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Chapter 0:

What is Mathematical Modelling?
I Types of models

I Modelling cycle

I Numerical errors
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Introduction

Tha task of mathematical modelling is to find and evaluate solutions to real
world problems with the use of mathematical concepts and tools.

In this course we will introduce some (by far not all) mathematical tools
that are used in setting up and solving mathematical models.

We will (together) also solve specific problems, study examples and work on
projects.
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Contents

I Introduction

I Linear models: systems of linear equations, matrix inverses, SVD
decomposition, PCA

I Nonlinear models: vector functions, linear approximation, solving
systems of nonlinear equations

I Geometric models: curves and surfaces

I Dynamical models: differential equations, dynamical systems
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Modelling cycle

Real world problem Idealization

Simplification

Mathematical model

Generalization

Conclusions

Solution

Computer solution

ProgramSimulation

Explanation
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What should we pay attention to?

I Simplification: relevant assumptions of the model (distinguish
important features from irrelevant)

I Generalization: choice of mathematical representations and tools (for
example: how to represent an object - as a point, a geometric shape,
. . . )

I Solution: as simple as possible and well documented

I Conclusions: are the results within the expected range, do they
correspond to “facts” and experimantal results?

A mathematical model is not universal, it is an approximation of the real
world that works only within a certain scale where the assumptions are at
least approximately realistic.
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Example

An object (ball) with mass m is thrown vertically into the air. What should
we pay attention to when modelling its motion?

I The assumptions of the model: relevant forces and parameters
(gravitation, friction, wind, . . . ), how to model the object (a point, a
homogeneous or nonhomogeneous geometric object, angle and rotation
in the initial thrust, . . . )

I Choice of the mathematical model: differential equation, discrete
model, . . .

I Computation: analytic or numeric, choice of method,. . .

I Do the results make sense?
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Errors

An important part of modelling is estimating the errors!

Errors are an integral part of every model.

Errors come from: assumptions of the model, imprecise data, mistakes in
the model, computational precision, errors in numerical and computational
methods, mistakes in the computations, mistakes in the programs, . . .

Absolute error = Approximate value - Correct value

∆x = x̄ − x

Relative error = Absolute error
Correct value

δx =
∆x

x
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Example: quadratic equation

x2 + 2a2x − q = 0

Analytic solutions are

x1 = −a2 −
√

a4 + q and x2 = −a2 +
√
a4 + q.

What happens if a2 = 10000, q = 1? Problem with stability in calculating
x2.

More stable way for computing x2 (so that we do not subtract numbers
which are nearly the same) is

x2 = −a2 +
√

a4 + q =
(−a2 +

√
a4 + q)(a2 +

√
a4 + q)

a2 +
√

a4 + q

=
q

a2 +
√

a4 + q
.
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Example of real life disasters

I Disasters caused because of numerical errors:
(http://www-users.math.umn.edu/~arnold//disasters/)

I The Patriot Missile failure, Dharan, Saudi Arabia, February 25
1991, 28 deaths: bad analysis of rounding errors.

I The explosiong of the Ariane 5 rocket, French Guiana, June 4,
1996: the consequence of overflow in the horizontal velocity.
https://www.youtube.com/watch?v=PK_yguLapgA

https://www.youtube.com/watch?v=W3YJeoYgozw

https://www.arianespace.com/vehicle/ariane-5/

I The sinking of the Sleipner offshore platform, Stavanger, Norway,
August 12, 1991, billions of dollars of the loss: inaccurate finite
element analysis, i.e., the method for solving partial differential
equations.
https://www.youtube.com/watch?v=eGdiPs4THW8
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Chapter 1:

Linear model
I Definition

I Systems of linear equations

I Generalized inverses

I The Moore-Penrose (MP) inverse

I Singular value decomposition

I Principal component analysis

I MP inverse and solving linear systems
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1. Linear mathematical models

Given points

{(x1, y1), . . . , (xm, ym)}, xi ∈ Rn, yi ∈ R,

the task is to find a function F (x , a1, . . . , ap) that is a good fit for the data.

The values of the parameters a1, . . . , ap should be chosen so that the
equations

yi = F (x , a1, . . . ap), i = 1, . . . ,m,

are satisfied or, if this is not possible, that the error is as small as possible.

Least squares method: the parameters are determined so that the sum of
squared errors

m∑
i=1

(F (xi , a1, . . . ap)− yi )
2

is as small as possible.
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The mathematical model is linear, when the function F is a linear function
of the parameters:

F (x , a1, . . . , ap) = a1ϕ1(x) + ϕ2(x) + · · ·+ apϕp(x),

where ϕ1, ϕ2, . . . ϕp are functions of a specific type.

