period of time.

3.4 Central Processing Unit

The CPU is the most important component of the system. It carries out

programs stored in main memory and performs basic arithmetic, logical and

input/output operations [7]. The processor is non-pipelined, which means it

executes only one instruction at a time. Instructions are carried out sequen-

tially — the processor starts executing the next instruction only when all

steps of the current instruction have been completed.

Figure 3.1 shows how the processor is connected to other components of

the system. It is connected to the memory controller with an address bus,

input data bus and output data bus. The address bus is 20 bits wide, while

data buses are both 8 bits wide. Accessing operands longer than one byte

thus requires multiple memory operations. The processor uses three control

signals to request memory operations (not shown in Figure 3.1). The proces-

sor requests a memory operation by activating either the read or write control

signal. It then waits until the memory controller activates the done signal,

which indicates the operation has completed. As mentioned in Chapter 3.1,

memory operations take 5 clock cycles.

To facilitate input/output operations, the processor is connected to the

device subsystem with a port id bus, input data bus and output data bus.

All three buses are 8 bits wide. The processor uses two control signals to

request input/output operations (not shown in Figure 3.1). Input/output

operations take two clock cycles to complete.

Three control signals control the operation of the processor itself. The

reset signal clears the internal state of the processor. When the signal is

released, the processor continues execution from address 0. The enable signal

3.4. CENTRAL PROCESSING UNIT 27

can be used to temporarily suspend the operation of the processor. When

this signal becomes inactive, the processor completes the current instruction

and stops fetching new instructions until the signal is active again. The

interrupt signal is used to perform interrupt requests. If this signal is active

while interrupts are enabled (register I has value 1), an interrupt is triggered.

On most computers, an error in the program (for example a malformed

instruction) causes an interrupt. This makes it possible to recover from the

error in the interrupt handler, allowing the computer to continue function-

ing. However, if there is no interrupt handler implemented, the processor

may immediately encounter another error at the location where it was ex-

pecting the interrupt handler, resulting in an endless loop of errors. If this

happens, the system simply stops responding and there is no clear indication

about what caused the problem. This is why we decided to implement a

different mechanism for handling errors in our SIC/XE processor. When the

processor encounters an error in the program, it stops fetching new program

instructions and activates the error signal. This signal is connected to the

seven segment display, which displays an error message to the user. The

processor has to be reset before program execution can continue.

3.4.1 Datapath

The processor consists of two main parts: the datapath and the control

unit [4]. All arithmetic and logical operations required to carry out instruc-

tions are performed within the datapath. A diagram showing its structure is

shown in Figure 3.5. The datapath is composed of registers, multiplexers and

the ALU (arithmetic logic unit). It is connected to the control unit with a

number of control signals (not shown on Figure 3.5), which allow the control

unit to control its operation.

The ALU is a combinational circuit which can perform basic arithmetic

operations like addition, subtraction and multiplication, as well as logical

operations. The ALU is used to carry out arithmetic and logical instructions,

as well as to perform calculations on addresses; for example incrementing the

28 CHAPTER 3. SIC/XE ON A XILINX SPARTAN 3E FPGA

ALU

T1

T2

T3
RES

Register
Block

A, X, L
B, S, T

PC

IL

TARGET

MEM

DEV

INSN

A
X
L
B

X

1
0xffffd

CC ICCexpand CC

compare
result

MUX

result

address

port id

MUX

mem in

mem out
MUX

port in

port out

I

IN

byte

word

opcode r1 r2

F3

F4

F3-sgn

SIC

MUX

Figure 3.5: Processor Datapath

3.4. CENTRAL PROCESSING UNIT 29

program counter and calculating the target address for PC-relative, indexed

and base addressing modes. The ALU operates on two 24 bits wide operands,

which are selected by two multiplexers from a range of internal registers. The

result bus is wired to a number of registers so the result can be stored.

