
AT91SAM9260
27. Advanced Interrupt Controller (AIC)

27.1 Description
The Advanced Interrupt Controller (AIC) is an 8-level priority, individually maskable, vectored
interrupt controller, providing handling of up to thirty-two interrupt sources. It is designed to sub-
stantially reduce the software and real-time overhead in handling internal and external
interrupts.

The AIC drives the nFIQ (fast interrupt request) and the nIRQ (standard interrupt request) inputs
of an ARM processor. Inputs of the AIC are either internal peripheral interrupts or external inter-
rupts coming from the product's pins.

The 8-level Priority Controller allows the user to define the priority for each interrupt source, thus
permitting higher priority interrupts to be serviced even if a lower priority interrupt is being
treated.

Internal interrupt sources can be programmed to be level sensitive or edge triggered. External
interrupt sources can be programmed to be positive-edge or negative-edge triggered or high-
level or low-level sensitive.

The fast forcing feature redirects any internal or external interrupt source to provide a fast inter-
rupt rather than a normal interrupt.
285
6221H–ATARM–12-Aug-08

27.2 Block Diagram

Figure 27-1. Block Diagram

27.3 Application Block Diagram

Figure 27-2. Description of the Application Block

27.4 AIC Detailed Block Diagram

Figure 27-3. AIC Detailed Block Diagram

AIC

APB

ARM
Processor

FIQ

IRQ0-IRQn

Embedded
PeripheralEE

PeripheralEmbedded
Peripheral

Embedded

Up to
Thirty-two
Sources

nFIQ

nIRQ

Advanced Interrupt Controller

Embedded Peripherals
External Peripherals
(External Interrupts)

Standalone
Applications RTOS Drivers

Hard Real Time Tasks

OS-based Applications

OS Drivers

General OS Interrupt Handler

FIQ

PIO
Controller

Advanced Interrupt Controller

IRQ0-IRQn
PIOIRQ

Embedded
Peripherals

External
Source
Input
Stage

Internal
Source
Input
Stage

Fast
Forcing

Interrupt
Priority

Controller

Fast
Interrupt

Controller

ARM
Processor

nFIQ

nIRQ

Power
Management

Controller

Wake UpUser Interface

APB

Processor
Clock
286
6221H–ATARM–12-Aug-08

AT91SAM9260

AT91SAM9260
27.5 I/O Line Description

27.6 Product Dependencies

27.6.1 I/O Lines
The interrupt signals FIQ and IRQ0 to IRQn are normally multiplexed through the PIO control-
lers. Depending on the features of the PIO controller used in the product, the pins must be
programmed in accordance with their assigned interrupt function. This is not applicable when
the PIO controller used in the product is transparent on the input path.

27.6.2 Power Management
The Advanced Interrupt Controller is continuously clocked. The Power Management Controller
has no effect on the Advanced Interrupt Controller behavior.

The assertion of the Advanced Interrupt Controller outputs, either nIRQ or nFIQ, wakes up the
ARM processor while it is in Idle Mode. The General Interrupt Mask feature enables the AIC to
wake up the processor without asserting the interrupt line of the processor, thus providing syn-
chronization of the processor on an event.

27.6.3 Interrupt Sources
The Interrupt Source 0 is always located at FIQ. If the product does not feature an FIQ pin, the
Interrupt Source 0 cannot be used.

The Interrupt Source 1 is always located at System Interrupt. This is the result of the OR-wiring
of the system peripheral interrupt lines, such as the System Timer, the Real Time Clock, the
Power Management Controller and the Memory Controller. When a system interrupt occurs, the
service routine must first distinguish the cause of the interrupt. This is performed by reading suc-
cessively the status registers of the above mentioned system peripherals.

The interrupt sources 2 to 31 can either be connected to the interrupt outputs of an embedded
user peripheral or to external interrupt lines. The external interrupt lines can be connected
directly, or through the PIO Controller.

The PIO Controllers are considered as user peripherals in the scope of interrupt handling.
Accordingly, the PIO Controller interrupt lines are connected to the Interrupt Sources 2 to 31.

The peripheral identification defined at the product level corresponds to the interrupt source
number (as well as the bit number controlling the clock of the peripheral). Consequently, to sim-
plify the description of the functional operations and the user interface, the interrupt sources are
named FIQ, SYS, and PID2 to PID31.

Table 27-1. I/O Line Description

Pin Name Pin Description Type

FIQ Fast Interrupt Input

IRQ0 - IRQn Interrupt 0 - Interrupt n Input
287
6221H–ATARM–12-Aug-08

27.7 Functional Description

27.7.1 Interrupt Source Control

27.7.1.1 Interrupt Source Mode
The Advanced Interrupt Controller independently programs each interrupt source. The SRC-
TYPE field of the corresponding AIC_SMR (Source Mode Register) selects the interrupt
condition of each source.

The internal interrupt sources wired on the interrupt outputs of the embedded peripherals can be
programmed either in level-sensitive mode or in edge-triggered mode. The active level of the
internal interrupts is not important for the user.

The external interrupt sources can be programmed either in high level-sensitive or low level-sen-
sitive modes, or in positive edge-triggered or negative edge-triggered modes.

27.7.1.2 Interrupt Source Enabling
Each interrupt source, including the FIQ in source 0, can be enabled or disabled by using the
command registers; AIC_IECR (Interrupt Enable Command Register) and AIC_IDCR (Interrupt
Disable Command Register). This set of registers conducts enabling or disabling in one instruc-
tion. The interrupt mask can be read in the AIC_IMR register. A disabled interrupt does not affect
servicing of other interrupts.

