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Abstract 

Despite the apparent randomness of the Internet, we dis- 
cover some surprisingly simple power-laws of the Internet 
topology. These power-laws hold for three snapshots of the 
Internet, between November 1997 and December 1998, de- 
spite a 45% growth of its size during that period. We show 
that our power-laws fit the real data very well resulting in 
correlation coefficients of 96% or higher. 

Our observations provide a novel perspective of the struc- 
ture of the Internet. The power-laws describe concisely 
skewed distributions of graph properties such as the node 
outdegree. In addition, these power-laws can be used to 
estimate important parameters such as the average neigh- 
borhood size, and facilitate the design and the performance 
analysis of protocols. Furthermore, we can use them to gen- 
erate and select realistic topologies for simulation purposes. 

1 Introduction 

“What does the Internet look like?” “Are there any topolog- 
ical properties that don’t change in time?” ~‘How will it look 
like a year from now?” “How can I generate Internet-like 
graphs for my simulations?” These are some of the questions 
motivating this work. 

In this paper, we study the topology of the Internet and 
we identify several power-laws. Furthermore, we discuss 
multiple benefits from understanding the topology of the 
Internet. First, we can design more efficient protocols that 
take advantage of its topological properties. Second, we can 
create more accurate artificial models for simulation pur- 
poses. And third, we can derive estimates for topological 
parameters (e.g. the average number of neighbors within h 
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hops) that are useful for the analysis of protocols and for 
speculations of the Internet topolog in the future. 

P. Modeling the Internet topology is an important open 
problem despite the attention it has attracted recently. Pax- 
son and Floyd consider this problem as a major reason “Why 
We Don’t Know How To Simulate The Internet” [16]. Sev- 
eral graph-generator models have been proposed [23] [5] [27], 
but the problem of creating realistic topologies is not yet 
solved; the selection of several parameter values are left to 
the intuition and the experience of each researcher. 

As our primary contribution, we identify three power- 
laws for the topology of the Internet over the duration of a 
year in 1998. Power-laws are expressions of the form y 0: zQ, 
where a is a constant, z and y are the measures of interest, 
and o( stands for “proportional to”. Some of those exponents 
do not change significantly over time, while some exponents 
change by approximately 10%. However, the important ob- 
servation is the existence of power-laws, i.e., the fact that 
there is some exponent for each graph instance. During 
1998, these power-laws hold in three Internet instances with 
good linear fits in log-log plots; the correlation coefficient of 
the fit is at least 96% and usually higher than 98%. In ad- 
dition, we introduce a graph metric to quantify the density 
of a graph and propose a rough power-law approximation of 
that metric. Furthermore, we show how to use our power- 
laws and our approximation to estimate useful parameters 
of the Internet, such as the average number of neighbors 
within h hops. Finally, we focus on the generation of real- 
istic graphs. Our power-laws can help verify the realism of 
synthetic topologies. In addition, we measure several crucial 
parameters for the most recent graph generator [27]. 

Our work in perspective. Our work is based on three In- 
ternet instances over a one-year period. During this time, 
the size of the network increased substantially (45%). De- 
spite this, the sample space is rather limited, and mak- 
ing any generalizations would be premature until additional 
studies are conducted. However, the authors believe that 
these power-laws characterize the dynamic equilibrium of 
the Internet growth in the same way power-laws appear to 
describe various natural networks such as the the human 
respiratory system [12], and automobile networks [6]. At a 
more practical level, the regularities characterize the topol- 
ogy concisely during 1998. If this time period turns out to 
be a transition phase for the Internet, our observations will 
obviously be valid only for 1998. In absence of revolutionary 

‘In this paper, we use the expression “the topology of the Inter- 
net”, although the topology changes and it would be more accurate to 
talk about “Internet topologies”. We hope that this does not mislead 
or confuse the reader. 
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changes, it is reasonable to expect that our power-laws will 
continue to hold in the future. 

The rest of this paper is structured as follows. In Sec- 
tion 2, we present some definitions and previous work on 
measurements and models for the Internet. In Section 3, we 
present our Internet instances and provide useful measure- 
ments. In Section 4, we present our three observed power- 
laws and our power-law approximation. In Section 5, we 
explain the intuition behind our power-laws, discuss their 
use, and show how we can use them to predict the growth 
of the Internet. In Section 6, we conclude our work and 
discuss future directions. 