The register block contains the main six architectural registers. In addi-

tion to architectural registers, the datapath contains several hidden registers

which are used to temporarily hold values while instructions are executed.

The RES register temporarily holds the result of ALU operations before it

is stored to one of the architectural registers. Temporary registers T1, T2

and T3 are used to temporarily store operands for certain operations. The

TARGET register is used for calculating the target address for instructions with

PC-relative, indexed or base addressing. The memory data register MEM is

used to hold data that is read from memory or must be written to memory.

Similarly, the device data register DEV is used to hold data sent to or received

from devices. Instructions are temporarily stored in the instruction (INSN)

register as they are read from memory, so they can be decoded and executed.

As shown in Figure 3.5, the memory bus and the device bus are connected

to the datapath. The memory address bus is connected to a multiplexer,

which is used to select either the program counter or the target address as

the memory address. The program counter is used when reading instructions,

while the target address is selected when accessing memory operands. The

port id bus is connected to the lower eight bits of the target address, so it can

be used as the device address. The memory output bus is only one byte wide,

which is why a multiplexer is used to select which byte of the MEM register

should be connected to it.

3.4.2 Control Unit

The processor performs instructions in multiple steps. The exact steps re-

quired differ from instruction to instruction, but most instructions consist of

the following main operations: fetching the instruction from memory, decod-

ing the instruction, performing calculations and/or accessing memory and

30 CHAPTER 3. SIC/XE ON A XILINX SPARTAN 3E FPGA

storing results back to a register. The datapath has all the components nec-

essary to carry out all individual instruction steps. However, it is a passive

component — it only performs operations in accordance to control signals

it receives [4]. It can only carry out instruction steps correctly if it gets the

right control signals from the control unit.

The control unit is implemented as an FSM, which provides the necessary

control signals to the datapath. Combinations of control signals required to

perform instruction steps, as well as the correct order of steps needed to

execute instructions, are both encoded in the control unit FSM. Because

SIC/XE has many instruction formats and addressing modes, the FSM is

quite complex — it has more than 50 states.

Chapter 4

SIC/XE System Software

In this chapter we present a suite of system software utilities that we devel-

oped for use with the FPGA based SIC/XE system described in the previous

chapter. The suite consists of the following four programs: simulator, assem-

bler, linker and FPGA interface utility.

The utilities were developed in C++ programming language for the Linux

operating system, but it should be relatively easy to port them to other

UNIX-like operating systems. We used the CMake build system for build

automation and Google’s C++ Testing Framework for unit testing.

4.1 Simulator

The simulator is a software utility which emulates (imitates) a SIC/XE com-

puter system. It can be used to run and debug SIC/XE programs on a per-

sonal computer. Our simulator supports all features available on the SIC/XE

processor from Chapter 3. It also has two additional features not available

on the FPGA system: support for floating point operations and integer divi-

sion instructions (DIV and DIVR). Hardware devices described in Chapter 3

(buttons, switches...) are not simulated. I/O instructions are supported, but

are implemented as reading and writing to files.

The simulator has two main components: a SIC/XE virtual machine and

31

32 CHAPTER 4. SIC/XE SYSTEM SOFTWARE

an interactive console interface. There are two versions of the simulator — the

sicvm tool includes only the virtual machine without the interactive console

interface. The sicsim tool includes both components and is intended to be

used as an interactive debugger. An example sicsim session is given below.

1 sicsim > step count=5

2 000133 ac 10 RMO X, A

3 000135 29 00 00 COMP #0

4 000138 33 20 13 JEQ 19 + PC

5 00013b 01 00 01 LDA #1

6 00013e 94 01 SUBR A, X

7 sicsim > cpu ?

8 Menu types: M - submenu , C - command

9 TYPE NAME PARAMS

10 C print

11 C set register= value=

12 sicsim > cpu print ?