Examples of linear models:

1. linear regression: x , y ∈ R, ϕ1(x) = 1, ϕ2(x) = x ,

2. polynomial regression: x , y ∈ R, ϕ1(x) = 1, . . . , ϕp(x) = xp−1,

3. multivariate linear regression: x = (x1, . . . , xn) ∈ Rn, y ∈ R,

ϕ1(x) = 1, ϕ2(x) = x1, . . . , ϕn(x) = xn,

4. frequency or spectral analysis:

ϕ1(x) = 1, ϕ2(x) = cosωx , ϕ3(x) = sinωx , ϕ4(x) = cos 2ωx , . . .

(there can be infinitely many functions ϕi (x) in this case)

Examples of nonlinear models: F (x , a, b) = aebx and F (x , a, b, c) =
a + bx

c + x
.
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Given the data points {(x1, y1), . . . , (xm, ym)}, xi ∈ Rn, yi ∈ R, the
parameters of a linear model

y = a1ϕ1(x) + a2ϕ2(x) + · · ·+ apϕp(x)

should satisfy the system of linear equations

yi = a1ϕ1(xi ) + a2ϕ2(xi ) + · · ·+ apϕp(xi ), i = 1, . . . ,m,

or, in a matrix form,
ϕ1(x1) ϕ2(x1) . . . ϕp(x1)
ϕ1(x2) ϕ2(x2) . . . ϕp(x2)
. . . . . . . . . . . .

ϕ1(xm) ϕ2(xm) . . . ϕp(xm)




a1
a1
...
ap

 =


y1
y1
...
yp

 .

14/60



1.1 Systems of linear equations and generalized inverses

A system of linear equations in the matrix form is given by

Ax = b,

where

I A is the matrix of coefficients of order m× n where m is the number of
equations and n is the number of unknowns,

I x is the vector of unknowns and

I b is the right side vector.
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Existence of solutions:

Let A = [a1, . . . , an], where ai are vectors representing the columns of A.

For any vector x =

 x1
...
xn

 the product Ax is a linear combination

Ax =
∑
i

xiai .

The system is solvable if and only if the vector b can be expressed as a
linear combination of the columns of A, that is, it is in the column space
C(A) of A, i.e., b ∈ C(A).
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By adding b to the columns of A we obtain the extended matrix of the
system

[A | b] = [a1, . . . , an | b],

Theorem
The system Ax = b is solvable if and only if the rank of A equals the rank
of the extended matrix [A | b], i.e.,

rank A = rank [A | b] =: r .

The solution is unique if the rank of the two matrices equals the number of
unknowns, i.e., r = n.

A generic case is the following:

If A is a square matrix (n = m) that has an inverse matrix A−1, the system
has a unique solution

x = A−1b.
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Let A ∈ Rn×n be a square matrix. The following conditions are equivalent
and characterize when a matrix A is invertible or nonsingular:

I The matrix A has an inverse.

I The rank of A equals n.

I det(A) 6= 0.

I The null space N(A) = {x : Ax = 0} is trivial.

I All eigenvalues of A are nonzero.

I For each b the system of equations Ax = b has precisely one solution.
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A square matrix that does not satisfy the above conditions does not have
an inverse.

Example

A =

 1 0 1
0 1 −1
1 1 1

 , B =

 1 0 1
0 1 −1
1 1 0


A is invertible and is of rank 3, B is not invertible and is of rank 2.

For a rectangular matrix A of dimension m × n, m 6= n, its inverse is not
defined (at least in the above sense...).
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Definition
A generalized inverse of a matrix A ∈ Rn×m is a matrix G ∈ Rm×n such that

AGA = A. (1)

Remark
Note that the dimension of A and its generalized inverse are transposed to each
other. This is the only way which enables the multiplication A · ∗ · A.

Proposition

If A is invertible, it has a unique generalized inverse, which is equal to A−1.

Proof.
Let G be a generalized inverse of A, i.e., (1) holds. Multiplying (1) with
A−1 from the left and the right side we obtain:

Left hand side (LHS): A−1AGAA−1 = IGI = G ,

Right hand side (RHS): A−1AA−1 = IA−1 = A−1,

where I is the identity matrix. The equality LHS=RHS implies that
G = A−1. 20/60



Theorem
Every matrix A ∈ Rn×m has a generalized inverse.

Proof.
Let r be the rank of A.