2 Background and Previous Work 

The Internet can be decomposed into connected subnet- 
works that are under separate administrative authorities, 
as shown in Figure 1. These subnetworks are called do- 
mains or autonomous systems’. This way, the topology of 
the Internet can be studied at two different granularities. At 
the router level, we represent each router by a node [14]. 
At the inter-domain level, each domain is represented by 
a single node [lo] and each edge is an inter-domain inter- 
connection. The study of the topology at both levels is 
equally important. The Internet community develops and 
employs different protocols inside a domain and between 
domains. An intra-domain protocol is limited within a do- 
main, while an inter-domain protocol runs between domains 
treating each domain as one entity. 

Symbol Definition 
G An undirected graph. 
N Number of nodes in a graph. 
E Number of edges in a graph. 
6 The diameter of the graph. 

dv Outdegree of node u. 
2 The average outdegree of the nodes of a 

1 graph: 6=2 E/N - 

Table 1: Definitions and symbols. 

Metrics. The metrics that have been used so far to de- 
scribe graphs are mainly the node outdegree, and the dis- 
tances between nodes. Given a graph, the outdegree of a 
node is defined as the number of edges incident to the node 
(see Table 1). The distance between two nodes is the num- 
ber of edges of the shortest path between the two nodes. 
Most studies report minimum, maximum, and average val- 
ues and plot the outdegree and distance distribution. We 
denote the number of nodes of a graph by N, t.he number 
of edges by E, and the diameter of the graph by 6. 

Real network studies. Govindan and Reddy [lo] study 
the growth of the inter-domain topology of the Internet be- 
tween 1994 and 1995. The graph is sparse with 75% of the 
nodes having outdegrees less or equal to two. They distin- 
guish four groups of nodes according to their outdegree. The 
authors observe an increase in the connectivity over time. 
Pansiot and Grad [14] study the topology of the Internet in 

‘The definition of an autonomous system can vary in the literature, 
but it usually coincides with that of the domain [IO]. 

1995 at the router level. The distances they report are ap- 
proximately two times larger compared to those of Govindan 
and Reddy. This leads to the interesting observation that, 
on average, one hop at the inter-domain level corresponded 
to two hops at the router level in 1995. 

Generating Internet Models. Regarding the creation of 
realistic graphs, Waxman introduced what seems to be one 
of the most popular network models [23]. These graphs are 
created probabilistically considering the distance between 
nodes in a Euclidean sense. This model was successful in 
representing small early networks such as the ARPANET. 
As the size and the complexity of the network increased 
more detailed models were needed [5] [27]. In the most re- 
cent work, Zegura et al. [27] introduce a comprehensive 
model that includes several previous models 3. They call 
their model transit-stub, which combines simple topologies 
(e.g. Waxman graphs and trees) in a hierarchical structure. 
There are several parameters that control the structure of 
the graph. For example, parameters define the total num- 
ber and the size of the stubs. An advantage of this model 
lies in its ability to describe a number of topologies. At the 
same time, a researcher needs experimental estimates to set 
values to the parameters of the model. 

Power-laws in communication networks. Power-laws have 
been used to describe the traffic in communications net- 
works, but not their topology. Actually, both self-similarity, 
and heavy tails appear in network traffic and are both re- 
lated to power-laws. A variable X follows a heavy tail distri- 
bution if P[X > z] = kalea L(z), where k E 8?+ and L(z) is 
a slowly varying function: Zimt,,[L(tx)/L(x)] = 1 [20] [24]. 
A Pareto distribution is a special case of a heavy tail dis- 
tribution with P[X > z] = k” x-=. It is easy to see that 
power-laws, Pareto and heavy-tailed distributions are inti- 
mately related. In a pioneering work, Leland et al. [ll] show 
the self-similar nature of Local Area Network (LAN) traffic. 
Second, Paxson and Floyd [15] provide evidence of self simi- 
larity in Wide Area Network (WAN) traffic. In modeling the 
traffic, Willinger et al. [25] provide structural models that 
describe LAN traffic as a collective effect of simple heavy- 
tailed ON-OFF sources. Finally, Willinger et al. [24] bring 
all of the above together by describing LAN and WAN traffic 
through structural models and showing the relation of the 
self-similarity at the macroscopic level of WANs with the 
heavy-tailed behavior at the microscopic level of individual 
sources. In addition, Crovella and Bestavros use power-laws 
to describe traffic patterns in the World Wide Web [3]. At 
an intuitive level, the previous works seem to attribute the 
heavy-tailed behavior of the traffic to the heavy-tailed dis- 
tribution of the size of the transmitted data files, and to the 
heavy-tailed characteristics of the human-computer interac- 
tion. Recently, Chuang and Sirbu [2] use a power-law to 
estimate the size of multicast distribution trees. Note that 
in a follow-up work, Philips et al. [17] verify the reason- 
able accuracy of the Chuang-Sirbu scaling law for practical 
purposes, but they also propose an estimate that does not 
follow a power-law. 

