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Abstract

Sorting networks are an interesting class of parallel sorting algorithms with applications in multi-

processor computers and switching networks. They are built by cascading a series of comparison-

exchange units called comparators. Minimizing the number of comparators for a given number of

inputs is a challenging optimization problem. This paper presents a two-pronged approach called

Symmetry and Evolution based Network Sort Optimization (SENSO) that makes it possible to scale

the solutions to networks with a larger number of inputs than previously possible. First, it uses the

symmetry of the problem to decompose the minimization goal into subgoals that are easier to solve.

Second, it minimizes the resulting greedy solutions further by using an evolutionary algorithm to

learn the statistical distribution of comparators in minimal networks. The final solutions improve

upon half-century of results published in patents, books, and peer-reviewed literature, demonstrat-

ing the potential of the SENSO approach for solving difficult combinatorial problems.

Keywords: symmetry, evolution, estimation of distribution algorithms, sorting networks, combi-

natorial optimization

1. Introduction

A sorting network of n inputs is a fixed sequence of comparison-exchange operations (comparators)

that sorts all inputs of size n (Knuth, 1998). Since the same fixed sequence of comparators can sort

any input, it represents an oblivious or data-independent sorting algorithm, that is, the sequence

of comparisons does not depend on the input data. The resulting fixed pattern of communication

makes them desirable in parallel implementations of sorting, such as those on graphics processing

units (Kipfer et al., 2004). For the same reason, they are simple to implement in hardware and are

useful as switching networks in multiprocessor computers (Batcher, 1968; Kannan and Ray, 2001;

Baddar, 2009).

Driven by such applications, sorting networks have been the subject of active research since

the 1950’s (Knuth, 1998). Of particular interest are minimal-size networks that use a minimal

number of comparators. Designing such networks is a hard combinatorial optimization problem,

first investigated in a U.S. Patent by O’Connor and Nelson (1962) for 4 ≤ n ≤ 8. Their networks

had the minimal number of comparators for 4, 5, 6, and 8 inputs, but required two extra comparators

for 7 inputs. This result was improved by Batcher (1968), whose algorithmic construction produces

provably minimal networks for n ≤ 8 (Knuth, 1998).
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Figure 1: A 4-input sorting network. The input values {x1,x2,x3,x4} at the left side of the horizontal

lines pass through a sequence of comparison-exchange operations, represented by vertical

lines connecting pairs of horizontal lines. Each such comparator sorts its two values,

resulting in the horizontal lines containing the sorted output values {y1 ≤ y2 ≤ y3 ≤ y4}
at right. This network is minimal in terms of the number of comparators. Such minimal

networks are not known in general for input sizes larger than 8 and designing them is a

challenging optimization problem.

Still today, provably minimal networks are known only for n ≤ 8. Finding the minimum num-

ber of comparators for n > 8 is thus a challenging open problem. It has been studied by various

researchers using specialized techniques, often separately for each value of n (Knuth, 1998; Koza

et al., 1999). Their efforts during the last few decades have improved the size of the networks for

9 ≤ n ≤ 16. For larger values of n, all best known solutions are simply merges of smaller net-

works; the problem is so difficult that it has not been possible to improve on these straightforward

constructions (Baddar, 2009).

This paper presents a two-pronged approach to this problem, using symmetry and evolutionary

search, which makes it possible to scale the problem to larger number of inputs. This approach,

called Symmetry and Evolution based Network Sort Optimization (SENSO), learns the compara-

tor distribution of minimal networks from a population of candidate solutions and improves them

iteratively through evolution. Each such solution is generated by sampling comparators from the

previous distribution such that the required network symmetry is built step-by-step, thereby focus-

ing evolution on more likely candidates and making search more effective. This approach was able

to discover new minimal networks for 17, 18, 19, 20, 21, and 22 inputs. Moreover, for the other

n ≤ 23, it discovered networks that have the same size as the best known networks. These results

demonstrate that the approach makes the problem more tractable and suggests ways in which it can

be scaled further and applied to other similarly difficult combinatorial problems.

This paper is organized as follows. Section 2 begins by describing the problem of finding mini-

mal sorting networks in more detail and reviews previous research on solving it. Section 3 presents

the SENSO approach, based on symmetry and evolution. Section 4 discusses the experimental

setup for evaluating the approach and presents the results. Section 5 concludes with an analysis

of the results and discussion of ways to make the approach even more effective and general in the

future.

2. Background

Figure 1 illustrates a 4-input sorting network. The horizontal lines of the network receive the input

values {x1,x2,x3,x4} at left. Each vertical line represents a comparison-exchange operation that
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n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Batcher 0 1 3 5 9 12 16 19 26 31 37 41 48 53 59 63

Best 0 1 3 5 9 12 16 19 25 29 35 39 45 51 56 60

Table 1: The fewest number of comparators known to date for sorting networks of input sizes

n ≤ 16. These networks have been studied extensively, but the best results have been

proven to be minimal only for n ≤ 8 (shown in bold; Knuth, 1998). Such small networks

are interesting because they optimize hardware resources in implementations such as mul-

tiprocessor switching networks.

takes two values and exchanges them if necessary such that the larger value is on the lower line. As

a result of these comparison-exchanges, the output values appear at the right side of the network in

sorted order: {y1 ≤ y2 ≤ y3 ≤ y4}.

Sorting networks with n ≤ 16 have been studied extensively with the goal of minimizing their

sizes. The smallest sizes of such networks known to date are listed in Table 1 (Knuth, 1998).

The number of comparators has been proven to be minimal only for n ≤ 8 (Knuth, 1998). These

networks can be constructed using Batcher’s algorithm for odd-even merging networks (Batcher,

1968). The odd-even merge builds larger networks iteratively from smaller networks by merging

two sorted lists. The odd and even indexed values of these two lists are first merged separately using

small merging networks. Comparison-exchange operations are then applied to the corresponding

values of the resulting small sorted lists to obtain the full sorted list.

Finding the minimum number of comparators required for n > 8 remains an open problem. The

results in Table 1, for these values of n, improve on the number of comparators used by Batcher’s

method. For example, the 16-input case, for which Batcher’s method requires 63 comparators, was

improved by Shapiro who found a 62-comparator network in 1969. Soon afterwards, Green (1972)

found a network with 60 comparators (Figure 2), which still remains the best in terms of the number

of comparators.

In Green’s construction, comparisons made after the first four levels (i.e., the first 32 compara-

tors) are difficult to understand, making his method hard to generalize to larger values of n. For

such values, Batcher’s method can be extended with more complex merging strategies to produce

significant savings in the number of comparators (Van Voorhis, 1974; Drysdale and Young, 1975).

For example, the best known 256-input sorting network due to Van Voorhis requires only 3651

comparators, compared to 3839 comparators required by Batcher’s method (Drysdale and Young,

1975; Knuth, 1998). Asymptotically, the methods based on merging require O(n log2 n) compara-

tors (Van Voorhis, 1974). In comparison, the AKS network by Ajtai et al. (1983) produces better

upper bounds, requiring only O(n logn) comparators. However, the constants hidden in its asymp-

totic notation are so large that these networks are impractical. Although still not practical, Leighton

and Plaxton (1990) showed that small constants are actually possible in networks that sort all but a

superpolynomially small fraction of the n! input permutations.

