
36 1 Main memory

1.9.3 Case study: Using the STM32F Flexible Memory Controller
to access SDRAM

The Flexible Memory Controller (FMC) found in STM32 microcontrollers consists
of the following main blocks:

1. the interface to the CPU’s Advanced High-performance Bus (AHB),
2. the NOR Flash/SRAM memory controller,
3. the SDRAM memory controller, and
4. NAND Flash controller.

The block diagram of the FMC is shown in Figure 1.32. The AHB interface allows
the CPU (and other bus master peripherals) to access the external memories through
the FMC controller. Two primary purposes of FMC are to translate transactions on
the high-speed CPU bus (namely AHB bus) into the appropriate external protocol
and to meet the access time requirements of the external memory devices.

Fig. 1.32: FMC block diagram.

From the FMC (or microprocessor) point of view, the external memory is divided
into six fixed-size regions of 256 Mbytes each, called banks (Figure 1.33). The first
bank is used to address NOR Flash memory devices. The third bank is used to
address NAND Flash memory devices. The last two banks are used to address two
SDRAM devices (one device per bank). The address bit 28 on the AHB bus (internal
AHB address line 28) selects one of the memory devices (banks). Let us focus only
on the FMC SDRAM controller and an SDRAM device in the fifth bank.

1.9 Synchronous DRAM 37

Fig. 1.33: Memory regions accessible from the FMC controller.

All external memories share the addresses, data and control signals with the con-
troller, and each external device is accessed utilizing a unique chip-select signal.
The FMC performs only one access at a time to an external device. Here, we will
describe only the SDRAM controller and its use to interface a 128 Mbit SDRAM
memory chip. All AHB transactions, in this case, translate into the SDRAM device
protocol.

The FMC SDRAM controller supports SDRAM devices of up to 256 Mbytes. It
can issue a 13-bit row address, an 11-bit column address, and a 2-bit bank address.
The memory accesses can be 8-bit, 16-bit, and 32-bit. We will use Micron’s 1 Meg
x 32 x 4 banks MT48LC4M32B2 SDRAM chip, organized as 4096 rows x 256
columns x 32 bits per bank. Hence, the memory controller would issue a 12-bit row
address, an 8-bit column address, and a 2-bit bank address.

The SDRAM controller in Figure 1.34 accepts single and burst read and write re-
quests and translates them into single memory accesses. In both cases, the SDRAM
controller keeps track of the active row in each bank to be able to perform consecu-
tive read and write accesses. The FMC SDRAM controller comprises a read FIFO (6
lines x 32 bits). It is used to read data in advance - the memory controller anticipates
READ commands to the open row if the RBURST bit is set in the FMC_SDCRx
register and stores data in the FIFO. Two bits RPIPE[1:0] in the FMC_SDCRx reg-
ister defines how much data will be anticipated and stored into the FIFO during the
read access. If we set both RPIPE[1:0] bits to zero, four data will be anticipated dur-
ing a single read access. The first read data will be transmitted to the AHB bus, and
the other three will be stored in the read FIFO buffer. The read FIFO buffer stores a
14-bit address tag for each line to identify its content: 11 bits for the column address,
2 bits for the internal bank in the active row, and 1 bit for the SDRAM device. Each
time a read request occurs, the SDRAM controller checks if the address matches
one of the address tags in the read FIFO buffer. In such a case, data are directly read
from the FIFO buffer. Otherwise, a new read command is issued to the SDRAM
device, and new data is read to the FIFO buffer.

38 1 Main memory

Fig. 1.34: FMC SDRAM Controller block diagram and signals.

The FMC SDRAM controller periodically issues auto-refresh commands to re-
fresh the SDRAM. The programmer should initialize the internal counter value in
the FMC_SDRTR. This value defines the number of memory clock cycles between
two refresh cycles (refresh rate). When this counter reaches zero, the FMC SDRAM
controller issues the auto-refresh command. If there is an ongoing memory access,
the auto-refresh request is delayed until the memory access finishes; otherwise, the
auto-refresh request takes precedence. If the memory access request occurs dur-
ing an auto-refresh operation, the request is buffered and processed when the auto-
refresh completes.

For our particular case, where the FMC SDRAM controller is used to access the
MT48LC4M32B2 SDRAM chip, the 32-bit memory address from the AHB bus is
mapped into the SDRAM address as presented in Figure 1.35. This figure illustrates
how the 32-bit addresses issued by the CPU on the AHB bus map to the 26-bit
addresses issued by the SDRAM controller to the SDRAM device.

Fig. 1.35: Address maping for a 128-bit SDRAM (4096 rows x 256 columns x 4
banks x 32 bit).

1.9 Synchronous DRAM 39

In order to use the FMC SDRAM controller with an external SDRAM device
residing in the SDRAM Bank 1, we should:

1. first, initialize the FMC SDRAM controller according to the used SDRAM de-
vice, and

2. secondly, initialize the SDRAM device.

The first step involves programming two FMC SDRAM controller configuration
registers, SDRAM Control Register 1 (FMC_SDCR1) and SDRAM Timing Regis-
ter 1 (FMC_SDTR1). The bits in FMC_SDCR1 (Figure 1.37) define the SDRAM
clock period, CAS Latency, whether the FMC anticipates READ commands (burst
read), data bus width and the internal organization of the SDRAM chip (rows,
columns and banks).

Fig. 1.36: Control register (FMC_SDCR).

The bits in FMC_SDTR1 define SDRAM timing parameters, e.g. RAS-to-CAS
delay, row-precharge delay, etc. In order to correctly set the bits in these two regis-
ters, we should consult the datasheet for a particular SDRAM chip.

Fig. 1.37: Timing register (FMC_SDTR).