27.7.1.3 Interrupt Clearing and Setting
All interrupt sources programmed to be edge-triggered (including the FIQ in source 0) can be
individually set or cleared by writing respectively the AIC_ISCR and AIC_ICCR registers. Clear-
ing or setting interrupt sources programmed in level-sensitive mode has no effect.

The clear operation is perfunctory, as the software must perform an action to reinitialize the
“memorization” circuitry activated when the source is programmed in edge-triggered mode.
However, the set operation is available for auto-test or software debug purposes. It can also be
used to execute an AIC-implementation of a software interrupt.

The AIC features an automatic clear of the current interrupt when the AIC_IVR (Interrupt Vector
Register) is read. Only the interrupt source being detected by the AIC as the current interrupt is
affected by this operation. (See “Priority Controller” on page 291.) The automatic clear reduces
the operations required by the interrupt service routine entry code to reading the AIC_IVR. Note
that the automatic interrupt clear is disabled if the interrupt source has the Fast Forcing feature
enabled as it is considered uniquely as a FIQ source. (For further details, See “Fast Forcing” on
page 295.)

The automatic clear of the interrupt source 0 is performed when AIC_FVR is read.

27.7.1.4 Interrupt Status
For each interrupt, the AIC operation originates in AIC_IPR (Interrupt Pending Register) and its
mask in AIC_IMR (Interrupt Mask Register). AIC_IPR enables the actual activity of the sources,
whether masked or not.

The AIC_ISR register reads the number of the current interrupt (see “Priority Controller” on page
291) and the register AIC_CISR gives an image of the signals nIRQ and nFIQ driven on the
processor.

Each status referred to above can be used to optimize the interrupt handling of the systems.
288
6221H–ATARM–12-Aug-08

AT91SAM9260

AT91SAM9260
27.7.1.5 Internal Interrupt Source Input Stage

Figure 27-4. Internal Interrupt Source Input Stage

27.7.1.6 External Interrupt Source Input Stage

Figure 27-5. External Interrupt Source Input Stage

Edge
Detector

ClearSet

Source i
AIC_IPR

AIC_IMR

AIC_IECR

AIC_IDCR

AIC_ISCR

AIC_ICCR

Fast Interrupt Controller
or
Priority Controller

FF

Level/
Edge

AIC_SMRI

(SRCTYPE)

Edge
Detector

ClearSet

Pos./Neg.

AIC_ISCR

AIC_ICCR

Source i

FF

Level/
Edge

High/Low
AIC_SMRi

SRCTYPE

AIC_IPR

AIC_IMR

AIC_IECR

AIC_IDCR

Fast Interrupt Controller
or
Priority Controller
289
6221H–ATARM–12-Aug-08

27.7.2 Interrupt Latencies
Global interrupt latencies depend on several parameters, including:

• The time the software masks the interrupts.

• Occurrence, either at the processor level or at the AIC level.

• The execution time of the instruction in progress when the interrupt occurs.

• The treatment of higher priority interrupts and the resynchronization of the hardware signals.

This section addresses only the hardware resynchronizations. It gives details of the latency
times between the event on an external interrupt leading in a valid interrupt (edge or level) or the
assertion of an internal interrupt source and the assertion of the nIRQ or nFIQ line on the pro-
cessor. The resynchronization time depends on the programming of the interrupt source and on
its type (internal or external). For the standard interrupt, resynchronization times are given
assuming there is no higher priority in progress.

The PIO Controller multiplexing has no effect on the interrupt latencies of the external interrupt
sources.

27.7.2.1 External Interrupt Edge Triggered Source

Figure 27-6. External Interrupt Edge Triggered Source

27.7.2.2 External Interrupt Level Sensitive Source

Figure 27-7. External Interrupt Level Sensitive Source

Maximum FIQ Latency = 4 Cycles

Maximum IRQ Latency = 4 Cycles

nFIQ

nIRQ

MCK

IRQ or FIQ
(Positive Edge)

IRQ or FIQ
(Negative Edge)

Maximum IRQ
Latency = 3 Cycles

Maximum FIQ
Latency = 3 cycles

MCK

IRQ or FIQ
(High Level)

IRQ or FIQ
(Low Level)

nIRQ

nFIQ
290
6221H–ATARM–12-Aug-08

AT91SAM9260

AT91SAM9260
27.7.2.3 Internal Interrupt Edge Triggered Source

Figure 27-8. Internal Interrupt Edge Triggered Source

27.7.2.4 Internal Interrupt Level Sensitive Source

Figure 27-9. Internal Interrupt Level Sensitive Source

27.7.3 Normal Interrupt

27.7.3.1 Priority Controller
An 8-level priority controller drives the nIRQ line of the processor, depending on the interrupt
conditions occurring on the interrupt sources 1 to 31 (except for those programmed in Fast
Forcing).

Each interrupt source has a programmable priority level of 7 to 0, which is user-definable by writ-
ing the PRIOR field of the corresponding AIC_SMR (Source Mode Register). Level 7 is the
highest priority and level 0 the lowest.