Case 1. rankA = rankA11, where

A =

[
A11 A12

A21 A22

]
and A11 ∈ Rr×r ,A12 ∈ Rr×(m−r),A21 ∈ R(n−r)×r , A22 ∈ R(n−r)×(m−r).
We claim that

G =

[
A−111 0

0 0

]
,

where 0s denote zero matrices of appropriate sizes, is the generalized
inverse of A. To prove this claim we need to check that

AGA = A.
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AGA =

[
A11 A12

A21 A22

] [
A−111 0

0 0

] [
A11 A12

A21 A22

]
=

[
I 0

A21A
−1
11 0

] [
A11 A12

A21 A22

]
=

[
A11 A12

A21 A21A
−1
11 A12

]
.

For AGA to be equal to A we must have

A21A
−1
11 A12 = A22. (2)

It remains to prove (2). Since we are in Case 1, it follows that every column

of

[
A12

A22

]
is in the column space of

[
A11

A21

]
. Hence, there is a coefficient

matrix W ∈ Rr×(m−r) such that[
A12

A22

]
=

[
A11

A21

]
W =

[
A11W
A21W

]
.

We obtain the equations A11W = A12 and A21W = A22. Since A11 is
invertible, we get W = A−111 A12 and hence A21A

−1
11 A12 = A22, which is (2).
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Case 2. The upper left r × r submatrix of A is not invertible.

One way to handle this case is to use permutation matrices P and Q, such

that PAQ =

[
Ã11 Ã12

Ã21 Ã22

]
, Ã11 ∈ Rr×r and rank Ã11 = r . By Case 1 we

have that the generalized inverse (PAQ)g of PAQ equals to

[
Ã−111 0

0 0

]
.

Thus,

(PAQ)

[
Ã−111 0

0 0

]
(PAQ) = PAQ. (3)

Multiplying (3) from the left by P−1 and from the right by Q−1 we get

A

(
Q

[
Ã−111 0

0 0

]
P

)
A = A.

So, Q

[
Ã−111 0

0 0

]
P =

(
PT

[(
Ã−111

)T
0

0 0

]
QT

)T

is a generalized inverse of

A.
23/60



Algorithm for computing a generalized inverse of A
Let r be the rank of A.

1. Find any nonsingular submatrix B in A of order r × r ,
2. in A substitute

I elements of the submatrix B for corresponding elements of (B−1)T ,
I all other elements with 0,

3. the transpose of the obtained matrix is a generalized inverse G .

Example

Compute at least one generalized inverse of

A =

0 0 2 0
0 0 1 0
2 0 1 4

 .
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I Note that rankA = 2. For B from the algorithm one of the possibilities is

B =

[
1 0
1 4

]
,

i.e., the submatrix in the right lower corner.

I Computing B−1 we get B−1 =

[
1 0
− 1

4
1
4

]
and hence

(
B−1

)T
=

[
1 − 1

4
0 1

4

]
.

I A generalized inverse of A is then

G =

0 0 0 0
0 0 1 − 1

4
0 0 0 1

4

T

=


0 0 0
0 0 0
0 1 0
0 − 1

4
1
4

 .
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Generalized inverses of a matrix A play a similar role as the usual inverse
(when it exists) in solving a linear system Ax = b.

Theorem
Let A ∈ Rn×m and b ∈ Rm. If the system

Ax = b (4)

is solvable (that is, b ∈ C(A)) and G is a generalized inverse of A, then

x = Gb (5)

is a solution of the system (4).

Moreover, all solutions of the system (4) are exaclty vectors of the form

xz = Gb + (GA− I )z , (6)

where z varies over all vectors from Rm.
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Proof.
We write A in the column form

A =
[
a1 a2 . . . am

]
,

where ai are column vectors of A. Since the system (4) is solvable, there
exist real numbers α1, . . . , αm ∈ R such that

m∑
i=1

αiai = b. (7)

First we will prove that Gb also solves (4). Multiplying (7) with G we get

Gb =
m∑
i=1

αiGai . (8)

Multiplying (9) with A the left side becomes A(Gb), so we have to check
that

m∑
i=1

αiAGai = b. (9)
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Since G is a generalized inverse of A, we have that AGA = A or restricting
to columns of the left hand side we get

AGai = ai for every i = 1, . . . ,m.

Plugging this into the left side of (9) we get exactly (7), which holds and
proves (9).

For the moreover part we have to prove two facts:

(i) Any xz of the form (6) solves (4).

(ii) If Ax̃ = b, then x̃ is of the form xz for some z ∈ Rm.

(i) is easy to check:

Axz = A (Gb + (GA− I )z) = AGb + A(GA− I )z

= b + (AGA− A)z = b.
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To prove (ii) note that
A(x̃ − Gb) = 0,

which implies that
x̃ − Gb ∈ kerA.

