
Assignment 4
Implement the following three algorithms described below. Each algorithm is
worth up to five points. Solutions must be submitted by 15.5.2023. Use the link
on e-ucilnica to turn in your work. The report must be in .pdf format and .R
or .py for code submission.

Continuous optimization
This assignment is an introduction to continuous optimization using functions
available in smoof package in R. This is also a warm-up for the Assignment 5.
By completing this you should have a groundwork for starting next assignment.

The assignment consists of finding values at specific points in 2D space of
three functions, namely Rosenbrock, Ackley and Rastrigin. You need to
implement three basic search algorithms, namely grid search, random search
and first descent local optimization.

Each algorithm must be implemented as a function in R or Python. You
should submit pdf report with required information and your source code for
the algorithms.

This section describes the algorithms you are implementing. The second
sections has instruction on how to run the selected functions in R, and the last
sections includes example on how to run the same package inside Python.

Grid search

Implement a grid search algorithm to evaluate the three selected 2D functions
on a discrete grid of points with a grid size of 1, within the specified bounds for
each function. The point (0, 0) should always be included in the search. See
the next section for an example on how to find bounds for each function.

For each of the selected functions, the report should include:

a) Number of points tested

b) Coordinates and objective values for the minimum and maximum found

Random search

Implement a random search function that searches the 2D space uniformly ran-
domly within the specified bounds for each function.

For each of the selected functions, the report should include:

a) Mean objective value found over 1000 calls

b) Coordinates and objective value for the minimum found

Local search

Implement a local search using first descent, which means that you move to
the next solution as soon as the first neighbor you find is better than the current
solution instead of checking all the neighbors and moving to the best one. Let
the algorithm run for a maximum of 1000 iterations with a neighborhood size of
100. Define a neighbor of a solution (x,y) as (x±rand(0.1), y±rand(0.1)), where

1

rand(0.1) returns a uniformly random number from 0 to 0.1. The initial solution,
from which you start the search, should be generated uniformly randomly inside
the bounds of the function.

For each of the selected functions, run the algorithm 10 times and report:

a) Best coordinates and objective value found over the 10 runs

b) Mean objective value found over the 10 runs

c) For each run, report the local minimum found, the number of iterations
before reaching the local minimum, and the number of calls to the objective
function.

2

Installing and using the smoof package
To install and load the smoof package run the following two lines.

install.packages("smoof")
library(smoof)

The package smoof is now available in R. This package include a collection
of test functions for continuous optimization. To use the functions we first need
to create functions before we can use them.

Creating and running test functions
You need to create test functions first. The smoof package creates functions
with predefined bounds and dimensions. Each functions has a know global
optimum (minimum).

Lets make the selected three functions.

fun1 <- makeRosenbrockFunction(2)
fun2 <- makeAckleyFunction(2)
fun3 <- makeRastriginFunction(2)

This code generates two dimensional functions. If you want more dimensions
just change the first parameter.

Running the functions. Lets find the value of the Rosenbrock function at
point (1,2).

fun1(c(1,2))

[1] 100

By using print() on the function you can see its basic info.

print(fun1)

Single-objective function
Name: 2-d Rosenbrock Function
Description: no description
Tags: single-objective, continuous, differentiable,
non-separable, scalable, multimodal
Noisy: FALSE
Minimize: TRUE
Constraints: TRUE
Number of parameters: 2
Type len Def Constr Req Tunable Trafo
x numericvector 2 - -5 to 10 - TRUE -
Global optimum objective value of 0.0000 at
x1 x2
1 1 1

3

For this assignment pay attention to Constr value which represents the
bounds of the search space.

We can easily optimize these functions using simulated annealing from GenSA
package.

library(GenSA)
output <- GenSA(fn = fun1,

lower = c(-5, -5),
upper = c(10, 10),
control=list(verbose=FALSE, max.time = 10))

output$par

[1] 1 1

output$value

[1] 3.759141e-20

You can also easily plot the functions using function plot3D() from package
plot3D. The plots are only available for two dimensional functions. The plots of
the three selected functions are available in appendix.

4

Running smoof in Python
In this part we will embed the smoof package from R into Python using rpy2
module. You can install it using "pip install rpy2". This packages allows you to
run R code from python and requires R to be installed.

If you have numpy and smoof modules you can run the following example
that shows the basic functionality similar to the previous section.

import numpy as np
from rpy2.robjects import numpy2ri
from rpy2.robjects.packages import importr

Activate the automatic conversion from numpy to R arrays
numpy2ri.activate()

Import the ’smoof’ package
smoof = importr(’smoof’)

Define the Rosenbrock function using smoof
rosenbrock = smoof.makeRosenbrockFunction(dimensions=2)

Evaluate the function at a specific point
point = np.array([1, 2])
result = rosenbrock(point)
print("Rosenbrock function value at", point, ":", result[0])

Print the basic information of the created function
print(rosenbrock)

5

Appendix - plots

plot3D(fun1)

x

y

z

2e+05

4e+05

6e+05

8e+05

1e+06

6

plot3D(fun2)

x

y

z

5

10

15

20

7

plot3D(fun3)

x

y

z

20

40

60

8