3 Internet Instances 

In this section, we present the Internet instances we ac- 
quired and we study their evolution in time. We examine 
the inter-domain topology of the Internet from the end of 
1997 until the end of 1998. We use three real graphs that 
correspond to six-month intervals approximately. The data 

3The graph generator software is publicly available [27]. 
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Figure 1: The structure of Internet at a) the router level and b) the inter-domain level. The hosts connect to routers in LANs. 
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Figure 2: The growth of the Internet: the number of do- 
mains versus time between the end of 1997 until the end of 
1998. 

is provided by the National Laboratory for Applied Net- 
work Research [9 The information is collected by a route 
server from BGP a. routing tables of multiple geographically 
distributed routers with BGP connections to the server. We 
list the three dataset.s that we use in our paper, and we 
present more information in Appendix A. 

Int-11-97: the inter-domain topology of the Internet 
in November of 1997 with 3015 nodes, 5156 edges, and 
3.42 avg. outdegree. 

Int-04-98: the inter-domain topology of the Internet 
in April of 1998 with 3530 nodes, 6432 edges, and 3.65 
avg. outdegree. 

Int-12-98: the inter-domain topology of the Internet 
in December of 1998 with 4389 nodes, 8256 edges, and 
3.76 avg. outdegree. 

Note that the growth of the Internet in the time pe- 
riod we study is 45% (see Figure 2). The change is signif- 
icant, and it ensures that the three graphs reflect different 
instances of an evolving network. 

Although we focus on the Internet topology at the inter- 
domain level, we also examine an instance at the router 

4BGP stands for the Border Gateway Protocol [19], and it is the 
inter-domain routing protocol. 

(b) 

level. The graph represents the topology of the routers of 
the Internet in 1995, and was tediously collected by Pansiot 
and Grad [14]. 

l Rout-95: the routers of the Internet in 1995 with 3888 
nodes, 5012 edges, and an average outdegree of 2.57. 

Clearly, the above graph is considerably different from the 
first three graphs. First of all, the graphs model the topology 
at different levels. Second, the Rout-95 graph comes from a 
different time period, in which Internet was in a fairly early 
phase. 

To facilitate the graph generation procedures, we ana- 
lyze the Internet in a way that suits the graph generator 
models [27]. Namely, we decompose each graph in two com- 
ponents: the tree component that contains all nodes that 
belong exclusively to trees and the core component that con- 
tains the rest of the nodes including the roots of the trees. 
We report several interesting measurements in Appendix A. 
For example, we find that 40-50% of the nodes belong to 
trees. Also, 80% the trees have a depth of one, while the 
maximum tree depth is three. 

4 Power-Laws of the Internet 

In this section, we observe three of power-laws of the In- 
ternet topology. Namely, we propose and measure graph 
properties, which demonstrate a regularity that is unlikely 
to be a coincidence. The exponents of the power-laws can 
be used to characterize graphs. In addition, we introduce a 
graph metric that is tailored to the needs of the complexity 
analysis of protocols. The metric reflects the density or the 
connectivity of nodes, and we offer a rough approximation 
of its value through a power-law. Finally, using our ob- 
servations and metrics, we identify a number of interesting 
relationships between important graph parameters. 

In our work, we want to find metrics or properties that 
quantify topological properties and describe concisely skewed 
data distributions. Previous metrics, such as the average 
outdegree, fail to do so. First, metrics that are based on 
minimum, maximum and average values are not good de- 
scriptors of skewed distributions; they miss a lot of infor- 
mation and probably the “interesting” part that we would 
want to capture. Second, the plots of the previous metrics 
are difficult to quantify, and this makes difficult the com- 
parison of graphs. Ideally, we want to describe a plot or a 
distribution with one number. 
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The frequency of an outdegree, d, is the num- 

The rank of a node, v, is its index in the order 

P(h) The number of pairs of nodes is the total num- 
ber of pairs of nodes within less or equal to 
h hops, including self-pairs, and counting all 
other nairs twice. 