Since better algorithms are not known for constructing networks that sort all n! input permu-

tations, Batcher’s or Van Voorhis’ algorithms are often used in practice for large values of n, de-

spite their non-optimality. For example, these algorithms were used to obtain the networks for

17≤ n≤ 32 listed in Table 2 by merging the outputs of smaller networks from Table 1 (Van Voorhis,

1971; Baddar, 2009).
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Figure 2: The 16-input sorting network found by Green. This network has 60 comparators, which

is the fewest known for 16 inputs (Green, 1972; Knuth, 1998). The comparators in such

hand-designed networks are often symmetrically arranged about a horizontal axis through

the middle of the network. This observation has been used by some researchers to bias

evolutionary search on this problem (Graham and Oppacher, 2006) and is also used as a

heuristic to augment the symmetry-building approach described in Section 3.

n 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Best 73 79 88 93 103 110 118 123 133 140 150 156 166 172 180 185

Table 2: The fewest number of comparators known to date for sorting networks of input sizes

17 ≤ n ≤ 32. Networks for these values of n were obtained by merging the outputs of

smaller networks from Table 1 using the non-optimal Batcher’s or Van Voorhis’ algorithms

(Van Voorhis, 1971; Baddar, 2009). The methods used to optimize networks for n ≤ 16 are

intractable for these larger values of n because of the explosive growth in the size of the

search space. The approach presented in this paper mitigates this problem by constraining

search to promising solutions and improves these results for input sizes 17, 18, 19, 20, 21,

and 22.

The difficulty of finding such minimal sorting networks prompted researchers to attack the prob-

lem using evolutionary techniques. In one such study by Hillis (1991), a 16-input network having

61 comparators was evolved. He facilitated the evolutionary search by initializing the population

with the first four levels of Green’s network, so that evolution would need to discover only the re-

maining comparators. This (host) population of sorting networks was co-evolved with a (parasite)

population of test cases that were scored based on how well they made the sorting networks fail.

The purpose of the parasitic test cases is to nudge the solutions away from getting stuck on local

optima.

Juillé (1995) improved on Hillis’ results by evolving 16-input networks that are as good as

Green’s network (60 comparators), from scratch without specifying the first 32 comparators. More-

over, Juillé’s method discovered 45-comparator networks for the 13-input problem, which was an

improvement of one comparator over the previously known best result. His method, based on the

Evolving Non-Determinism (END) model, constructs solutions incrementally as paths in a search
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tree whose leaves represent valid sorting networks. The individuals in the evolving population are

internal nodes of this search tree. The search proceeds in a way similar to beam search by assigning

a fitness score to internal nodes and selecting nodes that are the most promising. The fitness of an

internal node is estimated by constructing a path incrementally and randomly to a leaf node. This

method found good networks with the same number of comparators as in Table 1 for all 9 ≤ n ≤ 16.

Motivated by observations of symmetric arrangement of comparators in many sorting networks

(Figure 2), Graham and Oppacher (2006) used symmetry explicitly to bias evolutionary search.

They compared evolutionary runs on populations initialized randomly with either symmetric or

asymmetric networks for the 10-input sorting problem. The symmetric networks were produced us-

ing symmetric comparator pairs, that is, pairs of comparators that are vertical mirror images of each

other. Although evolution was allowed to disrupt the initial symmetry through variation operators,

symmetric initialization resulted in higher success rates compared to asymmetric initialization. A

similar heuristic is used to augment the SENSO approach discussed in this paper.

Evolutionary approaches must verify that the solution network sorts all possible inputs correctly.

A naive approach is to test the network on all n! permutations of n distinct numbers. A better

approach requiring far fewer tests uses the zero-one principle (Knuth, 1998) to reduce the number

of test cases to 2n binary sequences. According to this principle, if a network with n input lines

sorts all 2n binary sequences correctly, then it will also sort any arbitrary sequence of n non-binary

numbers correctly. However, the increase in the number of test cases remains exponential and is

a bottleneck in fitness evaluations. Therefore, some researchers have used FPGAs to mitigate this

problem by performing the fitness evaluations on a massively parallel scale (Koza et al., 1998;

Korenek and Sekanina, 2005). In contrast, this paper develops a Boolean function representation of

the zero-one principle for fitness evaluation, as discussed next.

3. Approach

This section presents the new SENSO approach based on symmetry and evolutionary search to min-

imize the number of comparators in sorting networks. It begins with a description of how the sorting

network outputs can be represented as monotone Boolean functions, exposing the symmetries of the

network. This representation makes it possible to decompose the problem into subgoals, which are

easier to solve. Each subgoal constitutes a step in building the symmetries of the network with

as few comparators as possible. The resulting greedy solutions are optimized further by using an

evolutionary algorithm to learn the distribution of comparators that produce minimal networks.

3.1 Boolean Function Representation

The zero-one principle (Section 2) can be used to express the inputs of a sorting network as Boolean

variables and its outputs as functions of those variables. It simplifies the sorting problem to counting

the number of inputs that have the value 1 and setting that many of the lowermost outputs to 1 and

the remaining outputs to 0. In particular, the function fi(xi, . . . ,xn) at output i takes the value 1 if

and only if at least n+1− i inputs are 1. That is, fi is the disjunction of all conjunctive terms with

exactly n+1− i variables.

Since these functions are implemented by the comparators in the network, the problem of de-

signing a sorting network can be restated as the problem of finding a sequence of comparators that

compute its output functions. Each comparator computes the conjunction (upper line) and disjunc-

tion (lower line) of their inputs. As a result, a sequence of comparators computes Boolean functions
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Figure 3: Boolean output functions of a 4-input sorting network. The zero-one principle can be used

to represent the inputs of the network as Boolean variables. Each comparator produces

the conjunction of its inputs on its upper line and their disjunction on its lower line. As

a result, the functions at the outputs of the network are compositions of conjunctions

and disjunctions of the input variables, that is, they are monotone Boolean functions. In

particular, the output function fi at line i is the disjunction of all conjunctive terms with

exactly n+ 1− i variables. Therefore, a sorting network is a sequence of comparators

that compute all its output functions from its input variables. This representation makes

it possible to express network symmetry, which turns out to be useful in constructing

minimal networks.

that are compositions of conjunctions and disjunctions of the input variables (Figure 3). Since the

number of terms in these functions can grow combinatorially as comparators are added, it is nec-

essary to use a representation that makes it efficient to compute them and to determine whether all

output functions have been computed.

Such functions computed using only conjunctions and disjunctions without any negations are

called monotone Boolean functions (Korshunov, 2003). For example, the functions for the 4-input

sorting network in Figure 3 are all monotone Boolean functions. Such a function f on n binary

variables has the property that f (a) ≤ f (b) for any distinct binary n-tuples a = a1, . . . ,an and b =
b1, . . . ,bn such that a ≺ b, where a ≺ b if ai ≤ bi for 1 ≤ i ≤ n. The set of all 2n binary n-tuples

ordered by ≺ is a partially ordered set called a Boolean lattice, which makes it possible to represent

monotone Boolean functions conveniently. The Boolean lattice for n = 4 is illustrated in Figure 4 as

an undirected graph (Hasse diagram) of 24 = 16 nodes. Any two nodes in the lattice are comparable

and are connected by a path if they can be ordered by ≺. A subset of nodes that are pair-wise

incomparable is called an antichain. A subset X of nodes is said to be bounded above by the node y

if x ≺ y for all x ∈ X . The term bounded below is defined in a similar manner. These concepts are

used to characterize monotone Boolean functions in sorting networks.

For any monotone Boolean function f , the subset of lattice nodes at which it takes the value

1 are bounded above by the topmost node in the lattice and are bounded below by an antichain of

nodes corresponding to the conjunctive terms in its disjunctive normal form. That is, the nodes in

this antichain form a boundary in the lattice, separating the nodes at which f takes the value 1 from

those at which it takes the value 0. Therefore, it is sufficient to specify the antichain of boundary

nodes to define a monotone Boolean function. Moreover, nodes in the same level i (numbered from

the top of the lattice) form an antichain of boundary nodes because they all have the same number

n+ 1− i of 1s in their binary representations and are therefore incomparable. In fact, they are

the boundary nodes of function fi at output i of the sorting network since they correspond to the
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(b) f (x1,x2,x3,x4) = x1 ∨ (x2 ∧ x3)

Figure 4: Representation of monotone Boolean functions on four variables in the Boolean lattice.