It remains to check that

kerA = {(GA− I )z : z ∈ Rm} . (10)

The inclusion (⊇) of (10) is straightforward:

A((GA− I )z) = (AGA− A)z = 0.

For the inclusion (⊆) of (10) we have to notice that any v ∈ kerA is equal
to (GA− I )z for z = −v :

(GA− I )(−v) = −GAv + v = 0 + v = v .
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Example

Find all solutions of the system

Ax = b,

where A =

0 0 2 0
0 0 1 0
2 0 1 4

 and b =

2
1
4

.

I Recall from the example a few slides above that G =


0 0 0
0 0 0
0 1 0

0 − 1
4

1
4

.

I Calculating Gb and GA− I we get

Gb =


0
0
1
3
4

 and A =


−1 0 0 0
0 −1 0 0
0 0 0 0
1
2

0 0 0

 .

I Hence,

xz =
[
−z1 −z2 1 3

4
+ 1

2
z1

]T
where z1, z2 vary over R.

30/60



1.2 The Moore-Penrose generalized inverse

Among all generalized inverses of a matrix A, one has especially nice
properties.

Definition
The Moore-Penrose generalized inverse, or shortly the MP inverse of
A ∈ Rn×m is any matrix A+ ∈ Rm×n satifying the following four conditions:

1. A+ is a generalized inverse of A: AA+A = A.

2. A is a generalized inverse of A+: A+AA+ = A+.

3. The square matrix AA+ ∈ Rn×n is symmetric: (AA+)T = AA+.

4. The square matrix A+A ∈ Rm×m is symmetric: (A+A)T = A+A.

Remark
There are two natural questions arising after defining the MP inverse:

I Does every matrix admit a MP inverse? Yes.

I Is the MP inverse unique? Yes.

31/60



Theorem
The MP inverse A+ of a matrix A is unique.

Proof.
Assume that there are two matrices M1 and M2 that satisfy the four
conditions in the definition of MP inverse of A. Then,

AM1 = (AM2A)M1 by property (1)
= (AM2)(AM1) = (AM2)T (AM1)T by property (3)
= MT

2 (AM1A)T = MT
2 AT by property (1)

= (AM2)T = AM2 by property (3)

A similar argument involving properties (2) and (4) shows that

M1A = M2A,

and so
M1 = M1AM1 = M1AM2 = M2AM2 = M2.
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Remark
Let us assume that A+ exists (we will shortly prove this fact). Then the
following properties are true:

I If A is a square invertible matrix, then it A+ = A−1.

I (A+)+ = A.

I (AT )+ = (A+)T .

In the rest of this chapter we will be interested in two obvious questions:

I How do we compute A+?

I Why would we want to compute A+?

To answer the first question, we will begin by three special cases.
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Construction of the MP inverse of A ∈ Rn×m:

Case 1: ATA ∈ Rm×m is an invertible matrix. (In particular, m ≤ n.)

In this case A+ = (ATA)−1AT .

To see this, we have to show that the matrix (ATA)−1AT satisfies
properties (1) to (4):

1. AMA = A(ATA)−1ATA = A(ATA)−1(ATA) = A.

2. MAM = (ATA)−1ATA(ATA)−1AT = (ATA)−1AT = M.

3.

(AM)T =
(
A(ATA)−1AT

)T
= A

((
ATA

)−1)T

AT =

= A

((
ATA

)T)−1
AT = A(ATA)−1AT = AM.

4. Analoguous to the previous fact.
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Case 2: AAT is an invertible matrix. (In particular, n ≤ m.)

In this case AT satisfies the condition for Case 1, so (AT )+ = (AAT )−1A.

Since (AT )+ = (A+)T it follows that

A+ =
(

(A+)T
)T

=
(

(AAT )−1A
)T

= AT
(

(AAT )−1
)T

= AT
(

(AAT )−T
)−1

= AT (AAT )−1.

Hence, A+ = AT (AAT )−1.
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Case 3: Σ ∈ Rn×m is a diagonal matrix of the form

Σ =


σ1

σ2
. . .

σn

 or Σ̃ =



σ1
σ2

. . .

σm


.

The MP inverse is

Σ+ =



σ+1
σ+2

. . .

σ+n


or Σ̃+ =


σ+1

σ+2
. . .

σ+m

 ,

where σ+i =

{ 1
σi
, σi 6= 0,

0, σi = 0.
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Case 4: A general matrix A. (using SVD)

Theorem (Singular value decomposition - SVD)

Let A ∈ Rn×m be a matrix. Then it can be expressed as a product

A = UΣV T ,

where

I U ∈ Rn×n is an orthogonal matrix with left singular vectors ui as its
columns,

I V ∈ Rm×m is an orthogonal matrix with right singular vectors vi as its
columns,

I Σ =


σ1 0

. . .
...