, 
NN(h) 

4 
The average number of nodes in a neighbor- 
hood of h hops. 

x The eigen value of a square matrix A: 3x E 
RN and Ax = Xx. 

i The order of A; in xi 2 AZ.. . 1 AN 

Table 2: Novel definitions and their symbols. 

To express our power-laws, we introduce several graph 
metrics that we show in Table 2. We define frequency, fd, 
of some outdegree, d, to be the number of nodes that have 
this outdegree. If we sort the nodes in decreasing outdegree 
sequence, we define rank, rv, to be the index of the node 
in the sequence, while ties in sorting are broken arbitrarily. 
We define the number of pairs of nodes P(h) to be the total 
number of pairs of nodes within less or equal to h hops, 
including self-pairs, and counting all other pairs twice. The 
use of this metric will become apparent later. We also define 
NN(h) to be the average number of nodes in a neighborhood 
of h hops. Finally, we recall the definition of the eigenvalues 
of a graph, which are the eigenvalues of its adjacency matrix. 

In this section, we use linear regression to fit a line in a 
set of two-dimensional points [18]. The technique is based 
on the least-square errors method. The validity of the ap- 
proximation is indicated by the correlation coefficient which 
is a number between -1.0 and 1.0. For the rest of this paper, 
we use the absolute value of the correlation coefficient, ACC. 
An ACC value of 1.0 indicates perfect linear correlation, i.e., 
the data points are exactly on a line. 

4.1 The rank exponent R 

In this section, we study the outdegrees of the nodes. We 
sort the nodes in decreasing order of outdegree, d,, and plot 
the (rU, d,) pairs in log-log scale. The results are shown 
in Figures 3 and 4. The measured data is represented by 
diamonds, while the solid line represents the Ieaat-squares 
approximation. 

A striking observation is that the plots are approximated 
well by the linear regression. The correlation coefficient is 
higher than 0.974 for the inter-domain graphs and 0.948 for 
the Rout-95 graph. This leads us to the following power-law 
and definition. 

Power-Law 1 (rank exponent) The outdegree, d,, 
of a node v, is proportional to the rank of the node, rv, 
to the power of a constant, R: 

d,, K r? 

Definition 1 Let us sort the nodes of a graph in decreasing 
order of outdegree. We define the rank exponent, R, to be 

the slope of the plot of the outdegrees of the nodes versus the 
rank of the nodes in log-log scale. 

For the three inter-domain instances, the rank exponent, 
R, is -0.81, -0.82 and -0.74 in chronological order as we 
see in Appendix B. The rank exponent of the Rout-95 graph, 
-0.48, is different compared to that of the first three graphs. 
This is something that we expected, given the differences in 
the nature of the graphs. On the other hand, this difference 
suggests that the rank exponent can distinguish graphs of 
different nature, although they both follow Power-Law 1. 
This property can make the rank exponent a powerful metric 
for characterizing families of graphs, see Section 5. 

Intuitively, Power-Law 1 most likely reflects a principle 
of the way domains connect; the linear property observed in 
our four graph instances is unlikely to be a coincidence. The 
power-law seems to capture the equilibrium of the trade- 
off between the gain and the cost of adding an edge from 
a financial and functional point of view, as we discuss in 
Section 5. 

Extended Discussion - Applications. We can esti- 
mate the proportionality constant for Power-Law 1, if we 
require that the minimum outdegree of the graph is one 
(dN = 1). This way, we can refine the power-law as follows. 

Lemma 1 The outdegree, d,, of a node v, is a function of 
the rank of the node, rV and the rank exponent, I?., as follows 

1 
d, = ~a rc 

Proof. The proof can be found in Appendix C. 
Finally, using lemma 1, we relate the number of edges 

with the number of nodes and the rank exponent. 

