arXiv:1601.00286v1 [cs.SI] 3 Jan 2016

Structure-Preserving Sparsification Methods

for Social Networks*

Michael Hamann Gerd Lindner

Henning Meyerhenke

Christian L. Staudt

Dorothea Wagner

Abstract

Sparsification reduces the size of networks while preserving
structural and statistical properties of interest. Various spar-
sifying algorithms have been proposed in different contexts.
We contribute the first systematic conceptual and experimen-
tal comparison of edge sparsification methods on a diverse set
of network properties. It is shown that they can be under-
stood as methods for rating edges by importance and then
filtering globally or locally by these scores. We show that ap-
plying a local filtering technique improves the preservation of
all kinds of properties. In addition, we propose a new sparsifi-
cation method (Local Degree) which preserves edges leading to
local hub nodes. All methods are evaluated on a set of social
networks from Facebook, Google+, Twitter and LiveJournal
with respect to network properties including diameter, con-
nected components, community structure, multiple node cen-
trality measures and the behavior of epidemic simulations. In
order to assess the preservation of the community structure,
we also include experiments on synthetically generated net-
works with ground truth communities. Experiments with our
implementations of the sparsification methods (included in the
open-source network analysis tool suite NetworKit) show that
many network properties can be preserved down to about 20%
of the original set of edges for sparse graphs with a reasonable
density. The experimental results allow us to differentiate the
behavior of different methods and show which method is suit-
able with respect to which property. While our Local Degree
method is best for preserving connectivity and short distances,
other newly introduced local variants are best for preserving
the community structure.

Keywords: complex networks, sparsification, back-

bones, network reduction, edge sampling

1 Introduction

1.1 Context

Complex networks have nontrivial structures and statisti-
cal properties and are often represented by graphs. Such
data models have been employed in countless domains
based on the observation that the structure of relation-
ships yields insights into the composition and behavior of
complex systems [Costa et al., 2011]. Many concepts were
pioneered in the study of social networks, in which edges
represent social ties between social actors. Most real-world
complex networks, including social networks, are already
sparse in the sense that for n nodes the edge count m is
asymptotically in O(n). Nonetheless, typical densities lead
to a computationally challenging number of edges. Here

*Parts of this paper have been published in preliminary form
in |[Lindner et al., 2015].

we pursue the goal of further sparsifying such networks
by retaining just a fraction of edges (sometimes called a
“backbone” of the network), while showing experimentally
that important properties of networks can be preserved in
the process.

Potential applications of network sparsification are nu-
merous. One of them is information visualization: Even
moderately sized networks turn into “hairballs” when
drawn with standard techniques, as the amount of edges
is visually overwhelming. In contrast, showing only a frac-
tion of edges can reveal network structures to the human
eye if these edges are selected appropriately. Sparsifica-
tion can also be applied as an acceleration technique: By
disregarding a large fraction of edges that are unimpor-
tant for the task, running times of graph and network
analysis algorithms can be reduced. Many other possi-
ble applications arise if we think of sparsification as lossy
compression. Large networks can be strongly reduced in
size if we are only interested in certain structural aspects
that are preserved by the sparsification method. From a
network science perspective, sparsification can yield valu-
able insights into the importance of relationships and the
participating nodes: Given that a sparsification method
tends to preserve a certain property, the method can be
used to rank or classify edges, discriminating between es-
sential and redundant edges.

The core idea of the research presented here is that not
all edges are equally important with respect to proper-
ties of a network: For example, a relatively small fraction
of long-range edges typically act as shortcuts and are re-
sponsible for the small-world phenomenon in complex net-
works. The importance of edges can be quantified, leading
to edge scores, often also referred to as edge centrality val-
ues. In general, we subsume under these terms any mea-
sure that quantifies the importance of an edge depending
on its position within the network structure. Sparsifica-
tion can then be broken down into the stages of (i) edge
scoring and (ii) filtering the edges using a global score
threshold.

Despite the similar terminology, our work is only weakly
related to a line of research in theoretical computer science
where graph sparsification is understood as the reduction
of a dense graph (O(n?) edges) to a sparse (O(n) edges)
or nearly-sparse graph while provably preserving proper-
ties such as spectral properties (e. g. [Batson et al., 2013]).
The networks of our interest are already sparse in this



sense. With the goal of reducing network data size
while keeping important properties, our research is re-
lated to a body of work that considers sampling from net-
works (on which [Ahmed et al., 2014] provides an exten-
sive overview). Sampling is concerned with the design of
algorithms that select edges and /or nodes from a network.
Here, node and edge sampling methods must be distin-
guished: For node sampling, nodes and edges from the
original network are discarded, while edge sampling pre-
serves all nodes and reduces the number of edges only. The
literature on node sampling is extensive, while pure edge
sampling and filtering techniques have not been considered
as often. A seminal paper [Leskovec and Faloutsos, 2006]
concludes that node sampling techniques are preferable,
but considers few edge sampling techniques. The study
presented in [Ebbes et al., 2008] looks at how well a sam-
ple of 5%-20% of the original network preserves cer-
tain properties, and is mainly focused on node sampling
through graph exploration. It concludes that random
walk-based node sampling works best on complex net-
works, but does so on the basis of experiments on syn-
thetic graphs only and compares only with very simple
edge sampling methods.

Only edge sampling techniques are directly comparable
to our edge scoring and filtering methods. In this work, we
restrict ourselves to reducing the edge set, while keeping
all nodes of the original graph. Preserving the nodes allows
us to infer properties of each node of the original graph.
This is important because in network analysis, the unit of
analysis is often the individual node, e.g. when a score
for each user in an online social network scenario shall be
computed. With respect to the goal of accelerating the
analysis, many relevant graph algorithms scale with m so
reducing m is more relevant.

Another related approach is the Multiscale Back-
bone [Serrano et al., 2009], which is applicable on
weighted graphs only and is therefore not included in our
study. Instead of applying a global edge weight cutoff for
edge filtering, which hides important structures at differ-
ent scales, this approach aims at preserving them at all
scales.

1.2 Contribution

We contribute the first systematic conceptual and experi-
mental comparison of existing and novel edge scoring and
filtering methods on a diverse set of network properties.
Descriptions and literature references for the related meth-
ods which we reimplemented are given in Section [3] for
some of them we include descriptions of how we paral-
lelized them. In Section [3] we also introduce our Local
Degree sparsification method and Edge Forest Fire, an
adaption of the existing node sparsification technique to
edges. Furthermore, we propose a local filtering step that
has been introduced by [Satuluri et al., 2011] for one spe-
cific sparsification technique as a generally applicable and
beneficial post-processing step for preserving the connec-
tivity of the network and most properties we consider.

Our results illuminate which methods are suitable with
respect to which properties of a network. Additionally,
we take a look at emergent properties by simulating epi-
demic spreading on sparsified networks in comparison with
the original network. We show that our Local Degree
method is best for preserving connectivity and short dis-
tances which results in a good preservation of the diameter
of the network, some centrality measures and the behavior
of epidemic spreading. Depending on the network, our Lo-
cal Degree method can also preserve clustering coefficients.
Considering the preservation of the community structure
we show that some of the newly introduced variants with
local filtering are best for preserving the community struc-
ture while the variants without local filtering do not pre-
serve the community structure in our experiments.

Furthermore, we have published efficient paral-
lelized implementations and a framework for such
methods as part of the NetworKil open-source tool
suite [Staudt et al., 2014]. While our study covers var-
ious approaches from the literature, it is by no means
exhaustive due to the vast amount of potential sparsifi-
cation techniques. With future methods in mind, we hope
to contribute a framework for their implementation and
evaluation.