13 Print the CPU state (all registers).

14 sicsim > cpu print

15 REGISTER HEX UNSIGNED SIGNED SPECIAL

16 PC 000140 320

17 A 000001 1 1

18 X 000004 4 4

19 L 000143 323 323

20 B 000000 0 0

21 S 000030 48 48

22 T 000000 0 0

23 F 000000000000 0

24 CC 2 GT

25 I 0 D

26 IL 000000 0

27 ICC 0 LT

28 sicsim > start

29 00012d Breakpoint loop_end

30 Number of instructions executed: 810

31 sicsim > watchlist print

32 NUMBER NAME ADDRESS VALUE

33 0 foo 0001a2 0001ba 442 442

34 1 bar 001000 00 0

35 sicsim > cpu set register=A value=0 x1234

36 sicsim > step

37 00012d 3f 2f d0 J -48 + PC

38 sicsim > step

39 000100 0e 20 9f STA @[159 + PC]

40 sicsim > step

41 000103 4b 20 78 JSUB 120 + PC

42 sicsim >

4.1. SIMULATOR 33

The user controls the simulator by entering commands. Commands con-

sist of a number of command words, which are followed by a list of arguments.

Command words are hierarchically organized in a tree of menus. The help

operator (“?”) can be used to find out more information about a command.

For example, entering “cpu ?” displays which commands are available in

the “cpu” sub-menu. Entering “cpu print ?” displays a short description

of the command, because “cpu print” is not a sub-menu but a complete

command (see the example on the previous page). Some commands require

additional input from the user, which is given in the form of arguments. Ar-

guments are entered after command words in the following format: parameter

name = value. The order of arguments is not important.

Some command words and parameter names are quite long. For conve-

nience, the simulator includes a prefix matching system. Command words

and parameter names do not need to be entered exactly — only the first few

letters which uniquely identify a command word or parameter name need to

be entered. In case the entered prefix is too short, the simulator will display

an error explaining that the input is ambiguous.

The basic commands for operating the simulator are “step” and “start”,

which allow the user to step through the program or let it run until it encoun-

ters an error or a breakpoint. Breakpoints can be set in the “breakpoint”

sub-menu. Sub-menus “cpu” and “memory” contain commands for viewing

and modifying the state of the virtual machine’s processor and memory.

A disassembler facility is built into the simulator. The disassembler trans-

lates machine code instructions into a human readable assembly language.

It supports two modes of operation: automatic mode and manual mode. In

manual mode, the user requests code at a specified address to be disassem-

bled. When automatic mode is enabled, instructions are disassembled as they

are executed when stepping through the program. Disassembler features are

available in the “disassembler” sub-menu.

When debugging a program, it is often necessary to monitor values at

certain memory locations, but manually entering the same addresses over

34 CHAPTER 4. SIC/XE SYSTEM SOFTWARE

and over is tedious. This is why the simulator includes a memory watch-list

feature. Memory locations added to the watch-list can be easily inspected and

modified using commands in the “watchlist” sub-menu. The user can specify

the data type (word, byte, float) of each watch-list entry, which allows the

simulator to correctly interpret and display the value stored at the memory

location.

4.2 Assembler

The assembler is a program that translates code from SIC/XE assembly lan-

guage to binary machine code. It produces object files that contain machine

code together with metadata, which allow linking and program relocation.

In addition to object files, the assembler can optionally produce log files.

Log files are text files which contain nicely formatted assembly source code

annotated with the corresponding output machine code, as well as additional

information useful for debugging.

program.asm

TextFile

Tokenizer

Parser

TableBuilder CodeGenerator
Code

LiteralTable

BlockTable

SymbolTable

first pass second pass

LogFileWriter

ObjectFileWriter

program.log

TextFile

program.obj

ObjectFile

Figure 4.1: Assembler design overview

Figure 4.1 illustrates the internal design of the assembler. It has a modu-

lar design — each step of the assembly process is implemented within a C++

4.2. ASSEMBLER 35

class. The assembler first reads an input source file and converts it into an

internal in-memory representation, which is easier to process than the raw

source file. This step is implemented in classes Tokenizer and Parser. The

result is a Code class instance, which contains the in-memory representation

of the parsed assembly source code.