σr 0

0 0

 =

[
S 0
0 0

]
∈ Rn×m is a diagonal matrix

with singular values
σ1 ≥ σ2 ≥ · · · ≥ σr > 0

on the diagonal.
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Derivations for computing SVD

If A = UΣV T , then

ATA = (VΣTUT )(UΣV T ) = VΣTΣV T = V

[
S2 0
0 0

]
V T ∈ Rm×m,

AAT = (UΣV T )(UΣV T )T = UΣΣTUT = U

[
S2 0
0 0

]
UT ∈ Rn×n.

Let
V =

[
v1 v2 · · · vm

]
and U =

[
u1 u2 · · · un

]
be the column decompositions of V and U.

Let e1, . . . , em ∈ Rm and f1, . . . , fn ∈ Rn be the standard coordinate vectors
of Rm and Rn, i.e., the only nonzero component of ei (resp. fj) is the i-th
one (resp. j-th one), which is 1. Then

ATAvi = VΣTΣV T vi = VΣTΣei =

{
σ2i vi , if i ≤ r ,

0, if i > r ,

AATuj = UΣΣTUTuj = UΣΣT fj =

{
σ2i uj , if j ≤ r ,

0, if j > r .
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Further on,

(AAT )(Avi ) = A(ATA)vi =

{
σ2i Avi , if i ≤ r ,

0, if i > r ,

(ATA)(ATuj) = AT (AAT )uj =

{
σ2j A

Tuj , if j ≤ r ,

0, if j > r .

It follows that:

I ΣTΣ =

[
S2 0
0 0

]
∈ Rm×m (resp. ΣΣT =

[
S2 0
0 0

]
∈ Rn×n) is the

diagonal matrix with eigenvalues σ2i of ATA (resp. AAT ) on its
diagonal, so the singular values σi are their square roots.

I V has the corresponding eigenvectors (normalized and pairwise
orthogonal) of ATA as its columns, so the right singular vectors are
eigenvectors of ATA.

I U has the corresponding eigenvectors (normalized and pairwise
orthogonal) of AAT as its columns, so the left singular vectors are
eigenvectors of AAT .
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I Avi is an eigenvector of AAT corresponding to σ2i and so

ui =
Avi
‖Avi‖

=
Avi
σi

is a left singular vector corresponding to σi , where in the second
equality we used that

‖Avi‖ =
√

(Avi )T (Avi ) =
√

vT
i ATAvi =

√
σ2
i v

T
i vi = σi‖vi‖ = σi .

I ATuj is an eigenvector of ATA corresponding to σ2j and so

vj =
ATuj
‖ATuj‖

=
ATuj
σj

is a right singular vector corresponding to σj , where in the second
equality we used that

‖ATuj‖ =
√

(ATuj)T (ATuj) =
√

uT
j AA

Tuj =
√
σ2
j u

T
j uj = σj‖uj‖ = σj .
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Algorithm for SVD computation

I Compute the eigenvalues and an orthonormal basis consisting of
eigenvectors of the symmetric matrix ATA or AAT (depending on
which is of them is of smaller size).

I The singular values of the matrix A ∈ Rn×m are equal to σi =
√
λi ,

where λi are the nonzero eigenvalues of ATA (resp. AAT ).

I The left singular vectors are the corresponding orthonormal
eigenvectors of AAT .

I The right singular vector are the corresponding orthonormal
eigenvectors of ATA.

I If u (resp. v) is a left (resp. right) singular vector corresponding to the
singular value σi , then v = ATu (resp. u = Av) is a right (resp. left)
singular vector corresponding to the same singular value.

I The remaining columns of U (resp. V ) consist of an orthonormal basis
of the kernel (i.e., the eigenspace of λ = 0) of AAT (resp. ATA).
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General algorithm for computation of A+ (long version)

1. For ATA compute its eigenvalues

λ1 ≥ λ2 ≥ · · · ,≥ λr > λr+1 = . . . = λm = 0

and the corresponding orthonormal eigenvectors

v1, . . . , vr , vr+1, . . . , vm,

and form the matrices

Σ = diag(
√
λ1, . . . ,

√
λm) ∈ Rn×m,

V1 =
[
v1 · · · vr

]
, V2 =

[
vr+1 · · · vm

]
and V =

[
V1 V2

]
.