2 Network Properties

The structure of a complex network is usually char-
acterized in terms of certain key figures and statis-
tics [Newman, 2010]. Decomposition of the network into
cohesive regions is a frequent analysis task: All nodes
in a connected component are reachable from each other.
A typical pattern in real-world complex networks is the
emergence of a giant connected component which contains
the bigger part of all nodes and is usually accompanied
by a large number of very small components. Commu-
nities are subsets of nodes that are internally dense and
externally sparsely connected. The diameter of a graph
is the maximum length of a shortest path between any
two nodes [Newman, 2010]. The observation that the di-
ameter of social networks is often surprisingly small is re-
ferred to as the small world phenomenon. In case of dis-
connected graphs, we consider the diameter of the largest
component. Node centrality measures quantify the rela-
tive importance of a node within the network structure.
We consider any function which assigns to each node an
attribute value of at least ordinal scale of measurement to
be a node centrality measure. The distribution of degrees,
the number of connections per node, can be seen as the
simplest measure that falls under this definition. It plays
an important role in characterizing a network: Empirically
observed complex networks tend to show a heavy tailed de-
gree distribution which follows a power-law with a charac-
teristic exponent: p(k) ~ k~7. Such networks have been
categorized as scale-free [Barabasi and Albert, 1999], re-
ferring to the fact that it is not possible to pick a node of
typical degree. Clustering coefficients are key figures for
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the amount of transitivity in networks. The local cluster-
ing coefficient expresses how many of the possible con-
nections between neighbors of a node exist, which can
be treated as a node centrality measure according to the
definition above [Newman, 2010]. Betweenness centrality
expresses the concept that a node is important if it lies
on many shortest paths between nodes in the network.
PageRank [Page et al., 1999 assigns relative importance
to nodes according to their connections, incorporating the
idea that edges leading to high-scoring nodes contribute
more. While this collection is not and cannot be exhaus-
tive, we choose these common measures for our experi-
mental study (Section [f]).

3 Edge Sparsification

All edge sparsification methods we consider can be split
up into two stages: (i) the calculation of a score for each
of the m edges in the input graph (where the score is high
if the edge is important) and (ii) subsequent filtering by
applying a global threshold such that only edges whose
score is above this threshold are kept. In this section, we
introduce Local Filtering as an optionally applicable step
between the two aforementioned steps, and present the
existing and new sparsification approaches we consider.
For each of these methods, we show how it can be trans-
formed into an edge score that can be used for filtering.
We also describe the used algorithms for computing these
edge scores as we have developed novel parallel versions
for some of them.

3.1 Local Filtering

A problem with global filtering as described above is that
methods that are based on local measures like the number
of quadrangles an edge is part of tend to assign differ-
ent scores in different parts of the network as e.g. some
parts of the network are much denser than other parts.
Sparsification techniques like (Quadrilateral) Simmelian
Backbones [Nocaj et al., 2014] use different kinds of nor-
malizations of quadrangles (see below for details) in or-
der to compensate for such differences. Unfortunately,
these normalizations still do not fully compensate for these
differences. In Fig. we visualize the Jazz network
[Gleiser and Danon, 2003] with 15% kept edges as an ex-
ample. As one can see in the figure, many nodes are iso-
lated or split into small components, the original structure
of the network (shown with gray edges) is not preserved.

Simmelian Backbones have been introduced for visu-
alizing networks that are otherwise hard to layout. For
layouts it is important to keep the connectivity of the
network as otherwise nodes cannot be positioned relative
to their neighbors. In order to preserve the connectiv-
ity, [Nocaj et al., 2014] keep the union of all maximum
spanning trees (UMST) in addition to the original edges.
In Fig. we show the result when we keep the UMST.
While the network is obviously connected, much of the lo-

cal structure is lost in the areas between the dense parts
— which is not surprising as we only added the union of
some trees.

[Satuluri et al., 2011 face a similar problem as with
their sparsification technique based on Jaccard Similarity
(see below for details) they want to preserve the commu-
nity structure. They propose a different solution: Each
node u keeps the top |d(u)®] edges incident to wu, ranked
according to their similarity (o € [0,1], d(u) denotes the
degree of w). This procedure ensures that at least one
incident edge of each node is retained and thus prevents
completely isolated nodes. This is equivalent to assigning
each edge the score 1 — « for the minimum value of o such
that the edge is kept in the sparsified graph and filtering
globally by this new edge score. When ranking edges, we
assign a group of edges with equal score the lowest rank
of the edges in the group and thus assign all equal edges
the highest score.

In Fig. [Id] we show the Jazz network, sparsified again to
15% of the edges with the Quadrilateral Simmelian Back-
bone method using local filtering. With the local filter-
ing step, the network is almost fully connected and local
structures are maintained, too. Additionally, as already
Satuluri et al. observed when they applied local filtering
to their Jaccard Similarity, the edges are much more dis-
tributed among the different parts of the network. This
means that we can still see the local structure of the net-
work in many parts of the network and do not only main-
tain very dense but disconnected parts. In our evaluation
we confirm that many properties of the considered net-
works are indeed better preserved when the local filter-
ing step is added. Furthermore, we show that the local
filtering step leads to an almost perfect preservation of
the connected components on all considered networks even
though this is not inherent in the method. This suggests
that local filtering is superior to preserving a UMST as not
only connectivity but also local structures are preserved.
‘We therefore propose to apply this local filtering step to all
sparsification methods where local filtering has not been
considered yet. In our evaluation we do not further con-
sider the alternative of preserving a UMST as preliminary
experiments have shown that adding a UMST has no sig-
nificant advantage over the local filtering step in terms
of the preservation of network properties. With local fil-
tering, our sparsification pipeline consists of the following
stages: (i) calculation of an edge score, (ii) conversion of
the edge score into a local edge score and (iii) global filter-
ing. In the evaluation we prefix the abbreviations of the
local variants with “L”.

3.2 Sparsification Methods

Random Edge (RE). When studying different spar-
sification algorithms, the performance of random edge se-
lection is an important baseline. As we shall see, it also
performs surprisingly well. The method selects edges uni-
formly at random from the original set such that the de-
sired sparsification ratio is obtained. This is equivalent
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(a) Quadrilateral Simmelian Backbone (b) Quadrilateral Simmelian
Backbone with UMST

(¢) Quadrilateral Simmelian Backbone
with local filtering

Figure 1: Drawing of the Jazz musicians collaboration network according to a variant of the Quadrilateral Simmelian
Backbone with 15% of the edges (in black)



to scoring edges with values chosen uniformly at random.
Naturally this needs time linear in the number of edges
and can be trivially parallelized.

Triangles. Especially in social networks, triangles
play an important role because the presence of a trian-
gle indicates a certain quality of the relationship between
the three involved nodes. The sociological theory of Sim-
mel [Simmel and Wolff, 1950] states that “triads (sets of
three actors) are fundamentally different from dyads (sets
of two actors) by way of introducing mediating effects.” In
a friendship network, it is likely for two actors with a high
number of common friends to be friends as well. Filtering
globally by triangle counts tends to destroy local struc-
tures, but several of the following sparsification methods
are based on the triangles edge score T'(u,v) that denotes
for an edge {u,v} the number of triangles it belongs to.
The time needed for counting the number of all triangles
is O(m - a) [Ortmann and Brandes, 2014], where a is the
graph’s arboricity [Chiba and Nishizeki, 1985].