The second step initializes the SDRAM chip. During the SDRAM chip initializa-
tion, the FMC controller sends several predefined commands to the SDRAM chip.
To send these commands, we should write them into the FMC SDRAM Command
Mode Register (FMC_SDCMR). The required initialization steps are described in
the datasheet for a particular SDRAM chip and involve the following:

1. providing stable CLOCK signal,
2. performing a PRECHARGE ALL command, which puts all rows in all banks

into an idle state,

40 1 Main memory

3. issuing several AUTO REFRESH commands
4. issuing several NOP commands before SDRAM is ready for access.

Instead of directly setting bits in the FMC SDRAM configuration registers,
we will rather use the HAL library. The HAL library abstracts most of the FMC
SDRAM controller hardware details. The FMC SDRAM controller is abstracted
in HAL with the SDRAM_HandleTypeDef C structure. The two most important
members of this structure are the C reference to FMC_SDRAM_TypeDef Instance
structure and FMC_SDRAM_InitTypeDef Init. The Instance is a reference to
the SDRAM registers (it holds the base address of the FMC SDRAM registers),
while the Init structure allows for FMC SDRAM controller configuration. The
FMC_SDRAM_InitTypeDef Init structure is defined as follows:

1 typedef struct
{

3 uint32_t SDBank;
uint32_t ColumnBitsNumber;

5 uint32_t RowBitsNumber;
uint32_t MemoryDataWidth;

7 uint32_t InternalBankNumber;
uint32_t CASLatency;

9 uint32_t WriteProtection;
uint32_t SDClockPeriod;

11 uint32_t ReadBurst;
} FMC_SDRAM_InitTypeDef;

Listing 1.1: FMC SDRAM FMC_SDRAM_InitTypeDef C structure.

Let us briefly describe the elements of the FMC_SDRAM_InitTypeDef Init
structure:

• SDBank: Specifies the SDRAM memory device that will be used (bank 1 or
bank 2 according to Figure 1.33).

• ColumnBitsNumber: Defines the number of bits of the column address.
• RowBitsNumber: Defines the number of bits of the row address.
• MemoryDataWidth: Defines the memory device width.
• InternalBankNumber: Defines the number of the device’s internal banks.
• CASLatency: Defines the SDRAM CAS latency in the number of memory

clock cycles.
• WriteProtection: Enables/Disables the SDRAM device to be accessed in

write mode.
• SDClockPeriod: Defines the SDRAM Clock Period for SDRAM devices. The

SDRAM clock period can be HCLK/2 or HCLK/3, where HCLK is the clock
period on the CPU’s AHB bus.

• ReadBurst: Enables the SDRAM controller to anticipate the next read com-
mands during the CAS latency and stores data in the Read FIFO.

Besides the FMC_SDRAM_InitTypeDef C structure, which abstracts the content
of FMC_SDCR1 register, the FMC_SDRAM_TimingTypeDef C structure is used to
abstract the content of FMC_SDTR1 register. It is defined as follows:

1.9 Synchronous DRAM 41

typedef struct
2 {

uint32_t LoadToActiveDelay;
4 uint32_t ExitSelfRefreshDelay;

uint32_t SelfRefreshTime;
6 uint32_t RowCycleDelay;

uint32_t WriteRecoveryTime;
8 uint32_t RPDelay;

uint32_t RCDDelay;
10 } FMC_SDRAM_TimingTypeDef;

Listing 1.2: FMC SDRAM FMC_SDRAM_TimingTypeDef C structure.

The elements of the FMC_SDRAM_TimingTypeDef C structure are self-explanatory
(they represent the particular timings for SDRAM chips), and there is no need to
describe them.

The code Listing 1.3 shows the FMC SDRAM controller initialization.

uint8_t Init_SDRAM(void)
2 {

static uint8_t sdramstatus = SDRAM_ERROR;
4 /* SDRAM device configuration */

sdramHand.Instance = FMC_SDRAM_DEVICE;
6

/* Timing configuration for 100 Mhz as SDRAM clock frequency
8 (System clock is up to 200 Mhz) */

/* These parameters are from the MT48LC4M32B2 Data Sheet ,
10 Table 18 and Table 19 */

sdramTiming.LoadToActiveDelay = 2; // t_MRD
12 sdramTiming.ExitSelfRefreshDelay = 7; // t_XSR

sdramTiming.SelfRefreshTime = 5; // t_RAS
14 sdramTiming.RowCycleDelay = 7; // t_RC

sdramTiming.WriteRecoveryTime = 2; // t_WR
16 sdramTiming.RPDelay = 2; // t_RP

sdramTiming.RCDDelay = 2; // t_RCD
18

20 sdramHand.Init.SDBank = FMC_SDRAM_BANK1;
sdramHand.Init.ColumnBitsNumber = FMC_SDRAM_COLUMN_BITS_NUM_8;

22 sdramHand.Init.RowBitsNumber = FMC_SDRAM_ROW_BITS_NUM_12;
sdramHand.Init.MemoryDataWidth = FMC_SDRAM_MEM_BUS_WIDTH_32;

24 sdramHand.Init.InternalBankNumber = FMC_SDRAM_INTERN_BANKS_NUM_4;
sdramHand.Init.CASLatency = FMC_SDRAM_CAS_LATENCY_3;

26 sdramHand.Init.WriteProtection = FMC_SDRAM_WRITE_PROTECTION_DISABLE;
sdramHand.Init.SDClockPeriod = FMC_SDRAM_CLOCK_PERIOD_2;

28 sdramHand.Init.ReadBurst = FMC_SDRAM_RBURST_ENABLE;
sdramHand.Init.ReadPipeDelay = FMC_SDRAM_RPIPE_DELAY_0;

30

/* SDRAM controller initialization */
32

if(HAL_SDRAM_Init (&sdramHand , &sdramTiming) != HAL_OK)
34 {

sdramstatus = SDRAM_ERROR;
36 }

else
38 {

sdramstatus = SDRAM_OK;
40 }

42 /* Once the FMC SDRAM Ctrl is initialized , we can access
and initialize the SDRAM chip */

44 /* SDRAM initialization sequence */
SDRAM_Initialization_sequence(REFRESH_COUNT);

42 1 Main memory

46

return sdramstatus;
48 }

Listing 1.3: FMC SDRAM Controller initialization.