Our assembler is a two-pass assembler. In the first pass, it analyzes the

code and produces a symbol table, block table and literal table. Information

from these tables is used in the second pass, in which output machine code

is generated. The first pass is implemented in the TableBuilder class. The

tables it generates are represented by classes BlockTable, LiteralTable and

SymbolTable. The second pass is implemented in the CodeGenerator class.

As mentioned before, the assembler needs to write out machine code

in different formats (object file and log file). When the CodeGenerator

class generates code, it sends code fragments as well as other metadata to a

set of registered classes, which implement the CodeOutputWriter interface.

We implemented two such classes — the ObjectFileWriter class creates

object files and the LogFileWriter creates log files. This mechanism is

good because code generation logic is separate from logic related to a certain

output file format. It also makes it easy to add new output file formats if

they are needed in the future.

36 CHAPTER 4. SIC/XE SYSTEM SOFTWARE

4.2.1 Assembly Language

Before getting into more details of how the assembler works, we will first

briefly introduce the SIC/XE assembly language. An example assembly pro-

gram is given below.

1 SAMPLE START 0

2 . This is a sample assembly program

3 LDT #SIZE

4 CLEAR X

5 CLEAR S

6 LOOP LDA TABLE , X

7 ADDR A, S

8 LDA #3

9 ADDR A, X

10 COMPR X, T

11 JLT LOOP

12 STS RESULT

13

14 . Endless loop

15 WAIT J WAIT

16

17 RESULT WORD 0

18 TABLE WORD 12

19 WORD 16

20 WORD 36

21 WORD 10

22 TABEND EQU *

23 SIZE EQU TABEND - TABLE

24

25 END SAMPLE

Assembly programs are made up of instructions and directives — each

non-empty line of the source file represents either an instruction or a directive.

Source code can be annotated with comments, which are marked with the

dot (“.”) character. All characters in a line following a dot character are

ignored.

Every line of source code consists of three parts: label, mnemonic and

operands. The mnemonic is a short symbolic name associated either with

an instruction or with a directive. Even though directives and instructions

share a similar syntax, they have a different purpose. Instructions are directly

translated to machine code instructions and are executed when the program

4.2. ASSEMBLER 37

is run. On the other hand, directives are commands for the assembler itself

and are performed at assembly time [6]. A list of available directives and

their mnemonics is shown in Table 4.1.

mnemonic description

START start of program

END end of program, emit pending literals

ORG begin new section

EQU set symbol value

USE switch to block

LTORG emit pending literals

BASE set base address and enable base addressing

NOBASE disable base addressing

EXTDEF export symbols

EXTREF import symbols

BYTE initialize memory (byte)

WORD initialize memory (word)

RESB reserve memory (bytes)

RESW reserve memory (words)

Table 4.1: Assembler directives

A label can be placed before mnemonics of instructions and data direc-

tives (BYTE, WORD, RESB and RESW) to associate the address of the instruction

(or data variable in the case of data directives) with an arbitrary symbol

name. The memory location can then be referred to from other parts of the

program by its symbol name. Our assembler does not impose a length limit

on internal symbol names. However, external symbol names are limited to

6 characters, due to restrictions of the object file format (see Chapter 2.6).

Symbols can be exported with directive EXTDEF and imported with directive

EXTREF. Addresses of imported symbols are unknown to the assembler. Their

addresses are resolved at link time by the linker, which uses information from

38 CHAPTER 4. SIC/XE SYSTEM SOFTWARE

the object file’s modification sections to correctly modify object code where

necessary.

directive(s) operands

LTORG, NOBASE (none)

USE [block name]

EXTDEF, EXTREF symbol name [, symbol name...]