2. Let

u1 =
Av1
σ1

, u2 =
Av2
σ2

, . . . , ur =
Avr
σr

,

and ur+1, . . . , un vectors, such that {u1, . . . , un} is an ortonormal basis
for Rn. Form the matrices

U1 =
[
u1 · · · ur

]
, U2 =

[
ur+1 · · · un

]
and U =

[
U1 U2

]
.

3. Then
A+ = VΣ+UT .

Remark
Note that the eigenvectors vr+1, . . . , vn corresponding to the eigenvalue 0
of ATA do not need to be computed.
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General algorithm for computation of A+ (short version)

1. For ATA compute its nonzero eigenvalues

λ1 ≥ λ2 ≥ · · · ,≥ λr > 0

and the corresponding orthonormal eigenvectors

v1, . . . , vr ,

and form the matrices

S = diag(
√
λ1, . . . ,

√
λr ) ∈ Rr×r ,

V1 =
[
v1 · · · vr

]
∈ Rm×r .

2. Put the vectors

u1 =
Av1
σ1

, u2 =
Av2
σ2

, . . . , ur =
Avr
σr

in the matrix
U1 =

[
u1 · · · ur

]
.

3. Then
A+ = V1Σ+UT

1 .
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Correctness of the computation of A+

Step 1. VΣ+UT is equal to A+.

(i) AA+A = A:

AA+A = (UΣV T )(VΣ+UT )(UΣV T ) = UΣ(V TV )Σ+(UTU)ΣV T

= UΣΣ+ΣV T = UΣV T = A.

(ii) A+AA+ = A+: Analoguous to (i).

(iii) (AA+)T = AA+:

(AA+)T =
(

(UΣV T )(VΣ+UT )
)T

=
(
UΣΣ+UT

)T
=

(
U

[
Ir 0
0 0

]
UT

)T

= U

[
Ir 0
0 0

]
UT

= (UΣV T )(VΣ+UT ) = A+.

(iv) (A+A)T = A+A: Analoguous to (iii).
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Step 2. VΣ+UT is equal to V1Σ+UT
1 .

VΣUT =
[
V1 V2

] [S 0
0 0

] [
UT
1

UT
2

]
=
[
V1S 0

] [UT
1

UT
2

]
= V1SU

T
1 .

Example

Compute the SVD and A+ of the matrix A =

[
3 2 2
2 3 −2

]
.

I AAT =

[
17 8
8 17

]
has eigenvalues 25 and 9.

I The eigenvectors of AAT corresponding to the eigenvalues 25, 9 are

u1 =
[

1√
2

1√
2

]T
, u2 =

[
1√
2
− 1√

2

]T
.

I The left singular vectors of A are

v1 =
ATu1
σ1

=
[

1√
2

1√
2

0
]T
, v2 =

ATu2
σ2

=
[

1

3
√
2
− 1

3
√
2

4

3
√
2

]T
.

v3 = v1 × v2 =
[

2√
3
− 2

3
− 1

3

]T
.
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I

A = UΣV T =

 1√
2

1√
2

1√
2
− 1√

2

5 0 0

0 3 0




1√
2

1√
2

0

1

3
√
2
− 1

3
√
2

4

3
√

2

2√
3

− 2
3

− 1
3

 .
I

A+ = VΣ+UT =


1√
2

1

3
√
2

2√
3

1√
2
− 1

3
√
2
− 2

3

0 4

3
√
2
− 1

3




1
5

0

0 1
3

0 0


 1√

2

1√
2

1√
2
− 1√

2



=


7
45

2
45

2
45

7
45

2
9
− 2

9

 .
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1.3 The MP inverse and systems of linear equations

Let A ∈ Rn×m, where m > n. A system of equations Ax = b that has more
variables than constraints. Typically such system has infinitely many
solutions, but it may happen that it has no solutions. We call such system
an underdetermined system.

Theorem

1. An underdetermined system of linear equations

Ax = b (11)

is solvable if and only if AA+b = b.

2. If there are infinitely many solutions, the solution A+b is the one with
the smallest norm, i.e.,

‖A+b‖ = min {‖x‖ : Ax = b} .

Moreover, it is the unique solution of smallest norm.
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Proof of Theorem.
We already know that Ax = b is solvable iff Gb is a solution, where G is
any generalized inverse of A. Since A+ is one of the generalized inverses,
this proves the first part of the theorem.

To prove the second part of the theorem, first recall that all the solutions of
the system are precisely the set

{A+b + (A+A− I )z : z ∈ Rm}.

So we have to prove that for every z ∈ Rm,

‖A+b‖ ≤ ‖A+b + (A+A− I )z‖.