Firstly, we set the SDRAM timing parameters (in the FMC_SDTR1 regis-
ter) considering the 100MHz SDRAM clock, then we set the SDRAM con-
figuration (in the FMC_SDCR1 register). To initialize the FMC SDRAM
controller (that is to copy the elements of both C structures into the
appropriate fields of the FMC_SDCR1 and FMC_SDTR1 registers), we
call the HAL function HAL_SDRAM_Init(SDRAM_HandleTypeDef *hsdram,
FMC_SDRAM_TimingTypeDef *Timing).

After the FMC SDRAM initialization, we should initialize the SDRAM chip.
SDRAMs must be powered up and initialized in a predefined manner. This is a nec-
essary step required to put all SDRAM rows in the idle state (precharge all rows) and
prepare the SDRAM chip for accepting and executing the commands. The SDRAM
initialization sequence is described in the SDRAM datasheet in detail. The code
Listing 1.4 shows the FMC SDRAM chip initialization. Briefly, the initialization
procedure contains four steps:

1. Enable the stable SDRAM clock.
2. Wait for at least 100us prior to issuing any command.
3. Perform a PRECHARGE ALL command.
4. Issue at least two AUTO REFRESH commands.
5. The SDRAM is now ready for mode register programming. Because the mode

register will power up in an unknown state, it should be loaded with desired bit
values prior to applying any operational command.

/**
2 * @brief Init the SDRAM device.

* SDRAMs must be initialized in a predefined manner. Operational -
procedures

4 * other than those specified in the SDRAM Data Sheet may result in -
undefined operation .

* @param RefreshCount : SDRAM refresh counter value
6 * @retval None

*/
8 void SDRAM_Initialization_sequence(uint32_t RefreshCount)

{
10 __IO uint32_t tmpmrd = 0;

12 /* Step 1: Configure a clock configuration enable command */
sdramCmd.CommandMode = FMC_SDRAM_CMD_CLK_ENABLE;

14 sdramCmd.CommandTarget = FMC_SDRAM_CMD_TARGET_BANK1;
sdramCmd.AutoRefreshNumber = 1;

16 sdramCmd.ModeRegisterDefinition = 0;

18

/* Send the Clock Configuration Enable command to the target bank */
20 /* The command is sent as soon as the Command MODE field in the

CMR is written */
22 HAL_SDRAM_SendCommand (&sdramHand , &sdramCmd , SDRAM_TIMEOUT);

24 /*

1.9 Synchronous DRAM 43

* Once the clock is stable , the SDRAM requires a 100 us delay
26 * prior to issuing any command

*/
28

/* Step 2: Insert 100 us minimum delay */
30 /* Inserted delay is equal to 1 ms due to systick time base unit */

HAL_Delay (1);
32

34 /*
* Once the 100 us delay has been satisfied , a PRECHARGE command

36 * should be applied. All banks must then be precharged ,
* thereby placing the device in the all banks idle state.

38 */
/* Step 3: Configure a PALL (precharge all) command */

40 sdramCmd.CommandMode = FMC_SDRAM_CMD_PALL;
sdramCmd.CommandTarget = FMC_SDRAM_CMD_TARGET_BANK1;

42 sdramCmd.AutoRefreshNumber = 1;
sdramCmd.ModeRegisterDefinition = 0;

44

/* Send the Precharge All command to the target bank */
46 /* The command is sent as soon as the Command MODE field

in the CMR is written */
48 HAL_SDRAM_SendCommand (&sdramHand , &sdramCmd , SDRAM_TIMEOUT);

50 /*
* Once in the idle state , at least two AUTO REFRESH cycles must

52 * be performed . If desired , more than two AUTO REFRESH
* commands can be issued in the sequence.

54 */
/* Step 4: Configure an Auto Refresh command */

56 sdramCmd.CommandMode = FMC_SDRAM_CMD_AUTOREFRESH_MODE;
sdramCmd.CommandTarget = FMC_SDRAM_CMD_TARGET_BANK1;

58 sdramCmd.AutoRefreshNumber = 8;
sdramCmd.ModeRegisterDefinition = 0;

60

/* Send the Auto -refresh commands to the target bank */
62 /* The command is sent as soon as the Command MODE

field in the CMR is written */
64 HAL_SDRAM_SendCommand (&sdramHand , &sdramCmd , SDRAM_TIMEOUT);

66

/*
68 * The SDRAM is now ready for mode register programming .

* Because the mode register will power up in an unknown state ,
70 * it should be loaded with desired bit values prior to

* applying any operational command. Using the LMR command ,
72 * program the mode register.

*/
74 /* Step 5: Program the external memory mode register */

tmpmrd = (uint32_t)SDRAM_MODEREG_BURST_LENGTH_1 |\
76 SDRAM_MODEREG_BURST_TYPE_SEQUENTIAL |\

SDRAM_MODEREG_CAS_LATENCY_3 |\
78 SDRAM_MODEREG_OPERATING_MODE_STANDARD |\

SDRAM_MODEREG_WRITEBURST_MODE_SINGLE;
80

sdramCmd.CommandMode = FMC_SDRAM_CMD_LOAD_MODE;
82 sdramCmd.CommandTarget = FMC_SDRAM_CMD_TARGET_BANK1;

sdramCmd.AutoRefreshNumber = 1;
84 sdramCmd.ModeRegisterDefinition = tmpmrd;

86 /* Send the Load Mode Register command to the target bank */
/* The command is sent as soon as the Command MODE field in

88 the CMR is written */
HAL_SDRAM_SendCommand (&sdramHand , &sdramCmd , SDRAM_TIMEOUT);

90

/*

44 1 Main memory

92 * Wait for at least tMRD time. This is automatically performed by
* the FMC SDRAM controller . At this point the DRAM is ready for

94 * any valid command.
*/

96

/* Step 6: Set the refresh rate counter in Refresh Timer register */
98 /* This 13-bit field defines the refresh rate of the SDRAM device.