START, END, ORG, EQU, BASE expression

BYTE, WORD, RESB, RESW expression

Table 4.2: Directive operand syntax

Most instructions and directives require operands after the mnemonic.

The syntax of operands varies depending on the instruction or mnemonic

used. Table 4.2 shows the expected syntax of directive operands. Most

directives expect an expression operand. Expression operands are simple

mathematical expressions which consist of integer constants, symbol names

and operators +, -, * and /.

format operands

1 (none)

2 register, register

2 register, integer

2 register

SIC/3/4 (none)

SIC/3/4 [# or @ or =] expression [, X]

Table 4.3: Instruction operand syntax

Instruction operands are encoded into fields of the machine code instruc-

tion when instructions are translated. This is why the assembly syntax of

instruction operands depends on the format of the machine instruction (in-

struction formats are discussed in Chapter 2.3). Table 4.3 shows all six

4.2. ASSEMBLER 39

possible types of instruction operand syntax.

Instructions that access memory operands (formats SIC/3/4) expect an

expression operand, which is evaluated to get the memory address. The

expression can be prefixed with one of the addressing operators #, @ or = to

select the addressing mode as shown in Table 4.4. By default, the assembler

emits instructions in format 3. Format 4 can be selected by prepending +

to the instruction mnemonic. Format SIC is selected automatically when

the memory address is too large to fit in a format 3 instruction and simple

addressing is used.

operator addressing mode

(none) simple

immediate

@ indirect

= literal pool

Table 4.4: Addressing operators

Literal pool addressing is not a real addressing mode, but a pseudo ad-

dressing mode provided by the assembler. When this addressing mode is

used, the assembler reserves a data variable in memory called a literal, which

is initialized with the value of the expression. The literal is then addressed

using direct addressing. From the programmer’s perspective, this addressing

mode behaves similarly to immediate addressing.

Appending “, X” to the expression enables indexed addressing. The as-

sembler automatically selects base relative addressing or PC-relative address-

ing when possible. To use base addressing, the programmer needs to inform

the assembler of the run-time value of the base register. This is done using

the BASE directive. The assembler assumes that the base register has the

specified value until it is changed again with the BASE directive or until base

addressing is disabled with the NOBASE directive. The programmer must en-

sure that the actual value of the base register at run time matches the address

40 CHAPTER 4. SIC/XE SYSTEM SOFTWARE

given to the assembler, otherwise the code will not execute correctly.

Instructions with direct addressing present an additional challenge for

the assembler, because they need to be updated if the program is relocated.

However, updating all instructions with direct addressing is not an option,

because in some cases the programmer may have actually intended to access a

fixed memory location. The assembler needs to figure out which instructions

really need to be updated, and then write this information to the output

object file in the form of modification records. This is why the assembler

differentiates between two different kinds of expressions and symbols: relative

and absolute. The value of absolute expressions does not change when the

program is relocated, while relative expressions need to be modified by adding

the new start address of the program to the value of the expression. When

direct addressing is used and the expression operand is relative, the assembler

writes a modification to the object file.

4.2.2 Tokenizer and Parser

Our assembler processes code in two passes. However, instead of processing

the raw source file twice, the source file is first converted to an internal in-

memory representation, which is better suited for processing by later stages

of the assembler. This conversion is performed by classes Tokenizer and

Parser (see Figure 4.1).

The resulting parsed code is stored in a Code class instance, which con-

tains a list of Node classes. Each node in the list corresponds to a line of

code from the source file. Node is an abstract class — lines of code are rep-

resented by various Node subclasses, depending on the contents of the line.

The inheritance tree of the family of Node classes is shown in Figure 4.2. We

implemented the visitor pattern on Node classes to make it easier to iterate

over the data structure. The visitor pattern is well suited for this situation,

because it allows the algorithm (in our case different assembler passes) to

be well separated from the data structure on which it operates [9]. This

separation makes code more readable and easier to maintain.