We use a parallelized variant of the algorithm in-
troduced by [Ortmann and Brandes, 2014]. This vari-
ant is different from the parallel variant introduced in
[Shun and Tangwongsan, 2015] as they need additional
overhead in the form of sorting operations or atomic op-
erations for storing local counters which we avoid. Algo-
rithm [I] contains the pseudo-code for our algorithm. The
algorithm needs a node ordering. While a smallest-first
ordering that is obtained by iteratively removing nodes
of minimum degree can guarantee the theoretical running
time, simply ordering the nodes by degree is actually faster
in practice as noticed by [Ortmann and Brandes, 2014].
Therefore we use such a simple degree ordering. While
N(u) denotes all neighbors of u, NT(u) denotes the neigh-
bors of the node that are higher in the ordering. Note that
when using a smallest-first ordering |N*(u)| is bounded
by a. In contrast to [Ortmann and Brandes, 2014] we
count each triangle three times which does not increase
the asymptotic running time. In each iteration step of the
outer loop we encounter each triangle u and the edges in-
cident to u are part of exactly once. Therefore it is enough
to count the triangle for the edges that are incident to u
and where u has the higher id. This avoids multiple ac-
cesses to the same edge by several threads, we therefore do
not need any locks or atomic operations. In the same way
we could also update triangle counters per node e.g. for
computing clustering coefficients without additional work
and without using locks or atomic operations. Note that
node markers are thread-local.

(Local) Jaccard Similarity (JS, LJS). One
line of research attempts to sparsify graphs with
the goal of speeding up data mining algorithms.
[Satuluri et al., 2011] propose a local graph sparsification
method with the intention of speedup and quality improve-
ment of community detection. They suggest reducing the
edge set to 10-20% of the original graph and use the Jac-

1 foreach u € V do in parallel
2 Mark all v € N(u);

3 foreach v € N(u) do

4 foreach w € N*(u) do

5 if w is marked then

6 L L Count triangle u, v, w;

7 | Un-mark all v € N(u);
Algorithm 1: Parallel triangle counting

card measure to quantify the overlap between node neigh-
borhoods N (u), N(v) and thereby the (Jaccard) similarity
of two given nodes:
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T(u,v)
d(u) + d(v) = T(u,v)’

where d(u) denotes the degree of u. The time needed for
calculating the Jaccard Similarity is the time for counting
all triangles. The authors also propose a fast approxima-
tion which runs in time O(m).

For this Jaccard Similarity, [Satuluri et al., 2011] pro-
pose the local filtering technique that we have already ex-
plained above and that we denote by LJS. The time needed
for calculating this local edge score is the time for calculat-
ing the Jaccard Similarity and for sorting the neighbors of
all nodes, which can be done in O(mlog(dmax)). We pro-
cess the nodes in parallel for sorting the neighbors.

This sparsification technique has also been adapted for
accelerating collective classification, i.e. the task of infer-
ring the labels of all nodes in a graph given a subset of
labeled nodes [Saha et al., 2013].

Simmelian Backbones (TS, QLS).  The Simmelian
Backbones introduced by [Nick et al., 2013] aim at dis-
criminating between edges that are placed within dense
subgraphs and those between them. The original goal of
these methods was to produce readable layouts of net-
works. To achieve a “local assessment of the level of ac-
tor neighborhoods” [Nick et al., 2013|, the authors pro-
pose the following approach, which we adapt to our con-
cept of edge scores. Given an edge scoring method S and
a node u, they introduce the notion of a rank-ordered
neighborhood as the list of adjacent neighbors sorted by
S(u,-) in descending order. The original (Triadic) Sim-
melian Backbone uses triangle counts T for S. The newer
Quadrilateral Simmelian Backbone by [Nocaj et al., 2014]
uses quadrilateral edge embeddedness, which they define as

q(u,v)

q(u) - q(v)
with g(u,v) being the number of quadrangles containing
edge {u,v} and ¢(u) being the sum of g(u,v) over all
neighbors v of u. They argue that this modified version

performs even better at discriminating edges within and
between dense subgraphs.

Q(u7 U) =



On top of the rank-ordered neighborhood graph that is
induced by the ranked neighborhoods of all nodes, Nick
et al. introduce two filtering techniques, a parametric one
and a non-parametric one. Like Nocaj et al. we use only
the non-parametric variant. By TS, we denote the Triadic
Simmelian Backbone and by QLS the Quadrilateral Sim-
melian Backbone. The non-parametric variant uses the
Jaccard measure similar to Local Similarity but, instead
of considering the whole neighborhood, they use the max-
imum of the Jaccard measure of the top-k neighborhoods
for all possible values of k. While the time needed for
quadrangle counting is equal to the time for triangle count-
ing [Chiba and Nishizeki, 1985], the overlap and Jaccard
measure calculation of prefixes needs time O(m - diax)
as it needs to be separately calculated for all edges. We
use a relatively simple implementation of the original al-
gorithm for quadrangle counting. All neighborhoods are
sorted in parallel which takes O(m - log(dmax)) time. By
using binary vectors for marking the unmatched neighbors
of both incident nodes we get O(3_y, ,yep d(u) +d(v)) =
O(m - dmax) for the Jaccard measure calculations which
dominates the running time. We execute this calculation
in parallel for all edges.

Edge Forest Fire (EFF).  The original Forest Fire
node sampling algorithm [Leskovec and Faloutsos, 2006]
is based on the idea that nodes are “burned” during a fire
that starts at a random node and may spread to the neigh-
bors of a burning node. Note that contrary to random
walks the fire can spread to more than one neighbor but
already burned neighbors cannot be burned again. The
basic intuition is that nodes and edges that get visited
more frequently than others during these walks are more
important. In order to filter edges instead of nodes, we
introduce a variant of the algorithm in which we use the
frequency of visits of each edge as a proxy for its relevance.

Algorithm [2] shows the details of the algorithm we use
to compute the edge score. The fire starts at a random
node which is added to a queue. The fire always con-
tinues at the next extracted node v from the queue and
spreads to neighboring unburned nodes until either all
neighbors have been burned or a random probability we
draw is above a given burning probability threshold p.
The number of burned neighbors thus follows a geometric
distribution with mean p/(1 — p). We use a very simple
parallelization for our Edge Forest Fire algorithm. We
burn several fires in parallel with separate burn markers
per thread and atomic updates of the burn frequency. In
order to avoid too frequent updates we update the global
counter for the number of edges burned only after a fire
has stopped burning before we start the next fire. As the
total length of all walks is hard to estimate in advance, we
cannot give a tight bound for the running time.

Algebraic Distance (AD). Algebraic  dis-
tance [Chen and Safro, 2011] («) is a method for
quantifying the structural distance of two nodes u and v

Input: targetBurnRatio € R, p € [0,1)

1 edgesBurnt <« 0;

2 while edgesBurnt < m- targetBurnRatio do
3 Add random node to queue;

4 while queue not empty do

5 v < node from queue;

6 while true do

7 g + random element from[0, 1);

8 if ¢ > p or v has no un-burnt neighbors

then

9 L break;
10 z < random un-burnt neighbor of v;
11 Mark z as burnt;
12 Add z to queue;
13 Increase edgesBurnt;
14 Increase burn counter of {v,x};

Algorithm 2: Edge Forest Fire

in graphs. Its essential property is that «(u,v) decreases
with the number of paths connecting v and v as well as
with decreasing lengths of those paths. Algebraic distance
therefore measures the distance of nodes by taking into
account more possible paths than e.g. shortest-path
distance and with wider in scope than e.g. the Jaccard
coefficient of two nodes’ immediate neighborhood. Nodes
that are connected by many short paths have a low
algebraic distance. It follows that nodes within the same
dense subgraph of the network are close in terms of «.
Algebraic distance can be described in terms of random
walks on graphs and, roughly speaking, a(u,v) is low
if a random walk starting at u has a high probability
of reaching v after few steps. In a straightforward way,
algebraic distance can be used to quantify the “range” of
edges, with short-range edges (low «(u,v) for an edge
{u,v}) connecting nodes within the same dense subgraph,
and long-range edges (high a(u,v) for an edge {u,v})
forming bridges between separate regions of the graph.
Hence, « restricted to the set of connected node pairs is
an edge score in our terms, and can be used to filter out
long- or short-range edges. We use 1 — a(u,v) as edge
score in order to treat short-range edges as important.