Lemma 2 The number of edges, E, of a graph can be es- 
timated as a function of the number of nodes, N, and the 
rank exponent, R, as follows: 

EC ’ 
2(7Z+1) (1 - 

Proof. The proof can be found in Appendix C. 
Note that Lemma 2 can give us the number of edges as 

a function of the number of nodes for a given rank expo- 
nent. We tried the lemma in our datasets and the estimated 
number of edges differed by 9% to 20% from the actual num- 
ber of edges. More specifically for the Int-12-98, the lemma 
underestimates the number of edges by 10%. We can get 
a closer estimate (3.6%) by using a simple linear interpola- 
tion in the number of edges given the number of nodes. Note 
that the two prediction mechanisms are different: our lemma 
does not need previous network instances, but it needs to 
know the rank exponent. However, given previous network 
instances, we seem to be better off using the linear inter- 
polation according to the above analysis. We examined the 
sensitivity of our lemma with respect to the value of rank 
exponent. A 5% increase (decrease) in the absolute value of 
the rank exponent increases (decreases) the number of edges 
by 10% for the number of nodes in Int-12-98. 

4.2 The outdegree exponent 0 

In this section, we study the distribution of the outdegree 
of the graphs, and we manage to describe it concisely by a 
single number. Recall that the frequency, fd, of an outde- 
gree, d, is the number of nodes with outdegree d. We plot 
the frequency fd versus the outdegree d in log-log scale in 
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(a) Int-11-97 (b) Int-04-98 

Figure 3: The rank plots. Log-log plot of the outdegree d, versus the rank ru in the sequence of decreasing outdegree. 

. . '961205.rank" l : 
exp(6.16576) 'x"( -0.74496) - : 

10 

1 10 100 1000 1ooOe 1 10 100 loo0 10000 

(a) Int-12-98 (b) Rout-95 

Figure 4: The rank plots. Log-log plot of the outdegree d, versus the rank r,, in the sequence of decreasing outdegree. 

figures 5 and 6. In these plots, we exclude a small percent- The second striking observation is that the value of the 
age of nodes of higher outdegree that have frequency of one. outdegree exponent is practically constant in our graphs of 
Specifically, we plot the outdegrees starting from one until the inter-domain topology. The exponents are -2.15, -2.16 
we reach an outdegree that has frequency of one. As we saw and -2.2, as shown in Appendix B. It is interesting to note 
earlier, the higher outdegrees are described and captured by that even the Rout-95 graph obeys the same power-law (Fig- 
the rank exponent. In any case, we plot more than 98% of ure 6.b) with an outdegree exponent of -2.48. These facts 
the total number of nodes. The solid lines are the result of suggest that Power-Law 2 describes a fundamenbal property 
the linear regression. of the network. 

The major observation is that the plots are approxi- 
mately linear (see Table 8). The correlation coefficients are 
between 0.968-0.99 for the inter-domain graphs and 0.966 
for the Rout-95. This leads us to the following power-law 
and definition. 

Power-Law 2 (outdegree exponent) 
The frequency, fd, of an outdegree, d, is proportional 
to the outdegree to the power of a constant, C? 

The intuition behind this power-law is .that the distri- 
bution of the outdegree of Internet nodes is not arbitrary. 
The qualitative observation is that lower degrees are more 
frequent. Our power-law manages to quantify this observa- 
tion by a single number, the outdegree exponent. This way, 
we can test the realism of a graph with a simple numeri- 
cal comparison. If a graph does not follow Power-Law 2, 
or if its outdegree exponent is considerably different from 
the real exponents, it probably does not represent a realistic 
topology. 

Definition 2 We define the outdegree exponent, 0, to be 
the slope of the plot of the frequency of the outdegrees versus 
the outdegrees in log-log scale. 

4.3 The hop-plot exponent Yl 

In this section, we quantify the connectivity and distances 
between the Internet nodes in a novel way. We choose to 
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Figure 5: The outdegree plots: Log-log plot of frequency fd versus the outdegree d. 
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Figure 6: The outdegree plots: Log-log plot of frequency fd versus the outdegree d. 

study the size of the neighborhood within some distance, 
instead of the distance itself. Namely, we use the total num- 
ber of pairs of nodes P(h) within h hops, which we define 
as the total number of pairs of nodes within less or equal 
to h hops, including self-pairs, and counting all other pairs 
twice. 

Let us see the intuition behind the number of pairs of 
nodes P(h). For h = 0, we only have the self-pairs: P(0) = 
N. For the diameter of the graph 6, h = 6, we have the self- 
pairs plus all the other possible pairs: P(b) = N*, which is 
the maximum possible number of pairs. For a hypothetical 
ring topology, we have P(h) oc h’, and, for a 2-dimensional 
grid, we have P(h) 0: h*, for h < b. We examine whether 
the number of pairs P(h) for the Internet follows a similar 
power-law. 