4.2. ASSEMBLER 41

ExpressionDirective

Node

Empty Instruction

InstructionF1

InstructionF2

InstructionFS34

Directive

DirectiveStartDirectiveEnd

DirectiveOrg

DirectiveEqu

DirectiveBaseDirectiveMemInit

DirectiveMemReserve

SymbolListDirective

DirectiveExtdef DirectiveExtrefDirectiveUse

DirectiveLtorg

DirectiveNobase DirectiveInternalLiteral

Figure 4.2: Node class inheritance tree

The conversion of source code to the in-memory representation happens

in two steps. Every line of the program is first converted to a list of tokens

by a simple lexical analyzer, which is implemented in the Tokenizer class.

Even though there are many tools available (for example Flex) which can

automatically generate lexical analyzers, we used a hand written one for our

assembler instead. We decided not to use a lexical analyzer generator because

we wanted to avoid dependencies on external tools and libraries.

Tokens produced by the Tokenizer class are then processed by a simple

top-down recursive descent parser implemented in the Parser class. For ev-

ery line of the input source file, the parser generates a Node subclass instance

which represents the contents of the line. Finally, generated node classes are

stored in a Code class instance, which represents the whole input program.

42 CHAPTER 4. SIC/XE SYSTEM SOFTWARE

4.2.3 First Pass

After the input file has been converted to the in-memory representation,

the first assembler pass can be performed. Machine code can not yet be

generated in the first pass, because certain things like symbol addresses are

not yet known. The main goal of the first assembler pass is to calculate

all the information necessary to allow machine code to be generated in the

second pass.

The first assembler pass is implemented in the TableBuilder class. Dur-

ing this pass, three tables are generated: symbol table, block table and literal.

The symbol table is implemented in the SymbolTable class and is used to

store information about symbols. In addition to the symbol names and their

addresses, other details like whether or not the symbol is undefined, exported

or imported, are stored. If the symbol is defined inside a program block, the

corresponding block number is also recorded. Information about program

blocks is stored in the block table. Every block has a block number and,

except for the default block, also a unique name. Directive USE is used to

switch between program blocks. Sizes of blocks and their start addresses are

calculated during the first assembler pass. At the end of the pass, when start

addresses of blocks are known, final addresses of symbols defined in program

blocks can also be calculated and are updated in the symbol table.

The literal table, implemented in the LiteralTable class, is used to

keep information about literals. Every time literal pool addressing is used,

a literal is added to the literal table. Literals also get a symbol name and

an entry in the symbol table to keep track of their address. The literal

table de-duplicates literals with the same value whenever possible to con-

serve space. When a LTORG directive or the end of the program is encoun-

tered, all pending literals present in the literal table are emitted. A special

LiteralInternalDirective node is inserted into the code for each emitted

literal, which marks that the literal should be written out during the second

assembler pass.

4.2. ASSEMBLER 43

4.2.4 Second Pass

In the second assembler pass, code is processed again for a second time. Using

information generated during the first pass, machine code is generated. The

second pass is implemented in the CodeGenerator class.

Generating code for instructions in format 1 and format 2 is relatively

straightforward. Instructions in formats SIC/3/4 present more of a challenge.

Using data from the symbol table, expressions can be resolved to actual mem-

ory addresses. Taking into account various constraints, the CodeGenerator

class then selects the most appropriate addressing mode for the instruction.

If the expression is relative or it references external symbols, modification

records also need to be generated. Literals and data directives are written

out in this pass as well.

The assembler can output generated machine code to object files and log

files. For illustration, a log file produced from the example program from

Chapter 4.2.1 is given on the next page. The log file contains an annotated

listing of the source code, along with a printout of the block table and symbol

table. The literal table is not present because literal pool addressing is never

used in the program.