« is computed by performing iterative local updates on
d-dimensional “coordinates” of a node. The coordinates
are initialized with random values. Then, in each itera-
tion, the coordinates are set to some weighted average of
the old coordinates and the average of the old coordinates
of all neighbors. These updates of the node coordinates are
parallelized in our code. The algebraic distance is then any
distance between the two coordinate vectors, we choose
the fo-norm. As described in [Chen and Safro, 2011, d
can be set to a small constant (e.g. 10) and the distances
stabilize after tens of iterations of O(m) running time each.
We choose 20 systems and 20 iterations.



Local Degree (LD). Inspired by the notion of hub
nodes, i.e. nodes with locally relatively high degree, and
that of local sparsification, we propose the following new
sparsification method: For each node v € V, we include
the edges to the top |deg(v)* | neighbors, sorted by degree
in descending order. Similar to the local filtering step
we explained above we use again 1 — « for the minimum
parameter o such that an edge is still contained in the
sparsified graph as edge score. The goal of this approach
is to keep those edges in the sparsified graph that lead
to nodes with high degree, i.e. the hubs that are crucial
for a complex network’s topology. The edges left after
filtering form what can be considered a “hub backbone”
of the network. In Fig. [2] we visualize the Jazz network
[Gleiser and Danon, 2003| as an example.

As only the neighbors of each node need to be sorted,
this can be done in O(mlog(dmax)). Using linear-time
sorting it is even possible in O(m) time. We have decided
against the linear-time variant and instead apply the sort-
ing in parallel on all nodes.

Figure 2: Drawing of the Jazz musicians collaboration net-
work and the Local Degree sparsified version containing
15% of edges. Node size proportional to degree.

4 Implementation

For this study, we have created efficient C++ implementa-
tions of all considered sparsification methods, and have ac-
celerated them using OpenMP parallelization. All meth-
ods (with exception of the inherently sequential quad-
rangle counting algorithms [Chiba and Nishizeki, 1985])
have been parallelized. We have implemented the algo-
rithms in NetworKit [Staudt et al., 2014], an interactive
tool suite for scalable network analysis. It provides a
large set of graph algorithm implementations we have used
for our experiments. NetworKit combines kernels writ-
ten in C+-+ with an interactive Python shell to achieve
both high performance and interactivity, a concept we
use for our implementations as well. For community de-

tection, we use an efficient implementation of the Lou-
vain method with refinement that is also part of Net-
worKit [Staudt and Meyerhenke, 2015] as it is fast enough
for the vast amount of networks that we get due to the
different sparsification methods and ratios of kept edges
while still detecting communities of a reasonable quality.

Gephi [Bastian et al., 2009] is a graph visualization tool
which we use not only for visualization purposes but also
for interactive exploration of sparsified graphs. To achieve
said interactivity, we implemented a client for the Gephi
Streaming Plugin in NetworKit. It is designed to stream
graph objects from and to Gephi utilizing the JSON for-
mat. Using our implementation in NetworKit, a few lines
of Python code suffice to sparsify a graph, calculate vari-
ous network properties, and export it to Gephi for draw-
ing. The approach of separating sparsification into edge
score calculation and filtering allows for a high level of
interactivity by exporting edge scores from NetworKit to
Gephi and dynamic filtering within Gephi.

For the drawings of the Simmelian Backbones we use
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5 Experimental Study

Our experimental study consists of two parts. In the first
part (Sec. we compare correlations between the cal-
culated edge scores on a set of networks. In the second
part (Sec. we compare how similar the sparsified net-
works are to the original network by comparing certain
properties of the networks.

5.1 Setup

Our experiments have been performed on a multicore com-
pute server with 4 physical Intel Core i7 cores at 3.4
GHz, 8 threads, and 32 GB of memory. For this explo-
rative study, we use a collection of 100 social networks
representing early snapshots of Facebook, each of which
is an online friendship network for a US university or
college [Traud et al., 2012], most members are students.
Sizes of the Facebook networks are between 10k and 1.6
million edges, the number of nodes and edges is shown in
Fig.[3l Unless otherwise noted, we aggregate experimental
results over this set of networks. The common origin and
the high structural similarity among the networks allows
us to get meaningful aggregated values.

For the experiments on the preservation of proper-
ties we also use the Twitter and Google+ networks
[Leskovec and Mcauley, 2012] and the LiveJournal (com-
1j) network from [Yang and Leskovec, 2012]. All of them
are friendship networks, the Twitter and Google+ net-
works consist of the combined ego networks of 973 and
132 users, respectively. In Table [T] we provide the num-
ber of nodes and edges as well as diameter and cluster-
ing coefficient averaged over all Facebook networks and
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Figure 3: Number of nodes and edges of the Facebook
networks

Table 1: Number of nodes n, the number of edges m,
m/n, the diameter D and the average local clustering co-
efficient C'c of the used social networks (average values for
the Facebook networks)

n m m/n D Cc
Network
Facebook 12083 469 845 38.4 7.8 0.25
com-lj 3997962 34681189 87 21 0.35
gplus 107614 12238285 113.7 6 0.52
twitter 81306 1342296 16.5 7 0.60
the individual values for the three other networks. Fur-

thermore we provide the number of edges divided by the
number of nodes, which indicates how much redundancy
there is in the network. If this number was near 1 and
the network connected, the network would be close to a
tree in structure. It is not realistic to expect that we can
preserve the structure of the network if it is very sparse
already. The networks we selected have a varying degree
of redundancy but all of them are dense enough such that
if we remove 80% of the edges more edges remain than
we would need for a single tree. The characteristics of the
Facebook networks are relatively similar, we provide the
individual values in the Appendix.

For the evaluation of the preservation of the community
structure we also use networks with known ground truth
communities. For this purpose we use the synthetic LFR
benchmark [Lancichinetti and Fortunato, 2009a].

It remains an open question to what extent results can
be translated to other types of complex networks, since ac-
cording to experience the performance of network analysis
algorithms depends strongly on the network structure.

5.2 Correlations between Edge Scores

Among our sparsification methods, some are more similar
to others in the sense that they tend to preserve similar
edges. Such similarities can be clarified by studying cor-
relations between edge scores. We calculate edge score
correlations for the set of 100 Facebook networks as fol-
lows: For each single network, edge scores are calculated
with the various scoring methods and Spearman’s rank
correlation coefficient is applied. The coefficient is then
averaged over all networks and plotted in the correlation
matrix (Fig. [4). There is one column for each method,
and the column Mod represents edge scores that are 1 for
intra-community edges and 0 for inter-community edges
after running a modularity-maximizing Louvain commu-
nity detection algorithm. Positive correlations with these
scores indicate that the respective rating method assigns
high scores to edges within modularity-based communi-
ties. The column Tri simply represents the number of tri-
angles an edge is part of. As some of the methods are
normalizations of this score, this shows how similar the
ranking still is to the original score.