The 24 = 16 nodes of the lattice are organized in levels (numbered on the left), each

containing the binary value assignments to the 4-tuple x1x2x3x4 with the same number

of 1s. The truth table for any Boolean function f (x1,x2,x3,x4) can be represented in

this lattice by shading all the nodes for which f takes the value 1. Furthermore, a node

b1b2b3b4 has a path to a lower node a1a2a3a4 if ai ≤ bi for 1 ≤ i ≤ 4. As a result, if node

a1a2a3a4 is shaded for a monotone function f , then all higher nodes reachable from it

are also shaded, that is, f is defined completely by the nodes in the lower boundary of its

shaded region. This set of nodes (shown by bold outline) corresponds to the conjunctive

terms in the disjunctive normal form of f . For example, it contains just the node 1000 for

f = x1 and two nodes 1000 and 0110 for f = x1 ∨ (x2 ∧ x3). This representation makes it

possible to compute monotone Boolean functions more efficiently.

disjunction of all conjunctive terms with exactly n+1− i variables. Thus, levels 1 to n of the lattice

have a one-to-one correspondence with the output functions of the n-input network. Moreover, it is

possible to efficiently determine whether fi has been computed at output i just by verifying whether

it takes the value 1 at all level i boundary nodes.

Monotone Boolean functions can thus be represented by their antichain of boundary nodes in

the Boolean lattice. In a lattice of size 2n, the maximum size of this representation is equal to the

size of the longest antichain, which is only
(

n
⌈n/2⌉

)

nodes (by Stirling’s approximation,
(

n
⌈n/2⌉

)

=

O
(

2n√
n

)

). However, computing conjunctions and disjunctions using this representation produces

combinatorially more redundant, non-boundary nodes that have to be removed (Gunter et al., 1996).

A more efficient representation is based on storing the values of the function in its entire truth table

as a bit-vector of length 2n. Its values are grouped according to the levels in the Boolean lattice

so that values for any level can be retrieved easily. This representation also allows computing

conjunctions and disjunctions efficiently as the bitwise AND and bitwise OR of the bit-vectors,

respectively. Moreover, efficient algorithms for bit-counting can be used to determine if a given

sorting network is valid by checking if its function at output i has the value 1 at all level i nodes for

1 ≤ i ≤ n, which is the case when all output functions fi are computed correctly.
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DNF CNF

f1 x1 ∧ x2 ∧ x3 ∧ x4 x1 ∧ x2 ∧ x3 ∧ x4

f2 (x1 ∧ x2 ∧ x3)∨ (x1 ∧ x2 ∧ x4)∨ . . . (x1 ∨ x2)∧ (x1 ∨ x3)∧ . . .

f3 (x1 ∧ x2)∨ (x1 ∧ x3)∨ . . . (x1 ∨ x2 ∨ x3)∧ (x1 ∨ x2 ∨ x4)∧ . . .

f4 x1 ∨ x2 ∨ x3 ∨ x4 x1 ∨ x2 ∨ x3 ∨ x4

Table 3: Symmetries of the 4-input sorting network in terms of its output functions. Writing the

Boolean output functions of the sorting network in both the disjunctive normal form (DNF)

and in the conjunctive normal form (CNF) is a good way to visualize the symmetries of

the output functions. For example, swapping the conjunctions ∧ and disjunctions ∨ in the

DNF form of either function f2 or f3 yields the CNF form of the other function. Therefore,

for the operation of swapping ∧ and ∨ in both f2 and f3 and also swapping their row

positions in the table, the resulting table of functions remains the same as the original

table. Moreover, this assertion holds for any pair of functions fi and f5−i, not just for f2

and f3. Such an operation that preserves the output functions of the network is called a

symmetry. These symmetries can be used to minimize the number of comparators in the

network.

Finding a minimum sequence of comparators that computes all the output functions is a chal-

lenging combinatorial problem. It can be made more tractable by using the symmetries of the

network, represented in terms of the symmetries of its output functions, as will be described next.

3.2 Sorting Network Symmetries

A sorting network symmetry is an operation on the ordered set of network output functions that

leaves the functions invariant, that is, the resulting network outputs remain unchanged. For example,

swapping the outputs of all comparators of a network to reverse its sorting order and then flipping the

network vertically to restore its original sorting order is a symmetry operation. Swapping the com-

parator outputs swaps the conjunctions ∧ and disjunctions ∨ in the output functions. The resulting

reversal of the network sorting order can be expressed as fi(xi, . . . ,xn,∧,∨)= fn+1−i(xi, . . . ,xn,∨,∧)
for all 1 ≤ i ≤ n, that is, the output function fn+1−i can be obtained from fi by swapping its ∧ and

∨, and vice versa. Therefore, in addition to swapping ∧ and ∨, if the dual functions fi and fn+1−i

are also swapped, then the network outputs remain the same. This type of symmetry is illustrated in

Table 3 for the 4-input sorting network.

It is thus possible to define symmetry operations σi for 1 ≤ i ≤
⌈

n
2

⌉

that act on the ordered set of

network output functions by swapping the function fi and its dual fn+1−i and swapping their ∧ and

∨. The compositions of these symmetry operations are also symmetries because σi and σ j operate

independently on different pairs of output functions. That is, this set of operations are closed under

composition, and they are associative. Moreover, each operation is its own inverse, producing the

identity when applied twice in a row. Thus they satisfy all the axioms of a group for representing

symmetries mathematically. Since every element of this group can be expressed as the composition

of finitely many elements of the set Σ = {σ1, . . . ,σ⌈ n
2⌉}, the group is said to be generated by Σ and

is denoted 〈Σ〉.
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Similarly, the subgroups of 〈Σ〉, that is, subsets that satisfy the group axioms, can be used

to represent the symmetries of partial networks created in the process of constructing a full sorting

network. In particular, computing pairs of dual output functions produces symmetries corresponding

to a subgroup of 〈Σ〉 (Figure 5). Since each symmetry element in Σ operates on disjoint pairs of

dual functions, any such subgroup can be written as 〈Γ〉, where Γ is a subset of Σ.

Initially, before any comparators have been added, each line i in the network has the trivial

monotone Boolean function xi. As a result, the network does not have any symmetries, that is,

Γ = {}. Adding comparators to compute the output function fi and its dual fn+1−i yields Γ = {σi}
for the resulting partial network. Adding more comparators to compute both f j and its dual fn+1− j

creates a new partial network with Γ = {σi,σ j}, that is, the new partial network is more symmetric.

Continuing to add comparators until all output functions have been constructed produces a complete

sorting network with Γ = Σ.

Thus adding comparators to the network in a particular sequence builds its symmetry in a corre-

sponding sequence of increasingly larger subgroups. Conversely, building symmetry in a particular

sequence constrains the comparator sequences that are possible. Symmetry can therefore be used to

constrain the search space for designing networks with desired properties. In particular, a sequence

of subgroups can represent a sequence of subgoals for minimizing the number of comparators in the

network. Each subgoal in this sequence is defined as the subgroup that can be produced from the

previous subgoal by adding the fewest number of comparators.

Applying this heuristic to the initial network with symmetry Γ = {}, the first subgoal is defined

as the symmetry that can be produced from the input variables by computing a pair of dual output

functions with the fewest number of comparators (Figure 6). The functions f1 = x1 ∧ . . .∧ xn and

fn = x1 ∨ . . .∨ xn have the fewest number of variable combinations and can therefore be computed

by adding fewer comparators than any other pair of dual output functions. Thus the first subgoal is

to produce the symmetry Γ = {σ1} using as few comparators as possible.