It is expressed in number of memory clock cycles. */
100 HAL_SDRAM_ProgramRefreshRate (&sdramHand , RefreshCount);

}

Listing 1.4: SDRAM initialization sequence.

To enable the above procedure, the FMC SDRAM controller provides a spe-
cial register called Command Mode register (FMC_SDCMR), illustrated in Fig-
ure 1.38. It contains four fields. The MODE field defines the command issued to

Fig. 1.38: Command Mode register (FMC_SDCMR).

the SDRAM chip. The possible commands are, for example, "CLK ENABLE",
"PRECHARGE ALL", "AUTO REFRESH", and "LOAD MODE REGISTER". The
CTB1 and CTB2 fields select the SDRAM chip to which the command is sent. As
soon as the MODE field is written, the FMC SDRAM controller will issue the corre-
sponding command to SDRAM chips selected by CTB1 and CTB2 command bits.
The NRFS field defines how many consecutive Auto-refresh commands are issued
in the fourth step of the initialization sequence, the MRD field contains the con-
tent that should be written to the SDRAM Mode Register. The mode register is a
12-bit special register inside the SDRAM chip and is used to define the specific
mode of operation of the SDRAM. This definition includes the selection of a burst
length (BL), a burst type, a CAS latency (CL), an operating mode and a write burst
mode, as shown in Figure 1.39. The mode register is programmed from the FMC
SDRAM controller via the "LOAD MODE REGISTER" command and retains the
stored information until it is programmed again or the SDRAM device loses power.

The initialization of the SDRAM device is performed by sending a series of
commands from the FMC_SDCMR register to the SDRAM device. Each command
contains the actual instruction and its parameters. To facilitate the SDRAM chip
initialization, HAL provides the FMC_SDRAM_CommandTypeDef C structure and
HAL_SDRAM_SendCommand function. The FMC_SDRAM_CommandTypeDef C struc-
ture abstracts the content of FMC_SDCMR register and is defined as follows:

1.9 Synchronous DRAM 45

Fig. 1.39: SDRAM Mode Register.

1 typedef struct
{

3 uint32_t CommandMode;
uint32_t CommandTarget;

5 uint32_t AutoRefreshNumber;
uint32_t ModeRegisterDefinition;

7 } FMC_SDRAM_CommandTypeDef;

Listing 1.5: FMC SDRAM FMC_SDRAM_CommandTypeDef C structure.

Let us briefly describe the elements of the FMC_SDRAM_CommandTypeDef Init
structure:

• CommandMode: Defines the command issued to the SDRAM device.
• CommandTarget: Defines which SDRAM device (1 or 2) the command will be

issued to.
• AutoRefreshNumber: Defines the number of consecutive auto-refresh com-

mands issued in auto-refresh mode.
• ModeRegisterDefinition: Defines the SDRAM Mode register content.

In order to send a command to the SDRAM device, we first fill the
fields in the FMC_SDRAM_CommandTypeDef Init structure and then call the
HAL_SDRAM_SendCommand function.

46 1 Main memory

At the end of the SDRAM chip initialization, we set the auto-refresh period in the
FMC SDRAM controller. The AUTO REFRESH command is used during the regu-
lar operation of the SDRAM to refresh its content. This command is nonpersistent,
so it must be issued each time a refresh is required. If memory access is in progress,
the auto-refresh request is delayed. The refresh controller inside the SDRAM chip
generates the address of the row that should be refreshed. For example, the 128Mb
SDRAM requires 4096 AUTO REFRESH commands every 64ms. To ensure that
each row is refreshed according to this requirement, the SDRAM controller must is-
sue an AUTO REFRESH command every 15.625us. The FMC SDRAM controller
provides the Refresh Timer register (FMC_SDRTR). This register holds the 13-bit
refresh rate in number of SDRAM clock cycles. This 13-bit field should be set im-
mediately after the initialization of SDRAM. The 13-bit refresh rate is calculated
as follows. As the SDRAM clock runs at 100 Mhz (10 ns period), 15.625 us equals
1562 SDRAM clock periods. We should subtract at least 20 SDRAM clock periods
from this value to obtain a safe margin if an auto-refresh request occurs when a
read request has been accepted. Hence, the 13-bit refresh rate in the FMC_SDRTR
register corresponds to 1542.

To demonstrate the different scenarios when using the FMC SDRAM controller,
we copy a matrix of size 64 rows times 256 columns from the external SDRAM
to the internal SRAM. The elements of the matrix are 32-bit unsigned integers. In
the first scenario (Listing 1.6), the matrix is accessed in row-major order, while in
the second scenario (Listing 1.7), the matrix is accessed in column-major order. The
constants PA3_SDRAM_DEVICE_ADDR and SDRAM_COLS in Listings 1.6 and 1.7 equal
0xC0008000 and 256, respectively. Hence, the matrix is read from the SDRAM
startin at address 0xC000800.