Interpretation of the results is challenging: The correla-
tions we observe reflect intrinsic, mathematical similarities
of the rating algorithms on the one hand, but on the other
hand they are also caused by the structure of this specific
set of social networks (e.g., it may be a characteristic of a
given network that edges leading to high-degree nodes are
also embedded in many triangles). Nonetheless, we note
the following observations: There are several groups of
methods. Simmelian Backbones, Jaccard Similarity and
Triangles are highly positively correlated which is not un-
expected as they are all based on triangles or quadrangles
and are intended to preserve dense subgraphs. Algebraic
distance is still positively correlated with these methods
but not as strongly even though they are also intended to
prefer dense subgraphs. An explanation for this weaker
correlation is that while both prefer dense regions, the
order of the individual edges is different. All of the pre-
viously mentioned methods are also correlated with the
Modularity value, algebraic distance with local filtering
has the highest score among all of these methods. Our
experiments on the preservation of community structure
(Sec. confirm this relationship. The correlation of
the Modularity value and these methods are similar to
the correlation between algebraic distance and the rest of
the methods which shows again that the lower correlation
values are probably due to different orderings of the indi-
vidual edges.

Our new method Local Degree is slightly negatively cor-
related with all these methods but still positively corre-
lated with the Triangles. It is also slightly negatively
correlated with the Modularity value, this is due to the
method’s preference of inter-cluster edges which is also
confirmed by our experiments below. The newly intro-
duced Edge Forest Fire is also negatively correlated with
Local Degree and even more negatively with Triangles.
This strong negative correlation between Edge Forest Fire



§o° 04 046 039 038 042 039 044 041
T 038 037 037 037 04 039
+ . 036 044 04 045 042 047
+ + + $ 08 08 07 093 077
+ + + . N 084 092
+ + + .. 085 076
+ + + .. 076  0.84
+ o+ 4 .. oF 088
o K
+ + + . + . +
+ - + - + = + = +
+ = + = + = + = +

024 013 0.026 -0.025-0.00022 0.013 1.0

031  -0.14 -0.075 -0.087 0.00016-0.0094
0.8

021 017 0.046 -0.018 -0.00011 0.021
0.6

081  -019 -0.15 -0.18 0.0002 -0.03
057 -025 0.034 -0.041 0.00014 0.011 0a

068 013 -011 -0.14 3.2-05 -0.017
0.2

048 019 0.034 -0.028 -3.4e-05 0.015
071  -0.18 -0.059 -0.11 9.26-05 -0.011 0.0

053 | -019 005 -0.017 -9.56-05 0.017
-0.2

& 021 051 04 65605 -0.086
-0.4

+ O 04  -0.19 :0.00015-0.041

= o & 046  5e-05 0.097
-06

+ K

5 o & 000038 0.076
-0.8

& 8.8e05
- - g _
+ o+ & 10

Figure 4: Edge score correlations (Spearman’s p, average over 100 Facebook networks)

and triangle count can be explained by the fact that the
Edge Forest Fire can never “burn” a triangle, as nodes
cannot be visited twice. Random edge filtering is not cor-
related at all, which is definitely expected.

It is interesting to see that each method is also relatively
strongly correlated with its local variant, apart from ran-
dom edge filtering (we use different random values as basis
of the local filtering process). Even the Edge Forest Fire
method, which should also be relatively random, has a
positive correlation with its local variant. This shows that
it prefers a certain kind of edge and that this preference
is kept when applying the local filtering.

Among the variants of Simmelian Backbones and Jac-
card Similarity also the local variants are more correlated
to other local variants than to other non-local variants and
also not as strongly correlated to triangles. This shows
that the local filtering indeed adds another level of nor-
malization. Also Jaccard Similarity seems to be more cor-
related to Quadrilateral Simmelian Backbones than to the
variant based on triangles even though Jaccard Similarity
is based on triangles itself. This is also interesting to see,
as Quadrilateral Simmelian Backbones are computation-
ally more expensive than the Jaccard Similarity.

5.3 Similarity in Network Properties

Quantifying the similarity between a network and its spar-
sified version is an intricate problem. Ideally, a similarity
measure should meet the following requirements:

1. Ignoring trivial differences: Consider, for example,
the degree distribution: One cannot expect the dis-
tribution to remain identical after edges get removed
during sparsification. It is clear, however, that the
general shape of the distribution should remain “sim-
ilar” and that high-degree nodes should remain high-
degree nodes in order to consider the degrees as pre-
served.

Intuitive and Normalized: Similarity values from a
closed domain like [0,1] allow for aggregation and
comparability. A similarity value of 1 indicates that
the property under consideration is fully preserved,
whereas a value of 0 indicates that similarity is en-
tirely lost. In some cases we also used relative changes
in the interval [—1,1] where 0 means unchanged as
they provide a more detailed view at the changes.

3. Revealing Method Behavior: A good similarity mea-



sure will clearly expose different behavior between
sparsification methods.

4. Efficiently computable.

Following these requirements, we select measures that
quantify relative changes for global properties like diam-
eter, size of the largest connected component and quality
of a community structure. Node degree, betweenness and
PageRank can be treated as node centrality indices which
represent a ranking of nodes by structural importance.
Since absolute values of the centrality scores are less in-
teresting than the resulting rank order, we compare the
rankings before and after sparsification using Spearman’s
p rank correlation coefficient. (This focus on rank order
is also the reason why we did not adopt the Kolmogorov-
Smirnov statistic used in [Leskovec and Faloutsos, 2006],
which compares distributions of absolute values.) Even
though the local clustering coefficient can be interpreted
as a centrality score as well, the comparison of ranks does
not seem meaningful in this case due to the fact that it
is a local score. Instead, we analyse the deviation of the
average local clustering coefficient from the original value.

In the following plots, the measures are shown on the
y-axis for a given ratio of kept edges (m’/m) on the x-
axis (e.g., a ratio of 0.2 means that 20% of edges are still
present). For each value there are two rows of plots. The
first contains averages over the 100 Facebook networks
with error bars that indicate the standard deviation. The
second row contains the values at 20%, 50% and 80% re-
maining edges of the three other networks. In each row,
we show two plots: the left plot with the non-local meth-
ods and the right plot with the methods that use local
filtering.
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Figure 5: The size of the largest component in the sparsi-
fied network divided by the size of the largest component
in the original network.
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Connected Components. As all of our networks
have, like most real-world complex networks, a giant com-
ponent that comprises most nodes we track its change by
dividing the size of the largest component in the sparsified
network by the size of the largest component in the original
network. As shown in Fig.[f] out of the non-local methods
Edge Forest Fire best preserves the connected component.
Random edge deletion leads to a slow decrease in the size
of the largest component while Simmelian Backbones, Jac-
card Similarity and algebraic distance lead to a separation
very quickly. Below 20% of retained edges, the size of the
largest component on the Facebook networks drops very
quickly, here the networks seem to be decomposed into
multiple smaller parts. On the other networks, this drop
occurs at different ratios of kept edges which reflects their
different densities and probably also their different struc-
tures. Local Filtering is able to maintain the connectivity.
On the Facebook networks, all methods keep the largest
component almost fully connected up to 20% of retained
edges, only below that small differences are visible. The
results on the LiveJournal, Twitter and Google+ networks
show that — as expected — with increasing density it is eas-
ier to preserve the connectivity of the network. Our Local
Degree method best preserves the connected components
of all networks, closely followed by the local variant of
random edge deletion and Edge Forest Fire.