In figures 7 and 8, we plot the number of pairs P(h) as a 
function of the number of hops h in log-log scale. The data 
is represented by diamonds, and the dotted horizontal line 
represents the maximum number of pairs, which is iV*. We 
want to describe the plot by a line in least-squares fit, for 
h < 6, shown as a solid line in the plots. We approximate 
the first 4 hops in the inter-domain graphs, and the first 12 
hops in the Rout-95. The correlation coefficients are is 0.98 

for inter-domain graphs and 0.96, for the Rout-95, as we 
see in Appendix B. Unfortunately, four points is a rather 
small number to verify or disprove a linearity hypothesis ex- 
perimentally. However, even this rough approximation has 
several useful applications as we show later in this section. 

Approximation 1 (hop-plot exponent) The to- 
tal number of pairs of nodes, P(h), within h hops, 
is proportional to the number of hops to the power of 

Definition 3 Let us plot the number of pairs of nodes, P(h), 
within h hops uersus the number of hops in log-log scale. For 
h < 6, we define the slope of this plot to be the hop-plot 
exponent,%. 

Observe that the three inter-domain datasets have prac- 
tically equal hop-plot exponents; 4.6,4.7, and 4.86 in chrono- 
logical order, as we see in Appendix B. This shows that the 
hop-plot exponent describes an aspect of the connectivity of 
the graph in a single number. The Rout-95 plot, in fig. 8.b, 
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Figure 7: The hop-plots: Log-log plots of the number of pairs of nodes P(h) within h hops versus the number of hops h. 
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Figure 8: The hop-plots: Log-log plots of the number of pairs of nodes P(h) within h hops versus the number of hops h. 

ham more points, and thus, we can argue for its linearity 
with more confidence. The hop-plot exponent of Rout-95 
is 2.8, which is much different compared to those of the 
inter-domain graphs. This is expected, since the Rout-95 is 
a sparser graph. Recall that for a ring topology, we have 
3t = 1, and, for a 2-dimensional grid, we have ‘H = 2. The 
above observations suggest that the hop-plot exponent can 
distinguish families of graphs efficiently, and thus, it is a 
good metric for characterizing the topology. 

Extended Discussion - Applications. We can refine 
Approximation 1 by calculating its proportionality constant. 
Let us recall the definition of the number of pairs, P(h). 
For h = 1, we consider each edge twice and we have the 
self-pairs, therefore: P(1) = N + 2 E. We demand that 
Approximation 1 satisfies the previous equation as an initial 
condition. 

Lemma 3 The number of pairs within h hops is 

h < 6 
h>b 

where c = N + 2 E to satisfy initial conditions. 

In networks, we often need to reach a target without 
knowing its exact position [7] [l]. In these cases, selecting 
the extent of our broadcast or search is an issue. On the 
one hand, a small broadcast will not reach our target. On 
the other hand, an extended broadcast creates too many 
messages and takes a long time to complete. Ideally, we want 
to know how many hops are required to reach a “sufficiently 
large” part of the network. In our hop-plots, a promising 
solution is the intersection of the two asymptote lines: the 
horizontal one at level N2 and the asymptote with slope ?Y. 
We calculate the intersection point using Lemma 3, and we 
define: 
Definition 4 (effective diameter) Given a graph with iV 
nodes, E edges, and 7-l hop-plot exponent, we define the ef- 
fective diameter, 6,f, as: 

N2 
l&f= - 

( > 

l/N 

N+2E 

Intuitively, the effective diameter can be understood as 
follows: any two nodes are within 6,s hops from each other 
with high probability. We verified the above statement ex- 
perimentally. The effective diameters of our inter-domain 
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Figure 9: Average neighborhood size versus number of hops 
the actual, and estimated size a) using hop-plot exponent, 
b) using the average outdegree for Int-12-98. 

Hops hop-plot avg. outdegree 

1 0.02 1.82 
I 2 I -0.66 I -0.93 I 
I 3 I -0.47 I -0.95 I 
I 4 I 0.17 I -0.93 I 

Table 3: The relative error of the two estimates for the 
average neighborhood size with respect to the real value. 
Negative error means under-estimate. 

graphs was slightly over four. Rounding the effective diam- 
eter to four, approximately 80% of the pairs of nodes are 
within this distance. The ceiling of the effective diameter is 
five, which covers more than 95% of the pairs of nodes. 