After computing f1 and fn, the next pair of dual output functions with the fewest number of

variable combinations are f2 and fn−1. Therefore, the second subgoal is to compute them and

produce the symmetry Γ = {σ1,σ2}. In this way, the number of variable combinations in the output

functions continues to increase from the outer lines to the middle lines of the network. Therefore,

from any subgoal that adds the symmetry σk to Γ, the next subgoal adds the symmetry σk+1 to Γ.

This sequence of subgoals continues until all the output functions are computed, producing the final

goal symmetry Γ = {σ1, . . . ,σ⌈ n
2⌉}.

Although this subgoal sequence specifies the order in which to compute the output functions, it

does not specify an optimal combination of comparators for each subgoal. However, it is easier to

minimize the number of comparators required for each subgoal than for the entire network, as will

be described next.

3.3 Minimizing Comparator Requirement

In order to reach the first subgoal, the same comparator can compute a conjunction for f1 and

also a disjunction for fn simultaneously (Figure 6). Sharing the same comparator to compute dual

functions in this manner reduces the number of comparators required in the network. However,

such sharing between dual functions of the same subgoal is possible only in some cases. In other

cases, it may still be possible to share a comparator with the dual function of a later subgoal. Thus,
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Figure 5: Symmetries of 4-input sorting networks. The numbers below the comparators indicate

the sequence in which the comparators are added during network construction. The last

comparator touching horizontal line i completes computing the output function fi for that

line. Functions fi and fn+1−i form a dual, and computing them both gives the network

the symmetry σi. In network (a), adding comparator 3 completes computing f1 and when

comparator 4 is added to complete computing its dual f4, the network gets the symme-

try σ1. Adding comparator 5 then completes computing both f2 and its dual f3, giving

the network its second symmetry σ2. Network (b) also produces the same sequence of

symmetries and has the same number of comparators. In network (c), adding comparator

5 completes computing both f3 and f4, but not their duals f1 and f2. Only when com-

parator 6 is added to complete computing f1 and f2 does it get both its symmetries σ1

and σ2. Network (d) is similar to (c), and they both require one more comparator than

networks (a) and (b). Thus the sequence in which the comparators are added determines

the sequence in which the network gets its symmetries. Conversely, a preferred sequence

of symmetries can be specified to constrain the sequence in which comparators are added

and to minimize the number of comparators required.

minimizing the number of comparators requires determining which comparators can be shared and

then adding those comparators that maximize sharing.
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Figure 6: Subgoals for constructing a minimal 4-input sorting network. The final goal is to produce

the symmetry Γ = {σ1,σ2} by computing all four output functions fi while using the

minimum number of comparators. This goal can be decomposed into a sequence of

subgoals specified as subgroups of the final symmetry group 〈Γ〉. At any stage in the

construction, the next subgoal is the subgroup that can be produced by adding the fewest

number of comparators. Initially, the network does not have any symmetries, that is,

Γ = {}. The dual functions f1 and f4 are the easiest to compute, having fewer variable

combinations and therefore requiring fewer comparators than f2 and f3. Hence the first

subgoal is to produce the symmetry Γ = {σ1}. Notice that comparators 1 and 2 compute

parts of both f1 and f4 to achieve this subgoal with the minimum number of comparators.

The second subgoal is to produce the symmetry Γ = {σ1,σ2} by computing the functions

f2 and f3. Adding comparator 5 completes this subgoal since comparators 3 and 4 have

already computed f2 and f3 partially. Optimizing the number of comparators required

to reach each subgoal separately in this way makes it possible to scale the approach to

networks with more inputs.

The Boolean lattice representation of functions discussed in Section 3.1 can be used to determine

whether or not sharing a comparator for computing parts of two functions simultaneously is possible

(Figure 7). Assume that the current subgoal is to compute the output function fi and its dual fn+1−i.

That is, functions for outputs less than i and greater than n+1− i have already been fully computed,

implying that each of these functions f j has the value 1 at all nodes in levels less than or equal to

j and the value 0 everywhere else. Moreover, the functions for the remaining outputs have been

partially computed. In particular, each of these intermediate functions are guaranteed to have the

value 1 at all nodes in levels less than or equal to i and the value 0 at all nodes in levels greater than

n+1− i. If that was not the case, it will be impossible to compute at least one of the remaining output

functions by adding more comparators since conjunctions preserve 0s and disjunctions preserve 1s

of the intermediate functions they combine.

The current subgoal of computing function fi requires setting its value at all nodes in level i

to 1 and its value at all nodes in level i+ 1 to 0, thus defining its node boundary in the lattice.

Its monotonicity then implies that it has the value 1 at all nodes in levels less than i and the value

0 at all nodes in levels greater than i+ 1. Moreover, since the intermediate functions f ′j on lines

i ≤ j ≤ n+1− i already have the value 1 at all nodes in levels less than or equal to i, computing fi

from them will retain that value at those nodes automatically. Therefore, fi can be computed just by

setting its value at all nodes in level i+1 to 0.
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Figure 7: Comparator sharing to compute dual output functions in a 4-input sorting network. This

figure illustrates the Boolean lattice representation of the functions computed by com-

parator 1 in Figure 6. The levels of the lattices are numbered on the left and the nodes

at which the function takes the value 1 are shaded. Comparator 1 computes the conjunc-

tion (c) and the disjunction (d) of the functions (a) and (b) for the subgoal of computing

the output functions f1 = x1 ∧ x2 ∧ x3 ∧ x4 and f4 = x1 ∨ x2 ∨ x3 ∨ x4. Function f1 can be

computed by using conjunctions to set its value at all nodes in level 2 of the lattice to 0.

Similarly, f4 can be computed by using disjunctions to set its value at all nodes in level 4

to 1. Thus, comparator 1 contributes to computing both f1 and f4 by setting the values at

two nodes in level 2 of its conjunction to 0 and the values at two nodes in level 4 of its

disjunction to 1. Sharing comparators in this manner reduces the number of comparators

required to construct the sorting network.

The value of fi at a node in level i+ 1 can be set to 0 by adding a comparator that computes

its conjunction with another function that already has the value 0 at that node, thus increasing the

number of 0-valued nodes. The disjunction that this comparator also computes has fewer 0-valued

nodes than either of its input functions and is therefore not useful for computing fi. However, the

disjunction will be used to compute the other remaining output functions, implying that it has the

value 1 at all nodes in level i+1 as required by those functions. Since the disjunction does not have

any 0-valued nodes in level i+ 1, its inputs do not have any common 0-valued nodes in that level.

That is, exactly one of the intermediate functions f ′j has the value 0 for any particular node in level
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i+1. Adding a comparator between a pair of such functions collects the 0-valued nodes from both

functions in their conjunction. Repeating this process recursively collects the 0-valued nodes in

level i+1 from all functions to the function on line i, thus producing fi. Similarly, its dual function

fn+1−i can be computed from the functions f ′j by using disjunctions instead of conjunctions to set

its values at all nodes in level n+1− i to 1.

The leaves of the resulting binary recursion tree for fi are the functions f ′j that have 0-valued

nodes in level i+1 and its internal nodes are the conjunctive comparator outputs. Since the number

of nodes of degree two in a binary tree is one less than the number of leaves (Mehta and Sahni,

2005), the number of comparators required depends only on the number of functions with which the

recursion starts, that is, it is invariant to the order in which the recursion pairs the leaves. However,

the recursion trees for fi and fn+1−i may have common leaves, making it possible to use the same

comparator to compute a conjunction for fi and a disjunction for fn+1−i. Maximizing such sharing

of comparators between the two recursion trees minimizes the number of comparators required for

the current subgoal.