Diameter. In order to observe how the network diam-
eter changes through sparsification, we plot the quotient of
the original network diameter and the resulting diameter,
which yields legible results since in practice the diameter
is mostly increased during sparsification. We compute the
exact diameters using a variation of the ExactSumSweep
algorithm [Borassi et al., 2015].

We motivate the Local Degree method with the idea
that shortest paths commonly run through hub nodes
in social networks. Therefore, preserving edges leading
to high-degree nodes should preserve the small diame-
ter. This is confirmed by our experiments (Fig. [6a)). In
contrast, methods that prefer edges within dense regions
clearly do not preserve the diameter. With Simmelian
Backbones the diameter drops when only few edges are
left; this can be explained by the fact that Simmelian
Backbones do not maintain the connectivity and that at
the end the graph is decomposed into multiple connected
components which have a smaller diameter. Algebraic dis-
tance is even more extreme in this aspect. Local filter-
ing leads to a slightly better preservation of the diameter
when applied to the other methods but algebraic distance
remains the worst method in this regard. Note that the
LiveJournal network has a higher diameter than the other
networks (see Table ; this might explain why the diam-
eter is better preserved there.

Clustering Coefficient. Fig. [6B] shows the deviation
of the average local clustering from the value of the original
network. Both for local and non-local methods we observe
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Figure 6: Preservation of global network properties

three classes of methods on the Facebook networks: meth-
ods that clearly decrease the clustering coefficient, meth-
ods that preserve the clustering coefficient and methods
that increase it.

For both Random Edge and Edge Forest Fire, which
are based on randomness, the clustering coefficient drops
almost linearly with decreasing sparsification ratio. This
can also be observed on the other three networks. The
additional local filtering step does not significantly change
this.

Simmelian Backbones and Jaccard Similarity keep
mostly edges within dense regions, which results in in-
creasing clustering coeflicients on all networks. Triadic
Simmelian Backbones show the weakest increase, on the
Twitter network even a decrease of the clustering coeffi-
cients. Note that with 0.52 and 0.6 the clustering coef-
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ficients are already relatively high on the Google+ and
Twitter networks, therefore the very small increase is not
surprising. Local filtering slightly weakens this effect on
the Facebook networks, on the other networks it is even
reversed. Given the high clustering coefficients in the orig-
inal networks, this is not very surprising as we would need
to retain very dense areas while local filtering leads to a
more balanced distribution of the edges.

From the previous results especially concerning the con-
nected components one would expect that algebraic dis-
tance also increases the clustering coefficients. Interest-
ingly though, filtering using algebraic distance leads to a
slight increase of the clustering coefficient on the Facebook
networks, constant clustering coefficients on the LiveJour-
nal network and even slightly decreasing clustering coeffi-
cients on the Twitter and Google+ networks. With the ad-
ditional local filtering step algebraic distance almost pre-
serves the clustering coefficients on the Facebook networks
while on the other networks it is slightly decreased. Al-
gebraic distance leads to random noise on the individual
edge weights, therefore they probably lead to a more ran-
dom selection of edges that also destroys more triangles
than the selection of Simmelian Backbones and Jaccard
Similarity. Our Local Degree method best preserves the
clustering coefficient on the Facebook networks, though
with some differences between the various networks in the
dataset (note the error bars). On the LiveJournal network
it leads to a decrease of the clustering coefficient while on
the Twitter and Google+ networks it leads to a slight in-
crease of the clustering coefficient. This is probably due
to the special structure of ego networks.

Our experiments therefore do not reveal a general best
method for preserving clustering coefficients. If high clus-
tering coefficients shall be created or preserved, the Jac-
card Similarity and Quadrilateral Simmelian Backbones
seem to be a good choice. Algebraic distance is good at
preserving clustering coefficients with slight deviations but
our Local Degree method also works well on the considered
social networks.

Node Centrality Measures. The exact calcula-
tion of betweenness centrality is in practice too expensive
for the whole set of networks and sparsification methods
we consider. Therefore we use the approximation algo-
rithm |Geisberger et al., 2008| with at least 16 samples,
for smaller networks also with up to 512 samples. For the
calculation of the PageRank centrality we use a damping
factor of 0.85 and an error tolerance of 107°.

The similarity of curves in Fig. [7] catches the eye imme-
diately: For these node centrality measures, the sparsifi-
cation methods behave in a very similar way. This sim-
ilarity could be explained by strong correlations between
node degree, PageRank and betweenness, which have been
observed before (e.g. [Fortunato et al., 2008]). Note that
betweenness centrality is also not exactly preserved on the
original network; this is due to the approximation, which
adds additional noise.




Random edge deletion and Local Degree perform best
on most networks. In accordance with our intuition that
edges leading to high-degree neighbors are important and
should be preserved, our experiments show that the Local
Degree method preserves all three considered node cen-
tralities. Nevertheless, random edge filtering with the ad-
ditional local filtering step outperforms it concerning the
preservation of Betweenness Centrality. The differences
are small though and similar to those that are due to
the approximation error so they might actually be caused
by the approximation method for Betweenness centrality
that behaves differently depending on the structure of the
network. On the Facebook networks, Edge Forest Fire
fails early while on the other networks it is among the
best methods. As the expected number of randomly se-
lected incident edges via the “burning process” of Edge
Forest Fire is relatively low even for high-degree nodes, it
fails at preserving node degrees. Nevertheless in the non-
Facebook networks it seems to preserve enough important
connections in order to preserve PageRank and between-
ness centralities relatively well. Methods that are focused
on keeping edges within dense regions are not as good at
preserving these centralities. Adding the additional local
filtering step again leads to a better preservation of the
properties but does not change the general picture.

Community Structure. In order to understand how
the community structure of the networks is maintained,
we consider for each network a fixed community structure
that has been found by the Louvain method on the orig-
inal network. We report some properties of this commu-
nity structure for each level of sparsification. There are
many ways to characterize a community structure. We
pick two properties of communities that we consider to be
crucial. Communities are commonly described to be in-
ternally dense and externally sparse subgraphs. A natural
measure is thus conductance which compares the size of
the cut of a community to the volume of the community,
i.e. the sum of all degrees (or the volume of the rest of
the network if it should be larger). Low conductance val-
ues indicate clearly separable communities. We consider
the average conductance of all communities. Furthermore
we expect that communities are connected. In order to
measure this, we introduce the fraction of the nodes in a
community that does not belong to the largest connected
component of the community as partition fragmentation.
We report the average fragmentation of all communities.

We plot the relative inter-cluster conductance change
in Figure [Ba] A value of 0 means that the conductance
stays the same, a value of —1 indicates that the conduc-
tance became 0 (i.e. a decrease by 100%) and a value of
1 indicates that the conductance has been doubled (i.e.
an increase of 100%). We can again see that there are
three categories of algorithms: the first group consisting
of random edge sampling preserves the conductance val-
ues on most networks. The second group contains only
Local Degree and increases the conductance. Edge For-
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Figure 8: Preservation of community structure
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est Fire has no clear behavior. On the LiveJournal net-
work it increases the conductance, while on Twitter and
Google+ it rather decreases it. On the Facebook networks,
Edge Forest Fire without local filtering preserves the con-
ductance values while with local filtering the conductance
values are slightly increased. The third group consisting
of Jaccard Similarity, Simmelian Backbones and algebraic
distance strongly decreases the conductance. With the
additional local filtering step the decrease in conductance
is not as strong but still very significant. The keeping of
inter-community edges of the Local Degree method, which
also explains why it preserves the connectivity so well, can
be explained as follows: Consider a hub node x within a
community with neighbors that are for the most part also
connected to a hub node y with higher degree than . Due
to the way Local Degree scores edges, = will lose many of
its connections within the community and may be pulled
into the community of a neighboring high-degree node z
that is not part of the original community of x. Jaccard
Similarity, Simmelian Backbones and algebraic distance
on the other hand focus — by design — on intra-community
edges. Random edge sampling and Edge Forest Fire filter
both types of edges almost equally distributed which is not
surprising given their random nature. Depending on the
network Edge Forest Fire shows different behavior, this
indicates that these networks have a different structure.