As soon as an interrupt condition occurs, as defined by the SRCTYPE field of the AIC_SMR
(Source Mode Register), the nIRQ line is asserted. As a new interrupt condition might have hap-
pened on other interrupt sources since the nIRQ has been asserted, the priority controller
determines the current interrupt at the time the AIC_IVR (Interrupt Vector Register) is read. The
read of AIC_IVR is the entry point of the interrupt handling which allows the AIC to consider
that the interrupt has been taken into account by the software.

The current priority level is defined as the priority level of the current interrupt.

If several interrupt sources of equal priority are pending and enabled when the AIC_IVR is read,
the interrupt with the lowest interrupt source number is serviced first.

MCK

nIRQ

Peripheral Interrupt
Becomes Active

Maximum IRQ Latency = 4.5 Cycles

MCK

nIRQ

Maximum IRQ Latency = 3.5 Cycles

Peripheral Interrupt
Becomes Active
291
6221H–ATARM–12-Aug-08

The nIRQ line can be asserted only if an interrupt condition occurs on an interrupt source with a
higher priority. If an interrupt condition happens (or is pending) during the interrupt treatment in
progress, it is delayed until the software indicates to the AIC the end of the current service by
writing the AIC_EOICR (End of Interrupt Command Register). The write of AIC_EOICR is the
exit point of the interrupt handling.

27.7.3.2 Interrupt Nesting
The priority controller utilizes interrupt nesting in order for the high priority interrupt to be handled
during the service of lower priority interrupts. This requires the interrupt service routines of the
lower interrupts to re-enable the interrupt at the processor level.

When an interrupt of a higher priority happens during an already occurring interrupt service rou-
tine, the nIRQ line is re-asserted. If the interrupt is enabled at the core level, the current
execution is interrupted and the new interrupt service routine should read the AIC_IVR. At this
time, the current interrupt number and its priority level are pushed into an embedded hardware
stack, so that they are saved and restored when the higher priority interrupt servicing is finished
and the AIC_EOICR is written.

The AIC is equipped with an 8-level wide hardware stack in order to support up to eight interrupt
nestings pursuant to having eight priority levels.

27.7.3.3 Interrupt Vectoring
The interrupt handler addresses corresponding to each interrupt source can be stored in the reg-
isters AIC_SVR1 to AIC_SVR31 (Source Vector Register 1 to 31). When the processor reads
AIC_IVR (Interrupt Vector Register), the value written into AIC_SVR corresponding to the cur-
rent interrupt is returned.

This feature offers a way to branch in one single instruction to the handler corresponding to the
current interrupt, as AIC_IVR is mapped at the absolute address 0xFFFF F100 and thus acces-
sible from the ARM interrupt vector at address 0x0000 0018 through the following instruction:

LDR PC,[PC,# -&F20]

When the processor executes this instruction, it loads the read value in AIC_IVR in its program
counter, thus branching the execution on the correct interrupt handler.

This feature is often not used when the application is based on an operating system (either real
time or not). Operating systems often have a single entry point for all the interrupts and the first
task performed is to discern the source of the interrupt.

However, it is strongly recommended to port the operating system on AT91 products by support-
ing the interrupt vectoring. This can be performed by defining all the AIC_SVR of the interrupt
source to be handled by the operating system at the address of its interrupt handler. When doing
so, the interrupt vectoring permits a critical interrupt to transfer the execution on a specific very
fast handler and not onto the operating system’s general interrupt handler. This facilitates the
support of hard real-time tasks (input/outputs of voice/audio buffers and software peripheral han-
dling) to be handled efficiently and independently of the application running under an operating
system.

27.7.3.4 Interrupt Handlers
This section gives an overview of the fast interrupt handling sequence when using the AIC. It is
assumed that the programmer understands the architecture of the ARM processor, and espe-
cially the processor interrupt modes and the associated status bits.
292
6221H–ATARM–12-Aug-08

AT91SAM9260

AT91SAM9260
It is assumed that:

1. The Advanced Interrupt Controller has been programmed, AIC_SVR registers are
loaded with corresponding interrupt service routine addresses and interrupts are
enabled.

2. The instruction at the ARM interrupt exception vector address is required to work with
the vectoring

LDR PC, [PC, # -&F20]

When nIRQ is asserted, if the bit “I” of CPSR is 0, the sequence is as follows:

1. The CPSR is stored in SPSR_irq, the current value of the Program Counter is loaded in
the Interrupt link register (R14_irq) and the Program Counter (R15) is loaded with 0x18.
In the following cycle during fetch at address 0x1C, the ARM core adjusts R14_irq, dec-
rementing it by four.

2. The ARM core enters Interrupt mode, if it has not already done so.

3. When the instruction loaded at address 0x18 is executed, the program counter is
loaded with the value read in AIC_IVR. Reading the AIC_IVR has the following effects:

– Sets the current interrupt to be the pending and enabled interrupt with the highest
priority. The current level is the priority level of the current interrupt.

– De-asserts the nIRQ line on the processor. Even if vectoring is not used, AIC_IVR
must be read in order to de-assert nIRQ.

– Automatically clears the interrupt, if it has been programmed to be edge-triggered.

– Pushes the current level and the current interrupt number on to the stack.

– Returns the value written in the AIC_SVR corresponding to the current interrupt.

4. The previous step has the effect of branching to the corresponding interrupt service
routine. This should start by saving the link register (R14_irq) and SPSR_IRQ. The link
register must be decremented by four when it is saved if it is to be restored directly into
the program counter at the end of the interrupt. For example, the instruction SUB PC,
LR, #4 may be used.