An advantage of the effective diameter is that it can be 
calculated easily, when we know N, and ‘U. Recall that we 
can calculate the number of edges from Lemma 2. Given 
that the hop-plot exponent is practically constant, we can 
estimate the effective diameter of future Internet instances 
as we do in Section 5. 

Furthermore, we can estimate the average size of the 
neighborhood, NN(h), within h hops using the number of 
pairs P(h). Recall that P(h) - N is the number of pairs 
without the self-pairs. 

NN(h) = 7 - 1 

Using Equation 1 and Lemma 3, we can estimate the 
average neighborhood size. 

Lemma 4 The average size of the neighborhood, NIV(h), 
within h hops as a function of the hop-plot exponent, ‘fl, 
for h << 6, is 

NIV(h) = + hS - 1 

where c = N + 2 E to satisfy initial conditions. 

The average neighborhood is a commonly used parame- 
ter in the performance of network protocols. Our estimate 
is an improvement over the commonly used estimate that 

uses the average outdegree [26] [7] which we call average- 
outdegree estimate: 

NN’(h) = d (6- l)h-l 

In figure 9, we plot the actual and both estimates of the 
average neighborhood size versus the number of hops for the 
Int-12-98 graph. In Table 3, we show the normalized error 
of each estimate: we calculate the quantity: (p - r)/r where 
p the prediction and T the real value. The results for the 
other inter-domain graphs are similar. The superiority of 
the hop-plot exponent estimate is apparent compared to the 
average-outdegree estimate. The discrepancy of the average- 
outdegree estimate can be explained if we consider that the 
estimate does not comply with the real data; it implicitly 
assumes that the outdegree distribution is uniform. In more 
detail, it assumes that each node in the periphery of the 
neighborhood adds d - 1 new nodes at the next hop. Our 
data shows that the outdegree distribution is highly skewed, 
which explains why the use of the hop-plot estimate gives a 
better approximation. 

The most interesting difference between the two esti- 
mates is qualitative. The previous estimate considers the 
neighborhood size exponential in the number of hops. Our 
estimate considers the neighborhood as an ‘?-l-dimensional 
sphere with radius equal to the number of hops, which is a 
novel way to look at the topology of a network5. Our data 
suggests that the hop-plot exponent-based estimate gives 
a closer approximation compared to the average-outdegree- 
based metric. 

4.4 The eigen exponent & 

In this section, we identify properties of the eigenvalues of 
our Internet graphs. There is a rich literature that proves 
that the eigenvalues of a graph are closely related to many 
basic topological properties such as the diameter, the num- 
ber of edges, the number of spanning trees, the number of 
connected components, and the number of walks of a certain 
length between vertices, as we can see in [8] and [4]. All of 
the above suggest that the eigenvalues intimately relate to 
topological properties of graphs. 

We plot the eigenvalue Xi versus i in log-log scale for the 
first 20 eigenvalues. Recall that i is the order of X; in the 
decreasing sequence of eigenvalues. The results are shown in 
Figure 10 and Figure 11. The eigenvalues are shown as dia- 
monds in the figures, and the solid lines are approximations 
using a least-squares fit. 

Observe that in all graphs, the plots are practically lin- 
ear with a correlation coefficient of 0.99, as we see in Ap- 
pendix B. It is rather unlikely that such a canonical form 
of the eigenvalues is purely coincidental, and we therefore 
conjecture that it constitutes an empirical power-law of the 
Internet topology. 

Power-Law 3 (eigen exponent) TILe eigenvalues, 
A;, of a graph are proportional to the order, i, to the 
power of a constant, E: 

Xi o( i’ 

Definition 5 We define the eigen exponent, E, to be the 
slope of the plot of the sorted eigenvalues versus their order 
in log-log scale. 

5Note that our results focus on relatively small neighborhoods 
compared to the diameter h <( 6. Other experimental studies focus 
on neighborhoods of larger radius [17]. 
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ber of nodes, the number of edges, and the average 
neighborhood size. 

l We propose power-law exponents, instead of averages, 
as an efficient way to describe the highly-skewed graph 
metrics which we examined. 