In Figure 8] it becomes obvious that only local filtering
allows methods to keep the intra-cluster connectivity up to
very sparse graphs. On the Facebook networks Simmelian
Backbones and Jaccard Similarity without local filtering
are actually the worst in this respect, they do not keep the
connectivity even though they prefer intra-cluster edges as
we have seen before. On the other networks, algebraic dis-
tance is even more extreme in this regard. Random edge
sampling and Edge Forest Fire on the non-Facebook net-
works are the only non-local method where a slow increase
of the fragmentation can be observed, all other methods
lead to a steep increase of the fragmentation during the
first 10% of edges that are removed.

Given these observations, we expect that we should still
be able to find a very similar community structure at least
if we use Simmelian Backbones, Jaccard Similarity or al-
gebraic distance with local filtering. In Figure [8d we com-
pare the community structure that is found by the Louvain
method on the sparsified network to the one found on the
original network. For this comparison we use the adjusted
rand index |[Hubert and Arabie, 1985]. Note that the fre-
quently used normalized mutual information (NMI) mea-
sure reports higher similarity values for a larger number
of found communities (see e.g. [Vinh et al., 2009]). This
makes it unsuitable for comparing partitions on sparsified
networks as we have to expect many small communities
when a lot of edges are removed. As [Vinh et al., 2009]
also show in their experiments, the adjusted rand index
does not have these properties as it has an expected value
of 0 for random partitions.

As a first observation we need to note that even when



all edges are still in the network (at the right bound-
ary of the plot for the Facebook networks), the com-
munity structure found is already different. The Lou-
vain method is randomized, therefore it is not unlikely
that every found community structure is different. The
amount of difference between the community structures
even without filtering edges indicates that there is not a
single, well-defined community structure in these graphs
but many different ones. Preliminary tests with the
(slightly slower) Infomap community detection algorithm
[Rosvall et al., 2009] which has an excellent performance
on synthetic benchmark graphs for community detection
|Lancichinetti and Fortunato, 2009b| show a very similar
variance which indicates that this is not due to a weak-
ness of the Louvain algorithm. Filtering the edges such
that we can measure that the conductance of one of these
many community structures is decreased most probably
does not just make this structure clearer but does also
lead the algorithm into finding different community struc-
tures. Therefore most methods lead to significantly dif-
ferent community structures. It is possible that some of
the sparsification methods, especially local variants of the
Simmelian Backbones, Jaccard Similarity and algebraic
distance, simply reveal a different community structure.
On the contrary, if all edges are kept with the same prob-
ability, the almost same set of community structures can
still be found up to a certain ratio of kept edges. Remov-
ing less than 40% of the edges at random using random
edge sampling or Edge Forest Fire does not seem to lead
to more different structures than the already found ones.
Note that on the three other networks these results are
hard to interpret as they are from just a single run, but
the general tendencies are similar. Local methods keep
the connectivity and are thus slightly better at preserving
the community structure.

In order to verify the hypothesis that some differences
are due to different community structures being found,
we use synthetic networks with ground truth communi-
ties. For this purpose we use the popular LFR genera-
tor |Lancichinetti and Fortunato, 2009a]. As parameters
we choose the configuration with 1000 nodes and small
communities from [Lancichinetti and Fortunato, 2009b].
This means our synthetic networks have a power-law de-
gree distribution with exponent —2, average degree 20 and
maximum degree 50. The communities have between 10
and 50 nodes, the community sizes also follow a power-
law distribution but with exponent —1. As mixing pa-
rameter p we choose 0.5. This means that each node has
as many neighbors in its own community as in all other
communities together. For smaller mixing parameters the
differences between the different techniques are less ob-
vious, for larger mixing parameters we reach the limits
where community detection algorithms are no longer able
to identify the ground truth communities. For the plots
in Figure [0 we use ten different random networks with the
same configuration and report again the average and the
standard deviation. As we have known ground truth com-
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Figure 9: Preservation of the community structure on the
generated LFR graphs

munities for these networks, we use these ground truth
communities instead of a community structure found by
the Louvain algorithm for the following comparisons.

For the inter-cluster conductance in Figure [9a] the re-
sults are similar to the results for the Facebook networks
but much clearer. Random edge filtering almost perfectly
preserves the inter-cluster conductance both in the vari-
ant without and the one with local filtering. Edge For-
est Fire and Local Degree lead to a clear increase of the
conductance, again independent of the local filtering step.
Compared to the Facebook networks this increase for Edge
Forest Fire is now much stronger and earlier in the spar-
sification process. Simmelian Backbones, Jaccard Sim-
ilarity and algebraic distance lead to a strong decrease
of the inter-cluster conductance. With 40% remaining
edges, the conductance reaches almost 0 for all of them.
Note that if a measure was able to perfectly distinguish
between intra- and inter-cluster edges, the inter-cluster
conductance could reach 0 when the ratio of kept edges
reaches 50%. All methods are not far from that goal, but



algebraic distance is the best method in this regard. With
a local filtering post-processing step, algebraic distance is
more similar to the other methods. For the other methods,
only minor changes can be observed. It is visible, though,
that some inter-cluster edges seem to remain.

On the LFR networks the connectivity in the communi-
ties seems to be preserved much better than on the Face-
book networks, see Figure Up to 50% of removed
edges, none of the methods leads to any noticeable frag-
mentation. Only when more edges are removed, the Sim-
melian Backbones, Jaccard Similarity and algebraic dis-
tance seem to disconnect parts of the communities. With
the additional local filtering step the connectivity inside
communities is almost perfectly preserved up to 15% re-
maining edges. As the networks have an average degree
of 20 we also cannot expect that connectivity is preserved
much further as with 10% remaining edges only a tree
could be preserved.

In Figure [9c| we compare the ground truth communities
to the community structure found by the Louvain algo-
rithm (again with refinement). Without the sparsification
step, the Louvain algorithm is unable to detect the ground
truth communities, this is most likely due to the resolu-
tion limit [Fortunato and Barthelemy, 2007]. On the gen-
erated networks with clear ground truth communities, our
intuition that random edge, local degree and edge forest
fire should not be able to preserve the community struc-
ture is verified. While removing less than 20% of the edges
leads to similar detection rates, the differences increase as
more and more edges are removed. Edge Forest Fire is
worst at keeping the community structure on LFR net-
works. On the contrary those methods that show positive
results for the preservation of the community structure
actually lead to sparsified networks where the Louvain al-
gorithm is better able to find the community structure. As
we could expect from the partition fragmentation, with-
out local filtering the detection rate is decreased after 50%
of the edges have been removed. With local filtering,
though, there is a range between 50% and 15% of remain-
ing edges where the Louvain algorithm can almost exactly
recover the ground truth communities on the sparsified
network. This shows that sparsification can even increase
the quality of communities found by community detection
algorithms. Algebraic distance with local filtering seems
to work best in this regard. During the first 50% of re-
moved edges algebraic distance shows a strange behavior,
though — especially with local filtering the detection rate
first drops a bit. This is surprising as algebraic distance
leads to the strongest decrease of the inter-cluster conduc-
tance right at the beginning. A possible explanation is
that the Louvain algorithm merges especially small clus-
ters. If other methods filter edges between these small
clusters first, this most probably helps the Louvain algo-
rithm most.