5. Further interrupts can then be unmasked by clearing the “I” bit in CPSR, allowing re-
assertion of the nIRQ to be taken into account by the core. This can happen if an inter-
rupt with a higher priority than the current interrupt occurs.

6. The interrupt handler can then proceed as required, saving the registers that will be
used and restoring them at the end. During this phase, an interrupt of higher priority
than the current level will restart the sequence from step 1.

Note: If the interrupt is programmed to be level sensitive, the source of the interrupt must be cleared dur-
ing this phase.

7. The “I” bit in CPSR must be set in order to mask interrupts before exiting to ensure that
the interrupt is completed in an orderly manner.

8. The End of Interrupt Command Register (AIC_EOICR) must be written in order to indi-
cate to the AIC that the current interrupt is finished. This causes the current level to be
popped from the stack, restoring the previous current level if one exists on the stack. If
another interrupt is pending, with lower or equal priority than the old current level but
with higher priority than the new current level, the nIRQ line is re-asserted, but the inter-
rupt sequence does not immediately start because the “I” bit is set in the core.
SPSR_irq is restored. Finally, the saved value of the link register is restored directly into
the PC. This has the effect of returning from the interrupt to whatever was being exe-
293
6221H–ATARM–12-Aug-08

cuted before, and of loading the CPSR with the stored SPSR, masking or unmasking
the interrupts depending on the state saved in SPSR_irq.

Note: The “I” bit in SPSR is significant. If it is set, it indicates that the ARM core was on the verge of
masking an interrupt when the mask instruction was interrupted. Hence, when SPSR is restored,
the mask instruction is completed (interrupt is masked).

27.7.4 Fast Interrupt

27.7.4.1 Fast Interrupt Source
The interrupt source 0 is the only source which can raise a fast interrupt request to the processor
except if fast forcing is used. The interrupt source 0 is generally connected to a FIQ pin of the
product, either directly or through a PIO Controller.

27.7.4.2 Fast Interrupt Control
The fast interrupt logic of the AIC has no priority controller. The mode of interrupt source 0 is
programmed with the AIC_SMR0 and the field PRIOR of this register is not used even if it reads
what has been written. The field SRCTYPE of AIC_SMR0 enables programming the fast inter-
rupt source to be positive-edge triggered or negative-edge triggered or high-level sensitive or
low-level sensitive

Writing 0x1 in the AIC_IECR (Interrupt Enable Command Register) and AIC_IDCR (Interrupt
Disable Command Register) respectively enables and disables the fast interrupt. The bit 0 of
AIC_IMR (Interrupt Mask Register) indicates whether the fast interrupt is enabled or disabled.

27.7.4.3 Fast Interrupt Vectoring
The fast interrupt handler address can be stored in AIC_SVR0 (Source Vector Register 0). The
value written into this register is returned when the processor reads AIC_FVR (Fast Vector Reg-
ister). This offers a way to branch in one single instruction to the interrupt handler, as AIC_FVR
is mapped at the absolute address 0xFFFF F104 and thus accessible from the ARM fast inter-
rupt vector at address 0x0000 001C through the following instruction:

LDR PC,[PC,# -&F20]

When the processor executes this instruction it loads the value read in AIC_FVR in its program
counter, thus branching the execution on the fast interrupt handler. It also automatically per-
forms the clear of the fast interrupt source if it is programmed in edge-triggered mode.

27.7.4.4 Fast Interrupt Handlers
This section gives an overview of the fast interrupt handling sequence when using the AIC. It is
assumed that the programmer understands the architecture of the ARM processor, and espe-
cially the processor interrupt modes and associated status bits.

Assuming that:

1. The Advanced Interrupt Controller has been programmed, AIC_SVR0 is loaded with
the fast interrupt service routine address, and the interrupt source 0 is enabled.

2. The Instruction at address 0x1C (FIQ exception vector address) is required to vector
the fast interrupt:

LDR PC, [PC, # -&F20]

3. The user does not need nested fast interrupts.

When nFIQ is asserted, if the bit “F” of CPSR is 0, the sequence is:
294
6221H–ATARM–12-Aug-08

AT91SAM9260

AT91SAM9260
1. The CPSR is stored in SPSR_fiq, the current value of the program counter is loaded in
the FIQ link register (R14_FIQ) and the program counter (R15) is loaded with 0x1C. In
the following cycle, during fetch at address 0x20, the ARM core adjusts R14_fiq, decre-
menting it by four.

2. The ARM core enters FIQ mode.

3. When the instruction loaded at address 0x1C is executed, the program counter is
loaded with the value read in AIC_FVR. Reading the AIC_FVR has effect of automati-
cally clearing the fast interrupt, if it has been programmed to be edge triggered. In this
case only, it de-asserts the nFIQ line on the processor.

4. The previous step enables branching to the corresponding interrupt service routine. It is
not necessary to save the link register R14_fiq and SPSR_fiq if nested fast interrupts
are not needed.

5. The Interrupt Handler can then proceed as required. It is not necessary to save regis-
ters R8 to R13 because FIQ mode has its own dedicated registers and the user R8 to
R13 are banked. The other registers, R0 to R7, must be saved before being used, and
restored at the end (before the next step). Note that if the fast interrupt is programmed
to be level sensitive, the source of the interrupt must be cleared during this phase in
order to de-assert the interrupt source 0.

6. Finally, the Link Register R14_fiq is restored into the PC after decrementing it by four
(with instruction SUB PC, LR, #4 for example). This has the effect of returning from
the interrupt to whatever was being executed before, loading the CPSR with the SPSR
and masking or unmasking the fast interrupt depending on the state saved in the
SPSR.