44 CHAPTER 4. SIC/XE SYSTEM SOFTWARE

The log file produced from the example program from Chapter 4.2.1 is given

below.

1 ********** CODE **

2 000000: SAMPLE START 0

3 000000: . This is a sample assembly program

4 000000: 75 00 0c LDT #SIZE

5 000003: b4 10 CLEAR X

6 000005: b4 40 CLEAR S

7 000007: 03 a0 15 LOOP LDA TABLE , X

8 00000a: 90 04 ADDR A, S

9 00000c: 01 00 03 LDA #3

10 00000f: 90 01 ADDR A, X

11 000011: a0 15 COMPR X, T

12 000013: 3b 2f f1 JLT LOOP

13 000016: 7f 20 03 STS RESULT

14 000019:

15 000019: . Endless loop

16 000019: 3f 2f fd WAIT J WAIT

17 00001c:

18 00001c: 00 00 00 RESULT WORD 0

19 00001f: 00 00 0c TABLE WORD 12

20 000022: 00 00 10 WORD 16

21 000025: 00 00 24 WORD 36

22 000028: 00 00 0a WORD 10

23 00002b: TABEND EQU *

24 00002b: SIZE EQU TABEND - TABLE

25 00002b:

26 00002b: END SAMPLE

27 ********** BLOCKS **

28 NAME START SIZE

29 <default > 000000 0 43

30 ********** SYMBOLS ***

31 NAME TYPE VALUE BLOCK

32 LOOP IR 000007 7 <default > 7

33 RESULT IR 00001c 28 <default > 28

34 SAMPLE X 000000 0 <default > 0

35 SIZE IA 00000c 12

36 TABEND IR 00002b 43 <default > 43

37 TABLE IR 00001f 31 <default > 31

38 WAIT IR 000019 25 <default > 25

4.3. LINKER 45

4.3 Linker

A linker is a program for combining multiple object files into a single ex-

ecutable program [8]. Larger programs are made up of many subroutines,

which are usually arranged in multiple assembly source files. Source files

that make up a program are individually assembled into object files, which

are then linked together to form the completed program. The same program

could be created by placing all subroutines in a single large assembly source

file, but there are many advantages to using multiple source files. When

changes are made to the program, only the changed source files need to be

re-assembled, which can shorten the time required to build the program.

Programs made up of multiple source files can be organized better, which

makes programming easier. Subroutines defined in a source file can also eas-

ily be reused when writing new programs by simply linking the corresponding

object file into the new program.

Linked programs produced by our linker utility are written out in object

file format. Code from input object files is arranged into the address space

of the output program as illustrated in Figure 4.3.

a.obj b.obj c.obj d.obj

Figure 4.3: Linker arranges object files

In addition to linking code, our linker writes out modification records to

46 CHAPTER 4. SIC/XE SYSTEM SOFTWARE

the output object file. This makes it possible to relocate the program, for

example by a loader when the program is loaded into memory. The linker also

supports a partial linking mode, which allows undefined symbols to remain

in the output program. Normally, the linker would display an error message

if undefined symbols were detected. However, in this mode the linker resolves

only the symbols it can, and writes the remaining undefined symbols to the

output object file.

Just like the assembler, the linker also operates in two passes. In the first

pass, it analyzes information contained in input object files and generates a

symbol table and a relocation table. Symbol addresses stored in the symbol

table are adjusted to reflect final addresses in the output program’s address

space. All modification records from input object files are gathered and

stored in the relocation table.

In the second pass, the linker copies code sections one by one from input

files to the output file. For each code section, it searches the relocation table

for modification records whose addresses match the address range of the

code section. If any records are found, code is modified as required by the

modification records. Symbol addresses are looked up in the symbol table

when processing modification records which reference symbol names.

