
Principal component analysis

One very important application of the singular value decomposition of a
matrix is a principal component analysis (PCA), which is used to identify
patterns in data. This can be efficiently used to reduce data to lower di-
mensional spaces (and store only these) or interpret the relationships pre-
viously not noticed.

Suppose we are given n data points X1, . . . ,Xn ∈Rd , viewed as rows of a
n×d matrix X. Each entry xi,j of Xi = (xi,1,xi,2, . . . ,xi,d) represents the value
of some feature of Xi , i.e., if Xi represents a person, then xi,j ’s can represent
his/her year of birth, the height, blood sugar level, blood presure, etc. The
columns C1, . . . ,Cd of X are also called feature vectors.

Basic idea of PCA: Determine the vectors Y (1), . . . ,Y (d) ∈ Rn, called principal
components (PCs), which are uncorrelated projections of centered data po-
ints X1, . . . ,Xn onto some unit vectors v(1), . . . , v(d) ∈ Rd such that the variances
var(Y (1)), . . . ,var(Y (d)) are maximized.

Algorithm for the computation of PCs of X:

1. Centralization of data:

For each column Cj compute its mean value µj := 1
n

∑n
i=1 xi,j and sub-

tract the centroid µ := (µ1,µ2, . . . ,µd) from each row of X:

X − 1n,d diag(µ) = [xi,j −µj ]i,j ,

where 1n,d stands for the n× d matrix with all entries equal to 1 and
diag(µ) is a diagonal matrix with j-th diagonal entry µj .

2. Computation of the singular value decomposition (SVD) of X −
1n,d diag(µ):

Let X − 1n,d diag(µ) = UDV T be the SVD of X − 1n,d diag(µ), where
U ∈ Rn×n, V ∈ Rd×d are orthogonal matrices and D ∈ Rn×d is a diago-
nal matrix with the singular values σ1 ≥ σ2 ≥ . . .σd ≥ 0 in decreasing
order on the main diagonal.

3. Computation of the PCs of X:

The PCs of X are points Y (1), . . . ,Y (d) ∈Rn obtained by

Y (k) = (X − 1n,d diag(µ))v(k) = σku
(k), k = 1, . . . ,d,

where v(k) and u(k) are the k–th columns of V andU , respectively. The
vectors v(k) and u(k) are called right (resp. left) principal directions.
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Justification of the algorithm

Recall that the projection prv(x) of the vector x ∈Rd onto the line `v spaned
by a unit vector v = (v1, . . . , vd) ∈Rd is equal to (xT v)v. So the column vector

Y := Xv = [Xiv]i = v1C1 + v2C2 + . . .+ vdCd ∈Rn

consists of the lengths of projections of row vectors of X onto `v . Compu-
ting the mean Y of the vector Y we get

Y =
n∑
j=1

vjCj =
n∑
j=1

vjCj =
n∑
j=1

vjµj ∈R.

So the centered vector Y −Y · 1n,1 of Y is equal to

Y −Y · 1n,1 = v1(C1 −µ1) + . . .+ vd(Cd −µd) = (X − 1n,d diag(µ))v. (1)

Moreover, if Y = Xv and Z = Xw for some v,w ∈ R
d , then their sample

covariance is equal to

cov(Y ,Z) =
1

n− 1
(Y −Y · 1n,1)T (Z −Z · 1n,1)

=(1) 1
n− 1

vT (X − 1n,d diag(µ))T (X − 1n,d diag(µ))w

=(3) vTΣw,

(2)

where Σ stands for the covariance matrix:

Σ :=
1

n− 1
(X − 1n,d diag(µ))T (X − 1n,d diag(µ)) = [cov(Ci ,Cj )]i,j , (3)

and cov(Ci ,Cj ) stands for the sample covariance of the columns Ci and Cj ,
i.e.,

cov(Ci ,Cj ) =
1

n− 1
(Ci −µi · 1n,1)T (Cj −µj · 1n,1)

=
1

n− 1

n∑
k=1

(xk,i −µi)(xk,j −µj ),
(4)

where 1n,1 ∈Rn is a column of 1s. Using (2) notice that:

• The variance var(Y ) := cov(Y ,Y ) of Y is equal to var(Y ) = vTΣv.

• If v and w are such that (X −1n,d diag(µ))v and (X −1n,d diag(µ))w are
orthogonal, then we have cov(Y ,Z) = 0.
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Task

1. Derive the sample variance var(Y (k)) in terms of singular values of the
matrix X − 1n,d diag(µ).

2. Prove that Y (1), . . . ,Y (d) are pairwise uncorrelated, i.e., cov(Y (i),Y (j)) =
0 if i , j.

3. Write the following Matlab/Octave functions:

(a) [µ,Vk,Uk,Dk] = pca(X,k): Given an input a matrix X with rows re-
presenting data pointsX1, . . . ,Xn ∈Rd and an integer k ≤min(n,d),
it returns the centroid µ, matrices Vk ,Uk with columns being the
first k left/right principal directions and a vector Dk of the sam-
ple variances of the first k PCs.

(b) [Z] = proj(X): Given an input X is as in (3a) above, it returns
the matrix Z whose i-th row is a projection of Xi − µ to the the
largest two right principal directions and plots both PCs and
projections of data points on the same image.

(c) [r] = threshold(X,p): Given an input X is as in (3a) above
and number p ∈ (0,1), it returns the smallest number r such that
f (r) ≥ p, where

f (k) :=
var(Y (1)) + . . .+ var(Y (k))
var(Y (1)) + . . .+ var(Y (d))

and Y (1), . . . ,Y (d) are the PCs of X, and plots the graph of f (k)
with x-axis the value of k and y-axis the value of f (k).
Note: A common threshold for the number of PCs to take into account is p =

0.9.

In all functions above stick to specifications: Inputs and outputs must be
exactly as described above.

Submission

Use the online classroom to submit the following:

1. Files pca.m, proj.m and threshold.m, which should be well-commented
and contain at least one test,

2. A report file solution.pdf, which contains the necessary derivations
and answers to questions,

While you can discuss solutions of the problems with your colleagues, the
programs and report must be your own creation. You can use all Octave
functions from problem sessions.
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