We have that:

‖A+b + (A+A− I )z‖2 =

=
(
A+b + (A+A− I )z

)T (
A+b + (A+A− I )z

)
=
(
A+b

)T (
A+b

)
+ 2

(
A+b

)T
(A+A− I )z +

(
(A+A− I )z

)T (
(A+A− I )z

)
= ‖A+b‖2 + 2

(
A+b

)T
(A+A− I )z + ‖(A+A− I )z‖2
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Now, (
A+b

)T
(A+A− I )z = bT (A+)T (A+A− I )z

= bT (A+)T (A+A)T z − bT (A+)T z

= bT
(
(A+A)A+

)T
z − bT (A+)T z

= bT
(
A+AA+

)T
z − bT (A+)T z

= bT (A+)T z − bT (A+)T z = 0,

where we used the fact (A+A)T = A+A in the second equality.

Thus,

‖A+b + (A+A− I )z‖2 = ‖A+b‖2 + ‖(A+A− I )z‖2 ≥ ‖A+b‖2,

with the equality iff (A+A− I )z = 0. This proves the second part of the
theorem.
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Example

I The solutions of the underdetermined system x + y = 1 geometrically
represent an affine line. Matricially, A =

[
1 1

]
, b = 1. Hence,

A+b = A+1 is the point on the line, which is the nearest to the origin.
Thus, the vector of this point is perpendicular to the line.

I The solutions of the underdetermined system x + 2y + 3z = 5
geometrically represent an affine hyperplane. Matricially,
A =

[
1 2 3

]
, b = 5. Hence, A+b = A+5 is the point on the

hyperplane, which is the nearest to the origin. Thus, the vector of this
point is normal to the hyperplane.

I The solutions of the underdetermined system x + y + z = 1 and
x + 2y + 3z = 5 geometrically represent an affine line in R3.

Matricially, A =

[
1 1 1
1 2 3

]
, b =

[
1
5

]
. Hence, A+b is the point on the

line, which is the nearest to the origin. Thus, the vector of this point is
perpendicular to the line.
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Example

Find the point on the plane 3x + y + z = 2 closest to the origin.

I In this case,
A =

[
3 1 1

]
and b = [2].

I We have that AAT = [11] and hence its only eigenvalue is λ = 11 with eigenvector
u = [1], implying that

U = [1] and Σ =
[ √

11 0 0
]
.

I Hence,

v1 =
ATu

‖ATu‖ =
ATu

σ1
=

1√
11

[
3 1 1

]T
.

I

A+ = VΣ+UT =
1√
11

 3
1
1

 1√
11

[1] =


3
11

1
11

1
11

 .
I

x+ = A+b =
[

6
11

2
11

2
11

]T
.
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Overdetermined systems

Let A ∈ Rn×m, where n > m. This system is called overdetermined, since
here are more constraints than variables. Such a system typically has no
solutions, but it might have one or even infinitely many solutions.

Least squares approximation problem: if the system Ax = b has no
solutions, then a best fit for the solution is a vector x such that the error
||Ax − b|| or, equivalently in the row decomposition

A =

α1
...
αn

 ,
its square

||Ax − b||2 =
n∑

i=1

(αix − bi )
2,

is the smallest possible.
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Theorem
If the system Ax = b has no solutions, then

x+ = A+b

is the solution to the least squares approximation problem:

min{‖Ax − b‖ : x ∈ Rn}. (12)

Moreover, if rankA = m, then (12) has a unique solution. If rankA < m,
then x+ has the smallest second norm ‖x+‖2 among all solution to (12).

Proof.
Let A = UΣV T be the SVD decomposition of A. We have that

‖Ax − b‖ = ‖UΣV T x − b‖ = ‖ΣV T x − UTb‖,

where we used that
‖UT v‖ = ‖v‖

in the second equality (which holds since UT is an orthogonal matrix).
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Let

Σ =

[
S 0
0 0

]
, U =

[
U1 U2

]
, V =

[
V1 V2

]
, where

S ∈ Rr×r , U1 ∈ Rn×r ,U2 ∈ Rn×(n−r), V1 ∈ Rm×r , V2 ∈ Rm×(m−r). Thus,

‖ΣV T x − UTb‖ =

∥∥∥∥[S 0
0 0

] [
V T
1

V T
2

]
x −

[
UT
1

UT
2

]
b

∥∥∥∥
=

∥∥∥∥[SV T
1 x − UT

1 b
UT
2 b

]∥∥∥∥ .
But this norm is minimal iff

SV T
1 x − UT

1 b = 0

or equivalently
V T
1 x = S−1UT

1 b. (13)

Further on,

V TV =

[
V T
1 V1 V T

1 V2

V T
2 V1 V T

2 V2

]
= In,

implies that V T
1 V1 = Ir and V T

2 V1 = 0, where Ik stands for the k × k
identity matrix.
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If rankA = m, then V1 ∈ Rm×m is invertible with the inverse V T
1 and

hence,
V1S

−1UT
1 b = A+b

is the unique solution to (12).
If r = rankA < m, then all x which solve (13) are of the form A+

1 b + z , for
z ∈ kerV T

1 . Since kerV T
1 = imV2 and V T

2 V1 = 0, it follows that the norm
of A+

1 b + z is minimal for z = 0.