4.4 FPGA Interface Utility

The FPGA interface utility is a small utility program for communicating with

our FPGA based SIC/XE system described in Chapter 3. When started, it

attempts to establish a connection to the FPGA board through the personal

computer’s serial port. The utility communicates with the board according

to the protocol described in Chapter 3.2. If a connection to the board is

made, the user is presented with an interactive console interface (the same

kind of interface as in the simulator tool).

Like in the simulator, the contents of the board’s system memory can

be viewed and modified with commands in the “memory” sub-menu. The

4.4. FPGA INTERFACE UTILITY 47

processor can be started and stopped using commands “start” and “stop”.

The user can also reset the processor with the “reset” command and trigger

interrupts with the “interrupt” command. SIC/XE programs stored in object

files on the personal computer’s hard drive can be loaded into the board’s

main memory with the “load” command.

48 CHAPTER 4. SIC/XE SYSTEM SOFTWARE

Chapter 5

Conclusions

The hardware and software described in this thesis provide a comprehensive

platform for developing, testing and running SIC/XE programs. Users can

write programs in SIC/XE assembly language on a personal computer and

convert them to machine code using the assembler. Larger programs can be

split up into multiple object files and then linked together with the linker. In

addition to running programs inside a SIC/XE virtual machine on a personal

computer, users can also run programs directly on our FPGA based hardware

SIC/XE system.

We developed and tested our software utilities for the Linux operating

system, but we would also like to add support for other operating systems in

the future. Another interesting feature which could be added is a graphical

user interface. Because our programs are written in C++, the code could

even be directly integrated into an iOS application for an iPad or an iPhone.

There is currently no non-volatile memory available on our FPGA based

system. Because of this, the system can not function autonomously when not

connected to a personal computer. The Nexys 2 board has a flash memory

chip which could be used to add non-volatile storage to the system. However,

because the flash chip shares the same bus with the PSRAM memory chip,

significant changes to the design would probably be needed to accomplish

this.

49

50 CHAPTER 5. CONCLUSIONS

Bibliography

[1] Leland L. Beck. System Software: An Introduction To Systems Program-

ming. Addison Wesley, 1997.

[2] Adam Chapweske. The PS/2 Mouse/Keyboard Protocol. http://www.

computer-engineering.org/ps2protocol.

[3] Digilent Inc. Nexys 2 Reference Manual. http://www.digilentinc.

com/Data/Products/NEXYS2/Nexys2_rm.pdf.

[4] Dušan Kodek. Arhitektura in organizacija računalnǐskih sistemov. Bi-

Tim, 2008.

[5] Micron Technology Inc. 128Mb CellularRAMTMMT45W8MW16BGX

Data Sheet.

[6] Wikipedia. Assembly language — wikipedia, the free encyclopedia, 2014.

[Online; accessed 30-June-2014].

[7] Wikipedia. Central processing unit — wikipedia, the free encyclopedia,

2014. [Online; accessed 25-June-2014].

[8] Wikipedia. Linker (computing) — wikipedia, the free encyclopedia, 2014.

[Online; accessed 30-June-2014].

[9] Wikipedia. Visitor pattern — wikipedia, the free encyclopedia, 2014.

[Online; accessed 30-June-2014].

51

http://www.computer-engineering.org/ps2protocol
http://www.computer-engineering.org/ps2protocol
http://www.digilentinc.com/Data/Products/NEXYS2/Nexys2_rm.pdf
http://www.digilentinc.com/Data/Products/NEXYS2/Nexys2_rm.pdf

	Abstract
	Povzetek
	Razširjeni povzetek
	Introduction
	About the SIC/XE Architecture
	System Memory and Devices
	Registers
	Instruction Formats
	Addressing Modes
	Interrupts
	Object File Format

	SIC/XE on a Xilinx Spartan 3E FPGA
	Memory Controller
	Personal Computer Interface
	Device Subsystem
	Central Processing Unit

	SIC/XE System Software
	Simulator
	Assembler
	Linker
	FPGA Interface Utility

	Conclusions