Note: The “F” bit in SPSR is significant. If it is set, it indicates that the ARM core was just about to mask
FIQ interrupts when the mask instruction was interrupted. Hence when the SPSR is restored, the
interrupted instruction is completed (FIQ is masked).

Another way to handle the fast interrupt is to map the interrupt service routine at the address of
the ARM vector 0x1C. This method does not use the vectoring, so that reading AIC_FVR must
be performed at the very beginning of the handler operation. However, this method saves the
execution of a branch instruction.

27.7.4.5 Fast Forcing
The Fast Forcing feature of the advanced interrupt controller provides redirection of any normal
Interrupt source on the fast interrupt controller.

Fast Forcing is enabled or disabled by writing to the Fast Forcing Enable Register (AIC_FFER)
and the Fast Forcing Disable Register (AIC_FFDR). Writing to these registers results in an
update of the Fast Forcing Status Register (AIC_FFSR) that controls the feature for each inter-
nal or external interrupt source.

When Fast Forcing is disabled, the interrupt sources are handled as described in the previous
pages.

When Fast Forcing is enabled, the edge/level programming and, in certain cases, edge detec-
tion of the interrupt source is still active but the source cannot trigger a normal interrupt to the
processor and is not seen by the priority handler.

If the interrupt source is programmed in level-sensitive mode and an active level is sampled,
Fast Forcing results in the assertion of the nFIQ line to the core.

If the interrupt source is programmed in edge-triggered mode and an active edge is detected,
Fast Forcing results in the assertion of the nFIQ line to the core.
295
6221H–ATARM–12-Aug-08

The Fast Forcing feature does not affect the Source 0 pending bit in the Interrupt Pending Reg-
ister (AIC_IPR).

The FIQ Vector Register (AIC_FVR) reads the contents of the Source Vector Register 0
(AIC_SVR0), whatever the source of the fast interrupt may be. The read of the FVR does not
clear the Source 0 when the fast forcing feature is used and the interrupt source should be
cleared by writing to the Interrupt Clear Command Register (AIC_ICCR).

All enabled and pending interrupt sources that have the fast forcing feature enabled and that are
programmed in edge-triggered mode must be cleared by writing to the Interrupt Clear Command
Register. In doing so, they are cleared independently and thus lost interrupts are prevented.

The read of AIC_IVR does not clear the source that has the fast forcing feature enabled.

The source 0, reserved to the fast interrupt, continues operating normally and becomes one of
the Fast Interrupt sources.

Figure 27-10. Fast Forcing

27.7.5 Protect Mode
The Protect Mode permits reading the Interrupt Vector Register without performing the associ-
ated automatic operations. This is necessary when working with a debug system. When a
debugger, working either with a Debug Monitor or the ARM processor's ICE, stops the applica-
tions and updates the opened windows, it might read the AIC User Interface and thus the IVR.
This has undesirable consequences:

• If an enabled interrupt with a higher priority than the current one is pending, it is stacked.

• If there is no enabled pending interrupt, the spurious vector is returned.

In either case, an End of Interrupt command is necessary to acknowledge and to restore the
context of the AIC. This operation is generally not performed by the debug system as the debug
system would become strongly intrusive and cause the application to enter an undesired state.

This is avoided by using the Protect Mode. Writing DBGM in AIC_DCR (Debug Control Register)
at 0x1 enables the Protect Mode.

When the Protect Mode is enabled, the AIC performs interrupt stacking only when a write access
is performed on the AIC_IVR. Therefore, the Interrupt Service Routines must write (arbitrary
data) to the AIC_IVR just after reading it. The new context of the AIC, including the value of the

Source 0 _ FIQ

Input Stage

Automatic Clear

Input Stage

Automatic Clear

Source n

AIC_IPR

AIC_IMR

AIC_FFSR

AIC_IPR

AIC_IMR

Priority
Manager

nFIQ

nIRQ

Read IVR if Source n is the current interrupt
and if Fast Forcing is disabled on Source n.

Read FVR if Fast Forcing is
disabled on Sources 1 to 31.
296
6221H–ATARM–12-Aug-08

AT91SAM9260

AT91SAM9260
Interrupt Status Register (AIC_ISR), is updated with the current interrupt only when AIC_IVR is
written.

An AIC_IVR read on its own (e.g., by a debugger), modifies neither the AIC context nor the
AIC_ISR. Extra AIC_IVR reads perform the same operations. However, it is recommended to
not stop the processor between the read and the write of AIC_IVR of the interrupt service routine
to make sure the debugger does not modify the AIC context.

To summarize, in normal operating mode, the read of AIC_IVR performs the following opera-
tions within the AIC:

1. Calculates active interrupt (higher than current or spurious).

2. Determines and returns the vector of the active interrupt.

3. Memorizes the interrupt.

4. Pushes the current priority level onto the internal stack.

5. Acknowledges the interrupt.

However, while the Protect Mode is activated, only operations 1 to 3 are performed when
AIC_IVR is read. Operations 4 and 5 are only performed by the AIC when AIC_IVR is written.

Software that has been written and debugged using the Protect Mode runs correctly in Normal
Mode without modification. However, in Normal Mode the AIC_IVR write has no effect and can
be removed to optimize the code.