.4part from their theoretical interest, we showed a num- 
ber of practical applications of our power-laws. First, our 
power-laws can assess the realism of synthetic graphs, and 
enhance the validity of our simulations. Second, they can 
help analyze the average-case behavior of network proto- 
cols. For example, we can estimate the message complexity 
of protocols using our estimate for the neighborhood size. 
Third, the power-laws can help answer “what-if” scenar- 
ios like “what will be the diameter of the Internet, when the 
number of nodes doubles?” ‘( what will be the number of edges 
then?” 

In addition, we decompose and measure the Internet in 
a way that relates to the state-of-the-art graph generation 
models. This decomposition provides measurements that fa- 
cilitate the selection of parameters for the graph generators. 

For the future, we believe that our suggestion to look 
for power-laws will open the floodgates to discovering many 
additional power-laws of the Internet topology. Our opti- 
mism is based on two facts: (a) power-laws are intimately re- 
lated to fractals, chaos and self-similarity [21] and (b) there 
is overwhelming evidence that self-similarity appears in a 
large number of settings, ranging from traffic patterns in 
networks [24], to biological and economical systems [12]. 
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Int-11-97 Int-04-98 Int-12-98 

nodes 3015 3530 4389 
edges 5156 6432 8256 
avg. 3.42 3.65 3.76 
outdegree 
max. 590 745 979 
outdegree 
diameter 9 11 10 
avg. distance 3.76 3.77 3.75 

Table 6: The evolution of the Internet at the inter-domain 
level. 

Int-11-97 Int-04-98 Int-12-98 

#nodes in 50.05 45.05 40.76 
trees (%) 
#trees over 10.12 10.26 9.4 
#nodes (%) 
max depth 3 3 3 
avg. tree size 4.9 4.4 4.3 
core 4.7 4.9 4.9 
outdegree 

Table 7: The evolution of the Internet considering the core 
and the trees. 

A Decomposing the Internet 

We analyze the Internet in a way that suits the graph genera- 
tor models [27]. The measurements we present can facilitate 
the selection of parameters for these generators. 

We study the graphs through their decomposition into 
two components: the tree component that contains all nodes 
that belong exclusively to trees and the core component that 
contains the rest of the nodes including the roots of the 
trees. We measure several parameters from this decomposi- 
tion that are shown in Table 7. These results leads to the 
following observations. 

Approximately half of the nodes are in trees 40-50% 

The number of nodes in trees decreased with time by 
10% means that the Internet becomes more connected 
all around. 

The maximum tree depth is 3, however more than 80% 
of the trees have depth one. 

More than 95% of the tree-nodes have a degree of one. 
This leads to the following interesting observation: if 
we remoue the nodes with outdegree one from the orig- 
inal graph, we practically get the core component. 

These observations can help users select appropriate values 
for the parameters used in various graph generation tech- 
niques [27]. 

1 Exponent 1 Int-11-97 1 Int-04-98 1 Int-12-98 11 Rout-95 1 
rank -0.81 -0.82 -0.74 -0.48 
ACC 0.981 0.979 0.974 0.948 
outdeeree 
ACC um 

-2.15 
0.991 

-2.16 -2.20 I -2.48 
0.979 0.96s 0.966 

hop-plot 4.62 4.71 4.86 2.83 
ACC 0.983 0.981 0.980 0.991 
eigen -0.471 -0.502 -0.487 -0.17 
ACC 0.990 0.989 0.991 0.994 

Table 8: An overview of all the exponents for all our graphs. 
Note that ACC is the absolute value of the correlation coef- 
ficient . 

C The Proofs 

Here we prove the Lemmas we present in our paper. 
Lemma 1. The outdegree, d,, of a node v, is a function 

of the rank of the node, rV and the rank exponent, R, as 
follows 

d, = & rr 
Proof. We can estimate the proportionality constant,C, for 
Power-Law 1, if we require that the outdegree of the N-th 
node is one, dN = 1. 

dN = CN R * 
C = l/N” (2) 

We combine Power-Law 2 with Equation 2, and conclude 
the proof. n 

Lemma 2. The number of edges, E, of a graph can be 
estimated as a function of the number of nodes, N, and the 
rank exponent, R, as follows: 

E= 1 
2 (R+l) (1 - j&i) N 

Proof: The sum of all the outdegrees for all the ranks 
is equal to two times the number of edges, since we count 
each edge twice. 

2E = ed, 

In the last step, above we approximate the summation 
with an integral. Calculating the integral concludes the 
proof. n 

B The Exponents of Our Power-Laws 

We present the exponents of our power-laws in Table 8. 