1 void SDRAM_mat_row_access_test(void){
volatile uint32_t address;

3

for (int i = 0; i<MAT_ROWS; i++) {
5 for(int j=0; j<SDRAM_COLS; j++) {

address = PA3_SDRAM_DEVICE_ADDR + ((i*SDRAM_COLS + j) <<2);
7 matrixB[i][j] = *(uint32_t *) address;

}
9 }

}

Listing 1.6: Read matrix from SDRAM in row-major order.

void SDRAM_mat_col_access_test(void){
2 volatile uint32_t address;

4 for (int i = 0; i<SDRAM_COLS; i++) {
for(int j=0; j<MAT_ROWS; j++) {

6 address = PA3_SDRAM_DEVICE_ADDR + ((j*SDRAM_COLS + i) <<2);
matrixB[j][i] = *(uint32_t *) address;

8 }
}

10 }

Listing 1.7: Read matrix from SDRAM in column-major order.

1.9 Synchronous DRAM 47

Figure 1.40 illustrates one read issued from the CPU for the first scenario (row-
major order access). The FMC SDRAM controller does not support SDRAM burst
reads or writes (the only allowable burst length is 1). Instead, it supports burst reads
on the CPUs AHB bus by utilizing the internal FIFO. Hence, it anticipates four
READ commands to fill in the internal FIFO. The FIFO content is then transferred
to the CPU using the AHB burst read of length 4.

CK

CMD ACT NOP READ READ READ READ NOP NOP NOP

ADDR ROW COL(x) COL(x+1) COL(x+2) COL(x+3)

DQ D0 D1 D2 D3

t_RCD=2 CL=3

7 SDRAM clocks

1 2 3 4 5 6 7 8 9

Fig. 1.40: Using row-major order to read a matrix, the SDRAM controller antici-
pates four consecutive READ command to the active SDRAM row for each read
initiated from the CPU

In the second scenario, the matrix is accessed using column-major order. Figure
1.41 illustrates two consecutive reads issued from the CPU. As the CPU reads data
from consecutive rows in each iteration, the CPU controller first reads four consecu-
tive words from the active SRAM row and fills the internal FIFO, but it only returns
one word to the CPU over the AHB bus. As the CPU starts another read from the
next row, the SDRAM controller first precharges the active row. It then waits for
two SDRAM clock periods (Row Precharge time) before activating the next row.

CK

CMD ACT NOP READ READ READ READ PRE NOP ACT NOP READ READ READ READ

ADDR ROW(y) COL(x) COL(x+1) COL(x+2) COL(x+3) ROW(y+1) COL(x) COL(x+1) COL(x+2) COL(x+3)

DQ D0 D1 D2 D3 D0

t_RCD=2 CL=3 t_RP=2 t_RCD=2 CL=3

8 SDRAM clocks

1 2 3 4 5 6 7 8 a b c d e f

Fig. 1.41: Using column major order results in activating, reading and precharging
an SDRAM row for every read issued from the CPU.

It is obvious that row-major order access is considerably faster than column-
major order access. A rough estimate of the access time for row-major order access

48 1 Main memory

considering an already open row is seven (7) SDRAM clock periods per four words.
On the other side, a rough estimate of the access time for column-major order access
is eight (8) SDRAM clock periods per word. Recall that only one word is transferred
to the CPU, although the SDRAM controller anticipates four consecutive reads from
the active row.

To assess the performance (speed) of the row-major and column-major matrix
reads, we use the code in Listing 1.8. For each test, the code first sets the PC8 pin
and reads the timer TIM3 counter value (this is the start of the test). After the test,
we reset the PC8 pin and read the timer TIM3 counter value (this is the start of the
test). By setting and resetting the PC8 pin, we can measure the duration of each test
using an oscilloscope. The timer TIM3 runs at 1MHz (1 us resolution). Hence, we
can estimate the duration of each test simply by reading the timer counter before
and after the test.

// Row -major order access:
2 HAL_GPIO_WritePin(GPIOC , GPIO_PIN_8 , GPIO_PIN_SET);

timer_val_start = __HAL_TIM_GET_COUNTER (& TIM3Handle);
4 SDRAM_mat_row_access_test ();

HAL_GPIO_WritePin(GPIOC , GPIO_PIN_8 , GPIO_PIN_RESET);
6 timer_val_end = __HAL_TIM_GET_COUNTER (& TIM3Handle);

if (timer_val_end > timer_val_start)
8 elapsed_rows = timer_val_end - timer_val_start;

else
10 elapsed_rows = timer_val_end + (65536 - timer_val_start);

12 // Column -major order access:
HAL_GPIO_WritePin(GPIOC , GPIO_PIN_8 , GPIO_PIN_SET);

14 timer_val_start = __HAL_TIM_GET_COUNTER (& TIM3Handle);
SDRAM_mat_col_access_test ();

16 timer_val_end = __HAL_TIM_GET_COUNTER (& TIM3Handle);
HAL_GPIO_WritePin(GPIOC , GPIO_PIN_8 , GPIO_PIN_RESET);

18 if (timer_val_end > timer_val_start)
elapsed_cols = timer_val_end - timer_val_start;

20 else
elapsed_cols = timer_val_end + (65536 - timer_val_start);

Listing 1.8: Code used to test the speed of row-major and column-major matrix read
from the SDRAM.

Figure 1.42 shows the oscilloscope trace for the signal on the GPIOC pin. It
shows that the row-major order read lasts for about 2.3 ms, while the column-major
order read lasts for about 10 ms. Using the timer counter, we estimate the duration
of the row-major order read to 2365 us and the duration of the column-major order
read to 9816 us. Both measurements show that the row-major order read is about
four times faster than the column-major order read, which is in accordance with the
rough estimation from figures 1.40 and 1.41.

1.9 Synchronous DRAM 49

Fig. 1.42: Oscilloscope trace on the GPIOC pin 8. The row-major order matrix read
lasts for about 2.5 ms while the column-major order matrix read lasts for more than
10 ms.