27.7.6 Spurious Interrupt
The Advanced Interrupt Controller features protection against spurious interrupts. A spurious
interrupt is defined as being the assertion of an interrupt source long enough for the AIC to
assert the nIRQ, but no longer present when AIC_IVR is read. This is most prone to occur when:

• An external interrupt source is programmed in level-sensitive mode and an active level occurs
for only a short time.

• An internal interrupt source is programmed in level sensitive and the output signal of the
corresponding embedded peripheral is activated for a short time. (As in the case for the
Watchdog.)

• An interrupt occurs just a few cycles before the software begins to mask it, thus resulting in a
pulse on the interrupt source.

The AIC detects a spurious interrupt at the time the AIC_IVR is read while no enabled interrupt
source is pending. When this happens, the AIC returns the value stored by the programmer in
AIC_SPU (Spurious Vector Register). The programmer must store the address of a spurious
interrupt handler in AIC_SPU as part of the application, to enable an as fast as possible return to
the normal execution flow. This handler writes in AIC_EOICR and performs a return from
interrupt.

27.7.7 General Interrupt Mask
The AIC features a General Interrupt Mask bit to prevent interrupts from reaching the processor.
Both the nIRQ and the nFIQ lines are driven to their inactive state if the bit GMSK in AIC_DCR
(Debug Control Register) is set. However, this mask does not prevent waking up the processor if
it has entered Idle Mode. This function facilitates synchronizing the processor on a next event
and, as soon as the event occurs, performs subsequent operations without having to handle an
interrupt. It is strongly recommended to use this mask with caution.
297
6221H–ATARM–12-Aug-08

27.8 Advanced Interrupt Controller (AIC) User Interface

27.8.1 Base Address
The AIC is mapped at the address 0xFFFF F000. It has a total 4-Kbyte addressing space. This
permits the vectoring feature, as the PC-relative load/store instructions of the ARM processor
support only a ± 4-Kbyte offset.

27.8.2 Register Mapping

Notes: 1. The reset value of this register depends on the level of the external interrupt source. All other sources are cleared at reset,
thus not pending.

2. PID2...PID31 bit fields refer to the identifiers as defined in the Peripheral Identifiers Section of the product datasheet.

Table 27-2. Register Mapping

Offset Register Name Access Reset

0000 Source Mode Register 0 AIC_SMR0 Read-write 0x0

0x04 Source Mode Register 1 AIC_SMR1 Read-write 0x0

...

0x7C Source Mode Register 31 AIC_SMR31 Read-write 0x0

0x80 Source Vector Register 0 AIC_SVR0 Read-write 0x0

0x84 Source Vector Register 1 AIC_SVR1 Read-write 0x0

...

0xFC Source Vector Register 31 AIC_SVR31 Read-write 0x0

0x100 Interrupt Vector Register AIC_IVR Read-only 0x0

0x104 FIQ Interrupt Vector Register AIC_FVR Read-only 0x0

0x108 Interrupt Status Register AIC_ISR Read-only 0x0

0x10C Interrupt Pending Register(2) AIC_IPR Read-only 0x0(1)

0x110 Interrupt Mask Register(2) AIC_IMR Read-only 0x0

0x114 Core Interrupt Status Register AIC_CISR Read-only 0x0

0x118 Reserved

0x11C Reserved

0x120 Interrupt Enable Command Register(2) AIC_IECR Write-only ...

0x124 Interrupt Disable Command Register(2) AIC_IDCR Write-only ...

0x128 Interrupt Clear Command Register(2) AIC_ICCR Write-only ...

0x12C Interrupt Set Command Register(2) AIC_ISCR Write-only ...

0x130 End of Interrupt Command Register AIC_EOICR Write-only ...

0x134 Spurious Interrupt Vector Register AIC_SPU Read-write 0x0

0x138 Debug Control Register AIC_DCR Read-write 0x0

0x13C Reserved

0x140 Fast Forcing Enable Register(2) AIC_FFER Write-only ...

0x144 Fast Forcing Disable Register(2) AIC_FFDR Write-only ...

0x148 Fast Forcing Status Register(2) AIC_FFSR Read-only 0x0
298
6221H–ATARM–12-Aug-08

AT91SAM9260

AT91SAM9260
27.8.3 AIC Source Mode Register
Register Name: AIC_SMR0..AIC_SMR31

Access Type: Read-write

Reset Value: 0x0

• PRIOR: Priority Level
Programs the priority level for all sources except FIQ source (source 0).

The priority level can be between 0 (lowest) and 7 (highest).

The priority level is not used for the FIQ in the related SMR register AIC_SMRx.

• SRCTYPE: Interrupt Source Type
The active level or edge is not programmable for the internal interrupt sources.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– SRCTYPE – – PRIOR

SRCTYPE Internal Interrupt Sources External Interrupt Sources

0 0 High level Sensitive Low level Sensitive

0 1 Positive edge triggered Negative edge triggered

1 0 High level Sensitive High level Sensitive

1 1 Positive edge triggered Positive edge triggered
299
6221H–ATARM–12-Aug-08

27.8.4 AIC Source Vector Register
Register Name: AIC_SVR0..AIC_SVR31

Access Type: Read-write

Reset Value: 0x0

• VECTOR: Source Vector
The user may store in these registers the addresses of the corresponding handler for each interrupt source.

27.8.5 AIC Interrupt Vector Register
Register Name: AIC_IVR

Access Type: Read-only

Reset Value: 0x0

• IRQV: Interrupt Vector Register
The Interrupt Vector Register contains the vector programmed by the user in the Source Vector Register corresponding to
the current interrupt.