It may also be possible to share a comparator with a later subgoal, for example, when it computes

a conjunction for fi and a disjunction for fn+1−k, where i < k ≤
⌈

n
2

⌉

. In order to prioritize subgoals

and determine which comparators maximize sharing, each pair of lines where a comparator can

potentially be added is assigned a utility. Comparators that contribute to both fi and fn+1−i for the

current subgoal get the highest utility. Comparators that contribute to an output function for the

current subgoal and an output function for the next subgoal get the next highest utility. Similarly,

other comparators are also assigned utilities based on the output functions to which they contribute

and the subgoals to which those output functions belong. Many comparators may have the same

highest utility; therefore, one comparator is chosen randomly from that set and it is added to the

network. Repeating this process produces a sequence of comparators that optimizes sharing within

the current subgoal and between the current subgoal and later subgoals.

Optimizing for each subgoal separately in this manner constitutes a greedy algorithm that pro-

duces minimal-size networks with high probability for n ≤ 8. However, for larger values of n, the

search space is too large for this greedy approach to find a global optimum reliably. In such cases,

stochastic search such as evolution can be used to explore the neighborhood of the greedy solutions

for further optimization, as will be described next.

3.4 Evolving Minimal-Size Networks

The most straightforward approach is to initialize evolution with a population of solutions that the

greedy algorithm produces. The fitness of each solution is the negative of its number of comparators

so that improving fitness will minimize the number of comparators. In each generation, two-way

tournament selection based on this fitness measure is used to select the best individuals in the popu-

lation for reproduction. Reproduction mutates the parent network, creating an offspring network in

two steps: (1) a comparator is chosen from the network randomly and the network is truncated after

it, discarding all later comparators, and (2) the greedy algorithm is used to add comparators again,

reconstructing a new offspring network. Since the greedy algorithm chooses a comparator with the

highest utility randomly, this mutation explores a new combination of comparators that might be

more optimal than the parent.

This straightforward approach restricts the search to the space of comparator combinations sug-

gested by the greedy algorithm and assumes that it contains a globally minimal network. In some
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Figure 8: State representation of the function x1 ∧ x2 used in the EDA. The state (shown on the

right) is a bit-string with two bits for each level of the Boolean lattice. The first bit is 1

only if the value of the function for all nodes in that level is 0 and the second bit is 1 only

if its value for all nodes in that level is 1. This condensed representation of the function

is based on the information used by the symmetry-building greedy algorithm and it is

therefore useful for constructing minimal-size sorting networks.

cases, however, the globally minimal networks may use comparators that are different from those

suggested by the greedy algorithm. Therefore, a more powerful (but still brute force) approach is

to let evolution use such comparators as well: with a probability determined empirically, the sug-

gestions of the greedy algorithm are ignored and instead the next comparator to be added to the

network is selected randomly from the set of all potential comparators.

A more effective way to combine evolution with such departures from the greedy algorithm

is to use an Estimation of Distribution Algorithm (EDA) (Bengoetxea et al., 2001; Alden, 2007;

Mühlenbein and Höns, 2005). The idea is to estimate the probability distribution of comparator

combinations in the smallest networks evolved thus far and to use this distribution to generate com-

parator suggestions for the next generation. The EDA is initialized as before with a population of

networks generated by the greedy algorithm. In each generation, a set of networks with the highest

fitness are selected from the population. These networks are used in three ways: (1) to estimate the

distribution of comparators for a generative model of small networks, (2) as elite networks, passed

unmodified to the next generation, and (3) as parent networks, from which new offspring networks

are created for the next generation.

The generative model of the EDA specifies the probability P(C|S) of adding a comparator C

to an n-input partial network with state S. The state of a partial network is defined in terms of

the n Boolean functions that its comparators compute. These functions determine the remaining

comparators that are needed to finish computing the output functions, making them a good repre-

sentation of the partial network. However, storing the state as the concatenation of the n functions

is computationally intractable since each function is represented as a vector of 2n bits. Therefore, a

condensed state representation is computed based on the observation that the greedy algorithm does

not use the actual function values for the nodes in the Boolean lattice; it only checks whether the

values in a given level are all 0s or all 1s. This information, encoded as 2(n+1) bits (Figure 8), is

suitable as the state representation for the model as well.
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Since the model is estimated from the set of the smallest networks in the population, it is likely

to generate small networks as well. Although it can generate new networks from scratch, it is

used as part of the above reproduction mechanism to reconstruct a new offspring network from the

truncated parent network, that is, it is used in Step 2 of reproduction instead of the greedy algorithm.

In this step, some comparators are also chosen randomly from the set of all potential comparators

to encourage exploration of comparator combinations outside the model. Moreover, if the model

does not generate any comparators for the current state, then the reconstruction step falls back to

the greedy algorithm for adding a comparator.

As discussed in Section 3.3, the greedy algorithm chooses the comparator to be added to the

network randomly from those that have the highest utility (Variant 1). This random choice can

be modified slightly to prefer comparators that are symmetric with respect to another comparator

that is already in the network (Variant 2). Doing so makes the arrangement of comparators more

bilaterally symmetric about a horizontal axis through the middle of the network. This heuristic was

motivated by Graham and Oppacher (2006), who found that biasing evolutionary search using such

symmetric comparator pairs was beneficial. The EDA works well with both of these variants of the

greedy algorithm, learning to find smaller sorting networks than previous results, as demonstrated

next.

4. Results

SENSO was run with a population size of 200 for 500 generations to evolve minimal-size networks

for different input sizes. In each generation, the top half of the population (i.e., 100 networks with

the fewest number of comparators) was selected for estimating the model. The same set of networks

was copied to the next generation without modification. Each of them also produced an offspring

network to replace those in the bottom half of the population. A Gaussian probability distribution

was used to select the comparator from which to truncate the parent network. This Gaussian distri-

bution was centered at the middle of its comparator sequence with a standard deviation of one-fourth

of its number of comparators. As a result, parent networks were more likely to be truncated near

the middle than near the ends. When reconstructing the truncated network, the next comparator to

be added to the network was generated either by the estimated model (with probability 0.5) or was

selected randomly from the set of all potential comparators (with probability 0.5). Results were

insensitive to small changes in these probabilities. The SENSO source code to run this experiment

is available from the website http://nn.cs.utexas.edu/?sorting-code.

The above experiment was repeated 20 times for each variant of the greedy algorithm and for

each input size n ≤ 23, each time with a different random number seed. The smallest network found

in each set of 20 runs was recorded as the result for that particular combination of algorithmic

variant and input size. This procedure was repeated 25 times for each set of 20 runs to determine

which of the two variants produced smaller networks. According to the Mann-Whitney U-test, the

median number of comparators in the smallest networks found by variant 2 was significantly fewer

for input sizes 13, 15, 18, 20, 22 (p < 0.02, one-tailed). There was no significant difference between

the two variants for the other input sizes. That is, the symmetry heuristic used in variant 2 makes it

better or as good as variant 1 for finding small networks.

The fewest number of comparators found for each input size is listed in Table 4. For input sizes

n ≤ 11, the initial population of SENSO already contained networks with the smallest-known sizes,

that is, the greedy algorithm was sufficient to find the smallest-known networks. For input sizes 12
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n 12 13 14 15 16 17 18 19 20 21 22 23

Previous best
Hand-design and END Batcher’s and Van Voorhis’ merge

39 45 51 56 60 73 79 88 93 103 110 118

SENSO 39 45 51 56 60 71 78 86 92 102 108 118

Table 4: Sizes of the smallest networks for different input sizes found by SENSO. For input sizes

n ≤ 11, networks with the smallest-known sizes (Section 2) were already found in the

initial population of SENSO, that is, the greedy algorithm using symmetry was sufficient.

These sizes are therefore omitted from this table. For larger input sizes, evolution found

networks that matched previous best results (indicated in italics) or improved them (in-

dicated in bold). Appendix A lists examples of these networks. These results demon-

strate that the SENSO approach is effective at designing minimal-size sorting networks.