1.9.3.1 Using DMA to transfer data from an external SDRAM to the internal
SRAM

Direct memory access (DMA) is used to provide high-speed data transfer between
peripherals and memory and between memory and memory without any CPU ac-
tion (except DMA controller initialization and DMA transfer request in case of
memory-to-memory transfer). As already described in Section 4.5.2, the DMA con-
troller in STM32 microcontrollers (actually, there are two DMA controllers, DMA1
and DMA2, respectively) have 16 streams in total (8 for each DMA controller),
each dedicated to managing memory access requests from one or more peripherals.
Each stream can have up to 8 channels (requests) in total. Each DMA controller
has an arbiter for handling the priority between DMA requests. According to the
STM32F69I reference manual, the memory-to-memory mode in DMA is a mode
that doesn’t need any triggering request from a peripheral, and it will happen just
after the stream enable bit is set. Also, according to the STM32F69I reference man-
ual, only the DMA2 could handle memory-to-memory data transfers. The stream
can be enabled just by setting the Enable bit (EN) in the DMA SxCR register. Then,
the stream immediately fills the FIFO up to the threshold level. When the threshold
level is reached, the FIFO contents are drained and stored in the destination.

Before using the DMA2 controller to transfer data from one memory region to
another, we must configure (initialize) the DMA2 controller as described in Section
4.5.2. When configuring the DMA controller we:

50 1 Main memory

1. Select a stream that we wish to use. Any available stream in the DMA2 con-
troller can be used for memory-to-memory transfers.

2. Select a channel; this is irrelevant for memory-to-memory transfers because a
peripheral device does not trigger the DMA transfer through a channel. Instead,
it is triggered by setting the EN bit in the DMA SxCR register.

3. Set a priority for a selected DMA stream.
4. Set the number of data to be transferred (it can be any value from 1 to 65535).
5. Set the source and destination transfer width (byte, half-word, word).
6. Set the source and destination addresses.
7. Select whether the source and destination addresses should be incremented dur-

ing the transfer. For memory-to-memory transfers, both addresses should be
incremented during the transfer.

8. Select whether the burst transfers of 4, 8 or 16 beats should be used during the
transfer.

Programming DMA is relatively easy. Recall from Section 4.5.2 that each stream
can be controlled using four registers: memory address register, peripheral address
register, number of data register, and configuration register. Once set, DMA takes
care of memory address increment without disturbing the CPU. Now that it is clear
how the DMA works from a theoretical point of view, we can use the HAL library to
configure and use a DMA controller. The HAL library abstracts most of the under-
lying hardware details. The DMA controller is abstracted in HAL with a C structure
DMA_HandleTypeDef. Let us describe more in-depth only the two most important
fields of this structure:

• Instance: this is the pointer to the DMA Stream descriptor we will use. For
example, DMA2_Stream1 indicates the first stream of DMA2. The stream de-
scriptor is a C structure that contains all DMA stream registers. The reference
to the Instance structure points to the actual peripheral address. For example, the
DMA2_Stream1 is defined in HAL as a pointer to the stream descriptor structure,
and it holds the register base address for DMA2 Stream1 registers.

• Init: is an instance of the C structure DMA_InitTypeDef, which is used to
configure the DMA Stream and channel.

DMA_InitTypeDef is defined in the following way:

1 typedef struct
{

3 uint32_t Channel;
uint32_t Direction;

5 uint32_t PeriphInc;
uint32_t MemInc;

7 uint32_t PeriphDataAlignment;
uint32_t MemDataAlignment;

9 uint32_t Mode;
uint32_t Priority;

11 uint32_t FIFOMode;
uint32_t FIFOThreshold;

13 uint32_t MemBurst;
uint32_t PeriphBurst;

15 }DMA_InitTypeDef;

1.9 Synchronous DRAM 51

Listing 1.9: DMA DMA_InitTypeDef C structure.

Let us briefly describe the C DMA_InitTypeDef structure:

• Channel: Specifies the channel used for the specified stream. It can assume the
values DMA_CHANNEL_0, DMA_CHANNEL_1 up to DMA_CHANNEL_7.
The peripherals are bound to streams and channels during the MCU design, so
we should consult the datasheet for our microcontroller to see the stream/chan-
nel bound to the peripheral we want to use with DMA.

• Direction: Specifies if the data will be transferred from memory-to-
peripheral, memory-to-memory or peripheral-to-memory.

• PeriphInc: Specifies whether the Peripheral address register should be incre-
mented or not during the DMA transfer. Recall that a DMA controller has one
peripheral port used to specify the address of the peripheral register involved
in the DMA transfer. Since a DMA transfer usually involves several bytes, the
DMA can be configured to increment the peripheral register for every transmit-
ted byte.

• MemInc: Specifies whether the memory address register should be incremented
or not during the DMA transfer.

• PeriphDataAlignment: Specifies the Peripheral data width. Transfer data
sizes of the peripheral and memory are fully programmable through this field
and the next one. The DMA controller is designed to automatically perform
data alignment when source and destination data sizes differ.

• MemDataAlignment: Specifies the Memory data width.
• Mode: the DMA controller has two working modes: normal and circular. In

normal mode, the DMA sends the specified amount of data from the source to
the destination port and stops the activities. It must be re-activated again to do
another transfer. In circular mode, it automatically resets the transfer counter at
the end of transmission and starts transmitting again from the first byte of the
source buffer.

• Priority: Specifies the software priority for the DMA Stream. The priority
allows the internal arbiter in the DMA controller to rule concurrent requests.

• FIFOMode: Specifies if the stream uses the FIFO buffer. Recall that each stream
has an independent 4-word (4 * 32 bits) FIFO. The FIFO temporarily stores
data coming from the source before transmitting it to the destination. The FIFO
introduces one important advantage: it reduces S(D)RAM access time by sup-
porting burst transactions. The FMC SDRAM controller used in our case issues
four READ commands in a row, thus reading four consecutive words from an
active SDRAM row. Using the FIFO allows for storing these four words effi-
ciently before they are sent to SRAM.