The Source Vector Register is indexed using the current interrupt number when the Interrupt Vector Register is read.

When there is no current interrupt, the Interrupt Vector Register reads the value stored in AIC_SPU.

31 30 29 28 27 26 25 24

VECTOR

23 22 21 20 19 18 17 16

VECTOR

15 14 13 12 11 10 9 8

VECTOR

7 6 5 4 3 2 1 0

VECTOR

31 30 29 28 27 26 25 24

IRQV

23 22 21 20 19 18 17 16

IRQV

15 14 13 12 11 10 9 8

IRQV

7 6 5 4 3 2 1 0

IRQV
300
6221H–ATARM–12-Aug-08

AT91SAM9260

AT91SAM9260
27.8.6 AIC FIQ Vector Register

Register Name: AIC_FVR

Access Type: Read-only

Reset Value: 0x0

• FIQV: FIQ Vector Register
The FIQ Vector Register contains the vector programmed by the user in the Source Vector Register 0. When there is no
fast interrupt, the FIQ Vector Register reads the value stored in AIC_SPU.

27.8.7 AIC Interrupt Status Register
Register Name: AIC_ISR

Access Type: Read-only

Reset Value: 0x0

• IRQID: Current Interrupt Identifier
The Interrupt Status Register returns the current interrupt source number.

31 30 29 28 27 26 25 24

FIQV

23 22 21 20 19 18 17 16

FIQV

15 14 13 12 11 10 9 8

FIQV

7 6 5 4 3 2 1 0

FIQV

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – IRQID
301
6221H–ATARM–12-Aug-08

27.8.8 AIC Interrupt Pending Register
Register Name: AIC_IPR

Access Type: Read-only

Reset Value: 0x0

• FIQ, SYS, PID2-PID31: Interrupt Pending
0 = Corresponding interrupt is not pending.

1 = Corresponding interrupt is pending.

27.8.9 AIC Interrupt Mask Register
Register Name: AIC_IMR

Access Type: Read-only

Reset Value: 0x0

• FIQ, SYS, PID2-PID31: Interrupt Mask
0 = Corresponding interrupt is disabled.

1 = Corresponding interrupt is enabled.

31 30 29 28 27 26 25 24

PID31 PID30 PID29 PID28 PID27 PID26 PID25 PID24

23 22 21 20 19 18 17 16

PID23 PID22 PID21 PID20 PID19 PID18 PID17 PID16

15 14 13 12 11 10 9 8

PID15 PID14 PID13 PID12 PID11 PID10 PID9 PID8

7 6 5 4 3 2 1 0

PID7 PID6 PID5 PID4 PID3 PID2 SYS FIQ

31 30 29 28 27 26 25 24

PID31 PID30 PID29 PID28 PID27 PID26 PID25 PID24

23 22 21 20 19 18 17 16

PID23 PID22 PID21 PID20 PID19 PID18 PID17 PID16

15 14 13 12 11 10 9 8

PID15 PID14 PID13 PID12 PID11 PID10 PID9 PID8

7 6 5 4 3 2 1 0

PID7 PID6 PID5 PID4 PID3 PID2 SYS FIQ
302
6221H–ATARM–12-Aug-08

AT91SAM9260

AT91SAM9260
27.8.10 AIC Core Interrupt Status Register
Register Name: AIC_CISR

Access Type: Read-only

Reset Value: 0x0

• NFIQ: NFIQ Status
0 = nFIQ line is deactivated.

1 = nFIQ line is active.

• NIRQ: NIRQ Status
0 = nIRQ line is deactivated.

1 = nIRQ line is active.

27.8.11 AIC Interrupt Enable Command Register
Register Name: AIC_IECR

Access Type: Write-only

• FIQ, SYS, PID2-PID31: Interrupt Enable
0 = No effect.

1 = Enables corresponding interrupt.

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – NIRQ NIFQ

31 30 29 28 27 26 25 24

PID31 PID30 PID29 PID28 PID27 PID26 PID25 PID24

23 22 21 20 19 18 17 16

PID23 PID22 PID21 PID20 PID19 PID18 PID17 PID16

15 14 13 12 11 10 9 8

PID15 PID14 PID13 PID12 PID11 PID10 PID9 PID8

7 6 5 4 3 2 1 0

PID7 PID6 PID5 PID4 PID3 PID2 SYS FIQ
303
6221H–ATARM–12-Aug-08

27.8.12 AIC Interrupt Disable Command Register
Register Name: AIC_IDCR

Access Type: Write-only

• FIQ, SYS, PID2-PID31: Interrupt Disable
0 = No effect.

1 = Disables corresponding interrupt.

27.8.13 AIC Interrupt Clear Command Register
Register Name: AIC_ICCR

Access Type: Write-only

• FIQ, SYS, PID2-PID31: Interrupt Clear
0 = No effect.

1 = Clears corresponding interrupt.