Prospects of extending these results to input sizes greater than 23 will be discussed in

Section 5.

to 16, and 23, SENSO evolved networks that have the same size as the best known networks. For 15

inputs, networks matching previous best results were obtained indirectly by removing the bottom

line of the evolved 16-input networks and all comparators touching that line (Knuth, 1998). Most

importantly, SENSO improved the previous best results for input sizes 17, 18, 19, 20, 21, and 22 by

one or two comparators. Examples of these networks are listed in Appendix A.

For 23 inputs, SENSO required about 4GB of memory and 46 hours to complete 500 generations

on a Xeon X5440 processor running at 2.83GHz. These requirements approximately double for

every unit increase in the number of inputs due to the O(2n) complexity of the algorithm. Prospects

for mitigating the effects of this exponential growth and for extending the results to n> 23, including

to larger power-of-two networks, will be discussed in Section 5.

The previous best results for input sizes 12 through 16 were obtained either by hand design or

by the END evolutionary algorithm (Knuth, 1998; Juillé, 1995; Van Voorhis, 1971; Baddar, 2009).

The END algorithm improved a 25-year old result for the 13-input case by one comparator and

matched the best known results for other input sizes up to 16. However, it is a massively parallel

search algorithm, requiring very large computational resources, for example, a population size of

65,536 on 4096 processors to find minimal-size networks for 13 and 16 inputs (Table 5). In contrast,

the SENSO approach finds such networks with much less resources (e.g., population size of 200 on

a single processor in a similar number of generations), making it promising for larger problems, as

will be discussed in the next section.

5. Discussion and Future Work

Previous results on designing minimal-size networks automatically by search have been limited to

small input sizes (n ≤ 16) because the number of valid sorting networks near the optimal size is

very small compared to the combinatorially large space that has to be searched (Juillé, 1995). The

symmetry-building approach presented in Section 3 mitigates this problem by using symmetry to

focus the search on the space of networks near the optimal size. As a result, it was possible to

search for minimal-size networks with more inputs (n ≤ 23), improving the previous best results in

five cases.
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END SENSO (variant 2)

Processor family MasPar MP-2 Xeon X5440

Number of processors used 4,096 @ 17Gop/s 1 @ 2.83GHz

Memory used unknown 37MB

Population size 65,536 200

Runs that produced 60 comparators 2 out of 3 18 out of 20

Number of generations 300 to 500 500

Execution time for each run 48 to 72 hours 15 min

Table 5: Performance metrics of END and SENSO for the 16-input problem. This table compares

the performance of SENSO with the END algorithm (Juillé, 1995) for finding 16-input

networks with 60 comparators, which is the best known result for that input size. In con-

trast to the massively parallel END algorithm, SENSO finds such networks using much

less computational resources.

These improvements can be transferred to larger values of n by using Batcher’s or Van Voorhis’

merge to construct such larger networks from the improved smaller networks (Knuth, 1998). The

resulting networks accumulate the combined improvement of the smaller networks. For example,

since the 22-input network has been improved by two comparators, two copies of it can be merged

to construct a 44-input network with four fewer comparators than previous results. This merging

procedure can be repeated to construct even larger networks, doubling the improvement in each step.

Such networks are useful in massively parallel applications such as sorting in GPUs with hundreds

of cores (Kipfer and Westermann, 2005).

It should be possible to improve these results further by extending SENSO in the following

ways. First, the greedy algorithm for adding comparators can be improved by evaluating the sharing

utility of groups of one or more comparators instead of single comparators. Such groups that have

the highest average utility will then be preferred.

Second, the greedy algorithm can be made less greedy by considering the impact of current

comparator choices on the number of comparators that will be required for later subgoals. This

analysis will make it possible to optimize across subgoals, potentially producing smaller networks

at the cost of additional computations.

Third, the state representation that the EDA algorithm uses contains only sparse information

about the functions computed by the comparators. Extending it to include more relevant information

should make it possible for the EDA to disambiguate overlapping states and therefore to model

comparator distribution more accurately.

Fourth, in some cases, good n-input networks can be obtained from n+ 1-input networks by

simply removing its bottom line and all comparators touching that line (Knuth, 1998), as was done in

the 15-input case in this paper. This observation suggests that a potentially more powerful approach

is to augment the information contained in the state representation of the EDA with the comparator

distribution for multiple input sizes.

Fifth, the EDA generates comparators to add to the network only if the state of the network

matches a state in the generative model exactly. Making this match graded, based on some similarity

measure, may produce better results by exploring similar states when an exact match is not found.
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Sixth, evolutionary search can be parallelized, for example, using the massively parallel END

algorithm that has been shown to evolve the best known network sizes for n ≤ 16 (Juillé, 1995).

Conversely, using the symmetry-building approach to constrain the search space should make it

possible to run the END algorithm on networks with more inputs.

Seventh, the symmetry-building approach itself can be improved. For example, it uses only the

symmetries resulting from the duality of the output functions. It may be possible to extend this

approach by also using the symmetries resulting from the permutations of the input variables.

Eighth, large networks can be constructed from smaller networks by merging the outputs of the

smaller networks. Since smaller networks are easier to optimize, they can be evolved first and then

merged by continuing evolution to add more comparators. This approach is similar to constructing

minimal networks for n > 16 by merging smaller networks (Batcher, 1968; Van Voorhis, 1974).

In addition to finding minimal-size networks, the SENSO approach can also be used to find

minimal-delay networks. Instead of minimizing the number of comparators, it would now minimize

the number of parallel steps into which the comparators are grouped. Both these objectives can be

optimized simultaneously as well, either by preferring one objective over the other in the fitness

function or by using a multi-objective optimization algorithm such as NSGA-II (Deb et al., 2000).

Moreover, this approach can potentially be extended to design comparator networks for other

related problems such as rank-order filters (Chakrabarti and Wang, 1994; Hiasat and Hasan, 2003;

Chung and Lin, 1997). A rank order filter with rank r selects the rth largest element from an input

set of n elements. Such filters are widely used in image and signal processing applications, for

example, to reduce high-frequency noise while preserving edge information. Since these filters are

often implemented in hardware, minimizing their comparator requirement is necessary to minimize

their chip area. More generally, similar symmetry-based approaches may be useful for designing

stack filters, that is, circuits implementing monotone Boolean functions, which are also popular

in signal processing applications (Hiasat and Hasan, 2003; Shmulevich et al., 1995). Furthermore,

such approaches can potentially be used to design rearrangeable networks for switching applications

(Seo et al., 1993; Yeh and Feng, 1992).

6. Conclusion

Minimizing the number of comparators in a sorting network is a challenging optimization problem.

This paper presented an approach called SENSO that simplifies it by converting it into the problem

of building the symmetry of the network optimally. The resulting structure makes it possible to

construct the network in steps and to minimize the number of comparators required for each step

separately. However, the networks constructed in this manner may be sub-optimal greedy solutions,

and they are optimized further by an evolutionary algorithm that learns to anticipate the distribution

of comparators in minimal networks. This approach focuses the solutions on promising regions of

the search space, thus finding smaller networks more effectively than previous methods.
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Appendix A. Evolved Minimal-Size Sorting Networks

This appendix lists examples of minimal-size sorting networks evolved by SENSO. For each exam-

ple, the sequence of comparators is illustrated in a figure and also listed as pairs of horizontal lines

numbered from top to bottom.

Figure 9: Evolved 9-input network with 25 comparators: [3, 7], [1, 6], [2, 5], [8, 9], [1, 8], [2, 3],

[4, 6], [5, 7], [6, 9], [2, 4], [7, 9], [1, 2], [5, 6], [3, 8], [4, 8], [4, 5], [6, 7], [2, 3], [2, 4],

[7, 8], [5, 6], [3, 5], [6, 7], [3, 4], [5, 6].