• FIFOThreshold: Specifies the FIFO threshold level. The FIFO will be drained
to the destination when this threshold is achieved.

• MemBurst: Specifies the amount of data to be transferred to/from memory in a
single non-interruptible transaction.

52 1 Main memory

• PeriphBurst: Specifies the amount of data to be transferred to/from periph-
eral (or memory for mem-to-mem DMA transfers) in a single non-interruptible
transaction.

All HAL functions related to DMA manipulation are designed so that they accept
as the first parameter an instance of the C structure DMA_HandleTypeDef. To ini-
tialise the DMA Stream, we first set all desired parameters in the DMA_InitTypeDef
structure and then use the HAL function HAL_DMA_Init(DMA_HandleTypeDef
*hdma). The following code illustrates configuring and initialising the DMA2
Stream 1 for memory-to-memory transfers using FIFO and burst of length 4:

1 HAL_StatusTypeDef DMA2_SDRAM_Config(DMA_HandleTypeDef* DmaHandle)
{

3 /* Enable DMA2 clock */
__HAL_RCC_DMA2_CLK_ENABLE ();

5

/* Select the DMA Stream to be used #*/
7 DmaHandle ->Instance = DMA2_Stream1;

9 /* Set the DMA Parameters */
/* DMA_CHANNEL_0 */

11 DmaHandle ->Init.Channel = DMA_CHANNEL_0;
/* M2M transfer mode */

13 DmaHandle ->Init.Direction = DMA_MEMORY_TO_MEMORY;
/* Peripheral increment mode Enable */

15 DmaHandle ->Init.PeriphInc = DMA_PINC_ENABLE;
/* Memory increment mode Enable */

17 DmaHandle ->Init.MemInc = DMA_MINC_ENABLE;
/* Peripheral data alignment : Word */

19 DmaHandle ->Init.PeriphDataAlignment = DMA_PDATAALIGN_WORD;
/* memory data alignment : Word */

21 DmaHandle ->Init.MemDataAlignment = DMA_MDATAALIGN_WORD;
/* Normal DMA mode */

23 DmaHandle ->Init.Mode = DMA_NORMAL;
/* priority level : high */

25 DmaHandle ->Init.Priority = DMA_PRIORITY_HIGH;
/* FIFO mode enabled */

27 DmaHandle ->Init.FIFOMode = DMA_FIFOMODE_ENABLE;
/* FIFO threshold : full */

29 DmaHandle ->Init.FIFOThreshold = DMA_FIFO_THRESHOLD_FULL;
/* Memory burst */

31 DmaHandle ->Init.MemBurst = DMA_MBURST_INC4;
/* Peripheral burst */

33 DmaHandle ->Init.PeriphBurst = DMA_PBURST_INC4;

35 /* Initialize the DMA stream */
if (HAL_DMA_Init(DmaHandle) != HAL_OK)

37 {
/* Initialization Error */

39 return HAL_ERROR;
}

41

/* Configure NVIC for DMA transfer complete/error interrupts */
43 HAL_NVIC_SetPriority(DMA2_Stream1_IRQn , 0, 0);

45 /* Enable the DMA STREAM global Interrupt */
HAL_NVIC_EnableIRQ(DMA2_Stream1_IRQn);

47

return HAL_OK;
49 }

Listing 1.10: DMA2 Controller configuration and initialization.

1.9 Synchronous DRAM 53

In the above code, the DMA2 Stream 1 is configured to automatically increment the
source and destination addresses for each transmitted word. Remember that we are
transferring the block of contiguous memory words in the matrix from the external
SDRAM to the matrix in the internal SRAM. Hence, the addresses in the source
and destination block should increase for each word transferred. Also, we enable
the FIFO, set the FIFO threshold level to full and enable the burst transfers of size 4.
In such a way, the DMA controller will read four words from SDRAM to the FIFO
and then transfer them to SRAM.

After DMA initialisation, we should set the priority for the DMA2 Stream 1 in-
terrupt and enable the interrupt request generated by DMA2 Stream 1. The DMA2
Controller will then assert an interrupt request whenever the DMA 2 Stream 1 com-
pletes the DMA transfer. Hence, we should also implement the minimal interrupt
handler for the DMA2 Stream 1 as follows:

1 void DMA2_Stream1_IRQHandler(void)
{

3 /* Check the interrupt and clear flag */
HAL_DMA_IRQHandler (& DMA2_SDRAM_Handle);

5 }

Listing 1.11: DMA2 Stream 1 Interrupt Handler.

Now we should create a DMA handle variable and initialize the DMA2 Stream
1 by passing reference to the DMA handle into the DMA2_SDRAM_Config function:

1

DMA_HandleTypeDef DMA2_SDRAM_Handle;
3

...
5

// Configure DMA2 for SDRAM:
7 if (DMA2_SDRAM_Config (& DMA2_SDRAM_Handle) != HAL_OK) {

Error_Handler ();
9 }

Listing 1.12: DMA2 Stream 1 handle and its configuration.

To initiate the memory-to-memory DMA transfer, we use
HAL_DMA_Start(DMA_HandleTypeDef *hdma, uint32_t SrcAddress,
uint32_t DstAddress, uint32_t DataLength). The arguments are the
pointer to the DMA handle, the source address, the destination address and the
number of data to transfer. This function sets the EN bit in DMA SxCR, which in
turn triggers the DMA controller to start the transfer. Hence, to transfer a matrix
from the external SDRAM to SRAM, we implement and use the following function:

1 void SDRAM_DMA_mat_row_access_test(void){
volatile uint32_t address;

3

for (int k = 0; k < N; k++)
5 {

HAL_DMA_Start (& DMA2_SDRAM_Handle ,
7 (uint32_t) PA3_SDRAM_DEVICE_ADDR_RW ,

54 1 Main memory

(uint32_t) matrixB ,
9 MAT_ROWS * SDRAM_COLS);

HAL_DMA_PollForTransfer (& DMA2_SDRAM_Handle ,
11 HAL_DMA_FULL_TRANSFER ,

HAL_MAX_DELAY);
13 }

}

Listing 1.13: Matrix transfer using DMA.