31 30 29 28 27 26 25 24

PID31 PID30 PID29 PID28 PID27 PID26 PID25 PID24

23 22 21 20 19 18 17 16

PID23 PID22 PID21 PID20 PID19 PID18 PID17 PID16

15 14 13 12 11 10 9 8

PID15 PID14 PID13 PID12 PID11 PID10 PID9 PID8

7 6 5 4 3 2 1 0

PID7 PID6 PID5 PID4 PID3 PID2 SYS FIQ

31 30 29 28 27 26 25 24

PID31 PID30 PID29 PID28 PID27 PID26 PID25 PID24

23 22 21 20 19 18 17 16

PID23 PID22 PID21 PID20 PID19 PID18 PID17 PID16

15 14 13 12 11 10 9 8

PID15 PID14 PID13 PID12 PID11 PID10 PID9 PID8

7 6 5 4 3 2 1 0

PID7 PID6 PID5 PID4 PID3 PID2 SYS FIQ
304
6221H–ATARM–12-Aug-08

AT91SAM9260

AT91SAM9260
27.8.14 AIC Interrupt Set Command Register
Register Name: AIC_ISCR

Access Type: Write-only

• FIQ, SYS, PID2-PID31: Interrupt Set
0 = No effect.

1 = Sets corresponding interrupt.

27.8.15 AIC End of Interrupt Command Register
Register Name: AIC_EOICR

Access Type: Write-only

The End of Interrupt Command Register is used by the interrupt routine to indicate that the interrupt treatment is complete.
Any value can be written because it is only necessary to make a write to this register location to signal the end of interrupt
treatment.

31 30 29 28 27 26 25 24

PID31 PID30 PID29 PID28 PID27 PID26 PID25 PID24

23 22 21 20 19 18 17 16

PID23 PID22 PID21 PID20 PID19 PID18 PID17 PID16

15 14 13 12 11 10 9 8

PID15 PID14 PID13 PID12 PID11 PID10 PID9 PID8

7 6 5 4 3 2 1 0

PID7 PID6 PID5 PID4 PID3 PID2 SYS FIQ

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – – –
305
6221H–ATARM–12-Aug-08

27.8.16 AIC Spurious Interrupt Vector Register
Register Name: AIC_SPU

Access Type: Read-write

Reset Value: 0x0

• SIQV: Spurious Interrupt Vector Register
The user may store the address of a spurious interrupt handler in this register. The written value is returned in AIC_IVR in
case of a spurious interrupt and in AIC_FVR in case of a spurious fast interrupt.

27.8.17 AIC Debug Control Register
Register Name: AIC_DCR

Access Type: Read-write

Reset Value: 0x0

• PROT: Protection Mode
0 = The Protection Mode is disabled.

1 = The Protection Mode is enabled.

• GMSK: General Mask
0 = The nIRQ and nFIQ lines are normally controlled by the AIC.

1 = The nIRQ and nFIQ lines are tied to their inactive state.

31 30 29 28 27 26 25 24

SIQV

23 22 21 20 19 18 17 16

SIQV

15 14 13 12 11 10 9 8

SIQV

7 6 5 4 3 2 1 0

SIQV

31 30 29 28 27 26 25 24

– – – – – – – –

23 22 21 20 19 18 17 16

– – – – – – – –

15 14 13 12 11 10 9 8

– – – – – – – –

7 6 5 4 3 2 1 0

– – – – – – GMSK PROT
306
6221H–ATARM–12-Aug-08

AT91SAM9260

AT91SAM9260
27.8.18 AIC Fast Forcing Enable Register
Register Name: AIC_FFER

Access Type: Write-only

• SYS, PID2-PID31: Fast Forcing Enable
0 = No effect.

1 = Enables the fast forcing feature on the corresponding interrupt.

27.8.19 AIC Fast Forcing Disable Register
Register Name: AIC_FFDR

Access Type: Write-only

• SYS, PID2-PID31: Fast Forcing Disable
0 = No effect.

1 = Disables the Fast Forcing feature on the corresponding interrupt.

31 30 29 28 27 26 25 24

PID31 PID30 PID29 PID28 PID27 PID26 PID25 PID24

23 22 21 20 19 18 17 16

PID23 PID22 PID21 PID20 PID19 PID18 PID17 PID16

15 14 13 12 11 10 9 8

PID15 PID14 PID13 PID12 PID11 PID10 PID9 PID8

7 6 5 4 3 2 1 0

PID7 PID6 PID5 PID4 PID3 PID2 SYS –

31 30 29 28 27 26 25 24

PID31 PID30 PID29 PID28 PID27 PID26 PID25 PID24

23 22 21 20 19 18 17 16

PID23 PID22 PID21 PID20 PID19 PID18 PID17 PID16

15 14 13 12 11 10 9 8

PID15 PID14 PID13 PID12 PID11 PID10 PID9 PID8

7 6 5 4 3 2 1 0

PID7 PID6 PID5 PID4 PID3 PID2 SYS –
307
6221H–ATARM–12-Aug-08

AT91SAM9260
27.8.20 AIC Fast Forcing Status Register
Register Name: AIC_FFSR

Access Type: Read-only

• SYS, PID2-PID31: Fast Forcing Status
0 = The Fast Forcing feature is disabled on the corresponding interrupt.

1 = The Fast Forcing feature is enabled on the corresponding interrupt.

31 30 29 28 27 26 25 24

PID31 PID30 PID29 PID28 PID27 PID26 PID25 PID24

23 22 21 20 19 18 17 16

PID23 PID22 PID21 PID20 PID19 PID18 PID17 PID16

15 14 13 12 11 10 9 8

PID15 PID14 PID13 PID12 PID11 PID10 PID9 PID8

7 6 5 4 3 2 1 0

PID7 PID6 PID5 PID4 PID3 PID2 SYS –
308
6221H–ATARM–12-Aug-08