Figure 10: Evolved 10-input network with 29 comparators: [2, 5], [8, 9], [3, 4], [6, 7], [1, 10],

[3, 6], [1, 8], [9, 10], [4, 7], [5, 10], [1, 2], [1, 3], [7, 10], [4, 6], [5, 8], [2, 9], [4, 5],

[6, 9], [7, 8], [2, 3], [8, 9], [2, 4], [3, 6], [5, 7], [3, 4], [7, 8], [5, 6], [4, 5], [6, 7].

Figure 11: Evolved 11-input network with 35 comparators: [1, 10], [3, 9], [4, 8], [5, 7], [2, 6],

[2, 4], [3, 5], [7, 11], [8, 9], [6, 10], [1, 7], [2, 3], [9, 11], [10, 11], [1, 2], [6, 8], [4, 5],

[7, 9], [3, 7], [2, 6], [8, 9], [5, 10], [3, 4], [9, 10], [2, 3], [5, 7], [4, 6], [7, 8], [8, 9], [3, 4],

[5, 7], [6, 7], [4, 5], [7, 8], [5, 6].
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Figure 12: Evolved 12-input network with 39 comparators: [1, 6], [3, 8], [5, 11], [4, 7], [9, 12],

[2, 10], [6, 7], [2, 9], [1, 4], [3, 5], [10, 12], [8, 11], [8, 10], [11, 12], [2, 3], [7, 12],

[1, 2], [5, 9], [6, 9], [2, 5], [4, 8], [3, 6], [8, 11], [7, 10], [3, 4], [5, 7], [9, 11], [2, 3],

[10, 11], [7, 9], [4, 5], [9, 10], [3, 4], [6, 8], [5, 6], [7, 8], [8, 9], [6, 7], [4, 5].

Figure 13: Evolved 13-input network with 45 comparators: [5, 9], [1, 10], [4, 8], [3, 6], [7, 12],

[2, 13], [1, 7], [3, 5], [6, 9], [8, 13], [2, 4], [11, 12], [10, 12], [1, 2], [9, 13], [9, 11],

[3, 9], [12, 13], [1, 3], [8, 10], [6, 10], [4, 7], [4, 6], [2, 9], [5, 7], [5, 8], [11, 12], [7, 10],

[4, 5], [2, 3], [10, 12], [2, 4], [7, 11], [3, 5], [3, 4], [10, 11], [7, 9], [6, 8], [6, 7], [8, 9],

[4, 6], [9, 10], [5, 6], [7, 8], [6, 7].

Figure 14: Evolved 14-input network with 51 comparators: [1, 7], [3, 4], [9, 13], [5, 6], [2, 11],

[8, 14], [10, 12], [4, 7], [5, 8], [6, 14], [2, 9], [11, 13], [1, 3], [12, 13], [1, 10], [2, 5],

[7, 14], [13, 14], [1, 2], [3, 8], [4, 6], [10, 11], [4, 9], [8, 11], [6, 9], [3, 10], [7, 12], [5, 7],

[9, 13], [2, 4], [11, 12], [3, 5], [12, 13], [2, 3], [9, 11], [4, 10], [4, 5], [3, 4], [11, 12],

[6, 8], [8, 9], [7, 10], [6, 7], [5, 6], [9, 10], [7, 8], [10, 11], [4, 5], [6, 7], [8, 9], [7, 8].
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Figure 15: Evolved 15-input network with 56 comparators: [13, 14], [6, 8], [4, 12], [3, 11], [5, 10],

[7, 9], [2, 15], [12, 15], [2, 4], [8, 11], [1, 13], [5, 7], [3, 6], [9, 10], [1, 3], [10, 15],

[2, 5], [1, 2], [6, 7], [8, 9], [12, 14], [4, 13], [6, 12], [10, 11], [9, 13], [3, 5], [7, 14],

[4, 8], [3, 4], [13, 15], [11, 14], [2, 6], [14, 15], [2, 3], [4, 6], [11, 13], [13, 14], [3, 4],

[9, 12], [5, 10], [11, 12], [7, 8], [6, 7], [5, 9], [8, 10], [5, 6], [10, 12], [12, 13], [4, 5],

[7, 9], [8, 11], [10, 11], [6, 7], [8, 9], [9, 10], [7, 8].

Figure 16: Evolved 16-input network with 60 comparators: [13, 14], [6, 8], [4, 12], [3, 11], [1, 16],

[5, 10], [7, 9], [2, 15], [12, 15], [2, 4], [8, 11], [1, 13], [5, 7], [3, 6], [9, 10], [14, 16],

[11, 16], [1, 3], [10, 15], [2, 5], [1, 2], [15, 16], [6, 7], [8, 9], [12, 14], [4, 13], [6, 12],

[10, 11], [9, 13], [3, 5], [7, 14], [4, 8], [3, 4], [13, 15], [11, 14], [2, 6], [14, 15], [2, 3],

[4, 6], [11, 13], [13, 14], [3, 4], [9, 12], [5, 10], [11, 12], [7, 8], [6, 7], [5, 9], [8, 10],

[5, 6], [10, 12], [12, 13], [4, 5], [7, 9], [8, 11], [10, 11], [6, 7], [8, 9], [9, 10], [7, 8].
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Figure 17: Evolved 17-input network with 71 comparators: [6, 12], [5, 10], [8, 13], [1, 15], [3, 17],

[2, 16], [4, 9], [7, 14], [4, 11], [9, 14], [5, 8], [10, 13], [1, 3], [15, 17], [2, 7], [11, 16],

[4, 6], [12, 14], [1, 5], [13, 17], [2, 4], [14, 16], [1, 2], [16, 17], [3, 10], [8, 15], [6, 11],

[7, 12], [6, 8], [7, 9], [9, 11], [3, 4], [9, 15], [10, 12], [13, 14], [5, 7], [11, 15], [5, 6],

[8, 10], [12, 14], [2, 3], [15, 16], [2, 9], [14, 16], [2, 5], [3, 6], [12, 15], [14, 15], [3, 5],

[7, 13], [10, 13], [4, 11], [4, 9], [7, 8], [11, 13], [4, 7], [4, 5], [13, 14], [11, 12], [6, 7],

[12, 13], [5, 6], [8, 9], [9, 10], [7, 9], [10, 12], [6, 8], [7, 8], [10, 11], [9, 10], [8, 9].

Figure 18: Evolved 18-input network with 78 comparators: [5, 13], [6, 14], [1, 8], [11, 18], [3, 4],

[15, 16], [7, 9], [10, 12], [2, 17], [3, 7], [12, 16], [2, 10], [9, 17], [5, 11], [8, 14], [4, 13],

[6, 15], [1, 3], [16, 18], [2, 5], [14, 17], [1, 6], [13, 18], [1, 2], [17, 18], [4, 8], [11, 15],

[7, 10], [9, 12], [3, 16], [4, 9], [10, 15], [5, 6], [13, 14], [7, 11], [3, 7], [8, 12], [2, 5],

[14, 17], [15, 16], [3, 4], [12, 16], [16, 17], [2, 3], [12, 15], [4, 7], [14, 15], [4, 5],

[15, 16], [3, 4], [6, 7], [12, 13], [8, 10], [9, 11], [10, 11], [8, 9], [6, 12], [7, 13], [11, 13],

[6, 8], [13, 15], [4, 6], [11, 14], [5, 8], [13, 14], [5, 6], [9, 10], [7, 10], [9, 12], [10, 13],

[6, 9], [7, 8], [11, 12], [7, 9], [10, 12], [8, 11], [10, 11], [8, 9].
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Figure 19: Evolved 19-input network with 86 comparators: [5, 11], [4, 13], [1, 17], [8, 15], [9, 12],

[7, 14], [16, 18], [2, 6], [10, 19], [3, 6], [12, 17], [8, 10], [2, 3], [7, 16], [11, 13], [4, 5],

[14, 18], [1, 9], [15, 19], [6, 17], [4, 8], [18, 19], [2, 7], [5, 16], [1, 2], [13, 17], [1, 4],

[17, 19], [3, 12], [10, 11], [14, 15], [7, 9], [8, 14], [3, 10], [12, 16], [2, 8], [6, 11],

[13, 18], [9, 15], [5, 7], [11, 15], [4, 5], [16, 17], [2, 3], [15, 18], [2, 4], [17, 18], [6, 8],

[7, 14], [6, 7], [11, 16], [3, 5], [15, 16], [3, 6], [12, 13], [16, 17], [3, 4], [9, 10], [8, 14],

[10, 13], [9, 12], [10, 11], [14, 15], [6, 9], [13, 15], [15, 16], [4, 6], [5, 7], [11, 14], [5, 9],

[5, 6], [14, 15], [8, 12], [7, 12], [7, 10], [8, 9], [12, 13], [7, 8], [13, 14], [6, 7], [10, 11],

[11, 12], [12, 13], [9, 10], [8, 9], [10, 11].