With all these experiments we have seen that measuring
the preservation of the community structure is a challeng-
ing task especially when no ground truth communities are
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known. Our results suggests that the social networks ei-
ther do not contain a clear community structure or that
the Louvain algorithm is unable to identify this structure.
Random edge deletion and edge forest fire seem to preserve
this uncertainty in the sense that the Louvain algorithm
still identifies relatively similar communities. Simmelian
Backbones, Jaccard Similarity and algebraic distance on
the other hand are designed to prefer intra-cluster edges
which can also be seen in our experiments. On the spar-
sified networks this has the effect that the Louvain algo-
rithm detects communities that are different from the com-
munities it detects on the original network. On synthetic
networks, local filtering with these methods preserves and
even enforces the community structure. They are able to
preserve the ground truth communities up to a ratio of
kept edges of 0.15. This suggests that Simmelian Back-
bones, Jaccard Similarity and algebraic distance with local
filtering indeed keep and enforce some community struc-
ture but that on networks without clearly detectable com-
munity structure this is not necessarily the same structure
as the structure that is found by the Louvain algorithm.

5.4 Epidemic Simulations

The previous experiments focused on static structural
properties only. Now we briefly turn to dynamic, emer-
gent properties that can be observed by simulating pro-
cesses on networks. Epidemic models are simplified means
of describing the transmission of communicable diseases
through a population of individuals, which can intu-
itively be applied to networks. Studies have recognized
the importance of social networks in disease transmis-
sion [Salathé et al., 2010]. In the following we apply the
SEIR model [Keeling and Rohani, 2008], which assigns
one of four states to each node: Initially one node has
been exposed (E) to the infection and all other nodes are
susceptible (S). An exposed node becomes infectious (I)
after a number of time steps. At each time step, an in-
fectious node contacts all of its neighbors, and with a cer-
tain transmission probability, a susceptible neighbor be-
comes exposed. Nodes stay infectious for a given number
of steps, and are then removed (R), either by immuniza-
tion or death. Counting the number of nodes of each state
at each time step yields epidemic curves that describe the
dynamics of the outbreak.

There is a nontrivial relationship between net-
work structure and epidemic dynamics (e.g., they
have been connected to spectral properties of the
graph [Wang et al., 2003]). We can ask whether sparsi-
fied versions of a network give rise to similar epidemiolog-
ical dynamics, in terms of the size and timing of a disease
outbreak, and add another level of analysis for the sparsi-
fication methods. We select fb-Texas84 (ca. 1.6 million
edges) as a representative social network and run the SEIR,
simulation 50 times with a latency period of 2 time steps,
an infectious period of 9 time steps, and a transmission
probability of 0.1. Figure shows the aggregated epi-
demic curves (where the central line represents the me-



dian number of nodes and the shaded areas around it the
standard deviation) for the original network. While epi-
demic dynamics can depend strongly on the specific net-
work structure, the following observations were roughly
consistent across the Facebook-type networks.
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Figure 10: Epidemic curves of SEIR simulation on a Face-
book social network
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Epidemic curves after Local Degree sparsifica-

The Local Degree method most closely replicates the
epidemic curves of the original down to an edge ratio of 0.2,
producing only a minor delay in the outbreak and slightly
lower peak number of infected nodes, but an identical con-
verged state (Fig. . One reason for this is certainly that
connectedness and short paths are preserved. It may also
point to the importance of local hubs in epidemic propa-
gation. Random edge sampling and Forest Fire sparsifica-
tion also perform well and produce a similar high fidelity.
Other methods deviate more from the original epidemic
dynamics by delaying and dampening the outbreak, with
some also strongly reducing the final number of infections.
For Local Jaccard Similarity, thinning the network slows
the outbreak slightly, leading to a less sharp and high peak
of infected nodes, but reproduces essentially the same epi-
demic curve shapes and final state. At the other end of
the spectrum, sparsification by algebraic distance (Fig.
and the Simmelian methods selectively removes bottleneck
edges between dense regions of the network. These edges
are likely to be critically important for the propagation of
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Figure 12: Epidemic curves after algebraic distance spar-
sification

a disease, and hence epidemic dynamics are significantly
altered with deleting those edges.

5.5 Running Time
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Figure 13: Running times of various edge scoring methods
on the Facebook networks

Measured running times are shown in Fig. Random
Edge sparsification is clearly the fastest method, closely
followed by Local Degree. Jaccard Similarity is also not
much slower and scales also very well. Therefore these
methods are well suited for large-scale networks in the
range of millions to billions of edges. The efficiency of the
Jaccard Similarity method shows that our parallel trian-
gle counting implementation is indeed very scalable. The
authors also proposed inexact Jaccard coefficient calcula-
tion for a further speedup though given our numbers it



can be doubted if — given an efficient triangle counter —
this is necessary or helpful at all. Algebraic distance is
a bit slower but scales very well nevertheless. Using less
systems or iterations could further speed-up algebraic dis-
tance if speed is an issue. Both Simmelian methods are
significantly slower than the other methods, but still effi-
cient enough for the network sizes we consider. The visible
difference between quadrilateral and triangular Simmelian
Backbones can be explained by the difference between tri-
angle and quadrangle counting, additionally we did not
parallelize the latter. While the time complexity in O-
notation of Edge Forest Fire is difficult to assess, it seems
to be slightly faster than Simmelian Backbones.

6 Conclusion

Our experimental study on networks from Facebook, Twit-
ter and Google+ as well as synthentically generated net-
works shows that several sparsification methods are ca-
pable of preserving a set of relevant properties of social
networks when up to 80% of edges have been removed.

Random edge deletion performs surprisingly well and re-
tains a wide range of properties, but more targeted meth-
ods can perform even better. We propose local filtering
as a generally applicable and computationally cheap post-
processing step for edge sparsification methods that im-
proves the preservation of almost all properties as it leads
to a more equal rate of filtering across the network. Sim-
melian Backbones, Jaccard Similarity and algebraic dis-
tance prefer intra-cluster edges and thus do not keep global
structures but with the added local filtering step they are
able to enforce and retain a community structure as it was
already shown for Jaccard Similarity. However, the pre-
served community structure is not necessarily the same as
the one the Louvain algorithm finds. Our novel method
Local Degree, which is based on the notion that connec-
tions to hubs are highly important for the network’s struc-
ture, in contrast preserves shortest paths and the overall
connectivity of the network. This can be seen at the al-
most perfectly preserved diameter and the well-preserved
behavior of the network in epidemic simulations. Depend-
ing on the network, the Local Degree method is also able to
preserve clustering coefficients and centralities. Our adap-
tion of the Forest Fire sampling algorithm to edge scoring
depends strongly on the specific network’s structure. It is
good at preserving connectivity, on some networks it also
preserves centralities and the diameter.

We hope that the conceptual framework of edge scoring
and filtering as well as our evaluation methods are steps
towards a more unified perspective on a variety of related
methods that have been proposed in different contexts.
Future developments can be easily carried out within this
framework and based on our implementations, which are
available as part of the open-source network analysis pack-
age NetworKitﬂ

2https:/ /networkit.iti.kit.edu/
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