The function HAL_DMA_PollForTransfer() waits for DMA transfer to com-
plete. Otherwise, the CPU would continue to execute the program and would not
bother with DMA transfer (which would be the desired way), but in our case, we
are going to measure the time required to transfer the matrix from SDRAM to
SRAM using DMA; hence, we should wait for DMA to terminate. The function
HAL_DMA_PollForTransfer() is used here for the sake of simplicity, but it is
strongly recommended to use the DMA interrupt handler instead. Finally, we can
add the DMA matrix transfer to a set of the previous performance tests in Listing
1.8 as follows:

// Row -major order access:
2 HAL_GPIO_WritePin(GPIOC , GPIO_PIN_8 , GPIO_PIN_SET);

timer_val_start = __HAL_TIM_GET_COUNTER (& TIM3Handle);
4 SDRAM_mat_row_access_test ();

HAL_GPIO_WritePin(GPIOC , GPIO_PIN_8 , GPIO_PIN_RESET);
6 timer_val_end = __HAL_TIM_GET_COUNTER (& TIM3Handle);

if (timer_val_end > timer_val_start)
8 elapsed_rows = timer_val_end - timer_val_start;

else
10 elapsed_rows = timer_val_end + (65536 - timer_val_start);

12 // Column -major order access:
HAL_GPIO_WritePin(GPIOC , GPIO_PIN_8 , GPIO_PIN_SET);

14 timer_val_start = __HAL_TIM_GET_COUNTER (& TIM3Handle);
SDRAM_mat_col_access_test ();

16 timer_val_end = __HAL_TIM_GET_COUNTER (& TIM3Handle);
HAL_GPIO_WritePin(GPIOC , GPIO_PIN_8 , GPIO_PIN_RESET);

18 if (timer_val_end > timer_val_start)
elapsed_cols = timer_val_end - timer_val_start;

20 else
elapsed_cols = timer_val_end + (65536 - timer_val_start);

22

// DMA transfer:
24 HAL_GPIO_WritePin(GPIOC , GPIO_PIN_8 , GPIO_PIN_SET);

timer_val_start = __HAL_TIM_GET_COUNTER (& TIM3Handle);
26 SDRAM_DMA_mat_row_access_test ();

timer_val_end = __HAL_TIM_GET_COUNTER (& TIM3Handle);
28 HAL_GPIO_WritePin(GPIOC , GPIO_PIN_8 , GPIO_PIN_RESET);

if (timer_val_end > timer_val_start)
30 elapsed_cols = timer_val_end - timer_val_start;

else
32 elapsed_cols = timer_val_end + (65536 - timer_val_start);

Listing 1.14: Code used to test the speed of row-major, column-major and DMA
matrix read from the SDRAM.

When executing the DMA performance test, we observe from Figure 1.43 that the
time required to transfer the matrix from the external SDRAM to the internal SRAM
is only about 1500 us. Why is the DMA controller faster than the CPU, considering

1.9 Synchronous DRAM 55

Fig. 1.43: Oscilloscope trace on the PC8 pin. The row-major order matrix read lasts
for about 2.5 ms, the column-major order matrix read lasts forabout 10 ms while
DMA transfer lasts for about 1.5 ms.

that the same amount of data is being transferred from/to the same devices in both
cases?

J_LOOP:
2 ; address = PA3_SDRAM_DEVICE_ADDR_RW + ((i* SDRAM_COLS + j) <<2);

add.w r1, r3, #0 ; r1 <- r3
4 ldr r2, [pc, #60] ; r2 <- 0xC0008000 (SDRAM address)

add.w r2, r2, r1, lsl #2 ; r2 <- r2+(r1 *4) LOAD FROM SDRAM
6 ; matrixB[i][j] = *(uint32_t *) address;

ldr r0, [r2, #0] ; r0 <- M_SDRAM[r2]
8 ldr r2, [pc, #52] ; r2 <- matB base address

str.w r0, [r2, r1, lsl #2] ; matB[i][j] <- r0 STORE TO SRAM
10 ; for(int j=0; j< SDRAM_COLS ; j++) {

adds r3, #1 ; inc r3 (r3 holds j)
12 cmp r3, #255 ; if j <= 255

ble.n J_LOOP ; loop back

Listing 1.15: Assembly code corresponding to the instructions created by the
compiler for the innermost loop in Listing 1.6. There are 11 instructions executed
in each iteration of the innermost loop; hence 11 instructions are executed for
transferring one word from SDRAM to SRAM. The first four instructions are used
to calculate the address in SDRAM. Then, four instructions are used to read the
word from SDRAM and write it to SRAM, and finally, the last three instructions
increments the innermost loop counter, compare it to 255 and loop if not equal.

Well, the answer lies in the fact that the DMA controller does not execute instruc-
tions. For each word transferred, the CPU fetches the LDR instruction (load register

56 1 Main memory

with word), executes it (it loads the data from SDRAM to an internal register),
fetches the STR instruction (store register as word), and finally executes it (it stores
the data from the internal register to SRAM). Besides LDR and STR instructions,
in each loop iteration, the CPU executes a bunch of other instructions required to
calculate the address in SDRAM, increment and compare the loop index, etc. (see
Listing 1.15). The DMA controller only transfers data from SDRAM (in bursts!)
and forwards them to SRAM (in bursts!) without fetching and executing the load-
/store instructions! Besides offloading the CPU, this is another benefit of utilizing
DMA controllers.