Figure 20: Evolved 20-input network with 92 comparators: [3, 12], [9, 18], [1, 11], [10, 20], [5, 6],

[15, 16], [4, 7], [14, 17], [2, 13], [8, 19], [4, 15], [6, 17], [1, 2], [19, 20], [5, 14], [7, 16],

[8, 10], [11, 13], [3, 9], [12, 18], [5, 8], [13, 16], [1, 4], [17, 20], [1, 3], [18, 20], [1, 5],

[16, 20], [2, 15], [6, 19], [9, 11], [10, 12], [7, 14], [6, 10], [11, 15], [2, 4], [17, 19],

[7, 9], [12, 14], [3, 8], [13, 18], [2, 6], [2, 3], [15, 19], [5, 7], [14, 16], [18, 19], [16, 19],

[2, 5], [4, 10], [11, 17], [3, 4], [17, 18], [14, 18], [3, 7], [16, 18], [3, 5], [8, 9], [12, 13],

[6, 11], [10, 15], [9, 13], [8, 12], [4, 8], [13, 17], [4, 6], [15, 17], [16, 17], [4, 5], [6, 7],

[14, 15], [15, 16], [5, 6], [11, 12], [9, 10], [12, 13], [8, 9], [8, 11], [10, 13], [6, 8],

[13, 15], [10, 14], [7, 11], [7, 8], [11, 12], [13, 14], [9, 10], [10, 12], [12, 13], [9, 11],

[8, 9], [10, 11].
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Figure 21: Evolved 21-input network with 102 comparators: [6, 10], [12, 16], [2, 20], [3, 15],

[7, 19], [1, 18], [4, 21], [5, 9], [13, 17], [8, 14], [2, 8], [14, 20], [3, 12], [10, 19], [5, 13],

[9, 17], [4, 6], [16, 18], [1, 11], [11, 21], [1, 7], [15, 21], [3, 4], [18, 19], [2, 5], [17, 20],

[1, 2], [20, 21], [1, 3], [19, 21], [8, 9], [13, 14], [10, 11], [5, 12], [6, 7], [15, 16], [11, 12],

[6, 13], [9, 16], [7, 14], [8, 15], [17, 18], [2, 4], [5, 10], [6, 8], [14, 16], [12, 19], [18, 20],

[2, 3], [19, 20], [5, 6], [2, 5], [16, 20], [14, 18], [3, 8], [12, 18], [10, 15], [5, 6], [16, 19],

[18, 19], [3, 5], [7, 11], [9, 17], [4, 13], [11, 15], [13, 17], [4, 9], [7, 10], [15, 17], [9, 13],

[4, 7], [5, 6], [16, 17], [17, 18], [4, 5], [12, 14], [6, 8], [14, 16], [7, 8], [16, 17], [5, 6],

[11, 12], [10, 12], [9, 10], [12, 13], [13, 15], [9, 11], [7, 9], [15, 16], [6, 7], [13, 14],

[14, 15], [7, 9], [8, 10], [11, 12], [8, 11], [8, 9], [10, 14], [12, 13], [10, 13], [10, 12],

[10, 11].
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Figure 22: Evolved 22-input network with 108 comparators: [11, 12], [3, 9], [14, 20], [4, 16],

[7, 19], [2, 17], [6, 21], [1, 18], [5, 22], [8, 10], [13, 15], [1, 5], [18, 22], [4, 13], [10, 19],

[2, 3], [20, 21], [8, 14], [9, 15], [6, 7], [16, 17], [6, 8], [15, 17], [2, 11], [12, 21], [1, 4],

[19, 22], [1, 6], [17, 22], [1, 2], [21, 22], [7, 9], [14, 16], [3, 5], [18, 20], [10, 12],

[11, 13], [3, 8], [15, 20], [4, 10], [13, 19], [7, 14], [9, 16], [5, 12], [11, 18], [6, 11],

[12, 17], [4, 7], [16, 19], [2, 3], [20, 21], [2, 4], [19, 21], [2, 6], [17, 21], [3, 7], [16, 20],

[12, 19], [3, 6], [17, 20], [4, 11], [3, 4], [19, 20], [10, 13], [5, 15], [8, 18], [9, 14],

[13, 18], [5, 10], [14, 15], [8, 9], [5, 8], [15, 18], [5, 6], [17, 18], [18, 19], [4, 5], [7, 11],

[12, 16], [6, 7], [16, 17], [5, 6], [17, 18], [10, 13], [9, 14], [11, 14], [9, 12], [8, 10],

[13, 15], [8, 9], [14, 15], [15, 17], [6, 8], [10, 11], [12, 13], [7, 10], [13, 16], [15, 16],

[7, 8], [9, 12], [11, 14], [9, 10], [13, 14], [8, 9], [14, 15], [11, 12], [12, 13], [10, 11].

327



VALSALAM AND MIIKKULAINEN

Figure 23: Evolved 23-input network with 118 comparators: [2, 21], [3, 22], [6, 14], [10, 18],

[1, 8], [16, 23], [5, 12], [7, 13], [11, 17], [9, 19], [15, 20], [4, 9], [5, 15], [12, 19],

[3, 7], [17, 21], [1, 10], [14, 23], [6, 16], [8, 18], [2, 11], [13, 22], [9, 20], [18, 23],

[1, 6], [21, 22], [2, 3], [19, 20], [4, 5], [22, 23], [1, 2], [20, 23], [1, 4], [13, 14], [10, 11],

[7, 16], [8, 17], [9, 12], [12, 15], [5, 12], [7, 9], [15, 17], [18, 21], [3, 6], [10, 13],

[11, 14], [16, 19], [11, 12], [5, 8], [21, 22], [2, 3], [8, 16], [4, 10], [14, 20], [17, 19],

[9, 15], [5, 7], [19, 22], [2, 5], [20, 22], [2, 4], [10, 11], [12, 14], [3, 7], [17, 21], [5, 10],

[14, 19], [20, 21], [3, 4], [19, 21], [3, 5], [6, 18], [13, 15], [9, 13], [6, 8], [16, 18], [6, 9],

[15, 18], [4, 6], [18, 20], [4, 5], [19, 20], [7, 11], [12, 17], [14, 17], [7, 10], [17, 18],

[6, 7], [5, 6], [8, 10], [18, 19], [13, 16], [15, 16], [9, 13], [8, 9], [14, 16], [16, 18], [6, 8],

[10, 11], [11, 15], [7, 12], [15, 17], [16, 17], [7, 8], [11, 12], [10, 13], [12, 14], [14, 15],

[9, 10], [8, 9], [15, 16], [10, 11], [9, 10], [13, 15], [12, 13], [13, 14], [11, 12], [12, 13].
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