Remark
The closest vector to b in the column space C (A) = {Ax : x ∈ Rm} of A is
the orthogonal projection of b onto C (A). It follows that A+b is this
projection. Equivalently, b − (A+b) is orthogonal to any vector Ax,
x ∈ Rm, which can be proved also directly.
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Example

Given points {(x1, y1), . . . , (xn, yn)} in the plane, we are looking for the line
ax + b = y which is the least squares best fit.

If n > 2, we obtain an overdetermined system x1 1
...
xn 1

[ a
b

]
=

 y1
...
yn

 .

The solution of the least squares approximation problem is given by

[
a
b

]
= A+

 y1
...
ym

.

The line y = ax + b in the regression line.
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An application of SVD: principal component analysis or PCA

PCA is a very well-known and efficient method for data compression,
dimension reduction, . . .

Due to its importance in different fields, it has many other names: discrete

Karhunen-Loève transform (KLT), Hotelling transform, empirical orthogonal functions

(EOF), . . .

Let {X1, . . . ,Xm} be a sample of vectors from Rn.

In applications, often m << n, where n is very large, for example,
X1, . . . ,Xm can be

I vectors of gene expressions in m tissue samples or

I vectors of grayscale in images

I bag of words vectors, with components corresponding to the numbers
of certain words from some dictionary in specific texts, . . . ,

or n << m for example if the data represents a point cloud in a low
dimensional space Rn (for example in the plane).
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We will assume that m << n. Also assume that the data is centralized, i.e., the centeroid
is in the origin

µ =
1

m

m∑
i=1

Xi = 0 ∈ Rn.

If not, we substract µ from all vectors in the data set.

A matrix norm ‖ · ‖ : Rn×m → R is a function, which generalizes the notion
of the absolute value for numbers to matrices. It is used to measure a
distance between matrices. In contrast with the absolute value, which is
unique up to multiplication with a positive constant, there are many
different matrix norms.

Two important matrix norms are the following:

1. Spectral norm ‖ · ‖2:

‖A‖2 := max
‖x‖2=1

‖Ax‖2 = max
j=1,...,min(n,m)

σj(A).

2. Frobenius norm ‖ · ‖F :

‖A‖F :=

√∑
i ,j

a2i ,j =

√ ∑
j=1,...,min(n,m)

σj(A)2.
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Let
X =

[
X1 X2 · · · Xm

]T
be the matrix of dimension m × n with data in the rows.

Let XTX ∈ Rm×m and XXT ∈ Rn×n be the covariance matrices of the
data.

I The principal values of the data set {X1, . . . ,Xr} are the nonzero eigenvalues
λi = σ2

i of the covariance matrices (where σi are the singular values of X ).

I The principal directions in Rn are corresponding eigenvectors v1, . . . , vr , i.e. the
columns of the matrix V from the SVD of X . The remaining clolumns of V (i.e.
the eigenvectors correspondong to 0) form a basis of the null space of X .

I The first column v1, the first principal direction, corresponds to the direction in Rn

with the largest variance in the data Xi , that is, the most informative direction for
the data set, the second the second most important, . . .

I The principal directions in Rm are the columns u1, . . . , ur of the matrix U and
represent the coefficients in the linear decomposition of the vectors X1, . . . ,Xm

along the orthonormal basis v1, . . . vn of Rn.
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PCA provides a linear dimension reduction method based on a projection of
the data from the space Rn into a lower dimensional subspace spanned by
the first few principal vectors v1, . . . , vk in Rn.

The idea is to approximate

Xi = σ1u1,iv1 + · · ·+ σmum,ivm ∼= σ1u1,iv1 + · · ·+ σkuk,ivk

with the first k most informative directions in Rn and supress the last
m − k .

PCA has the following amazing property:

Theorem
Among all possible projections of p : Rn → Rk onto a k-dimensional
subspace, PCA provides the best in the sense that the errors

‖X − p(X )‖2F and ‖X − p(X )‖22,

where p(X ) =
[
p(X1) · · · p(Xm)

]T
, are the smallest possible.
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