
36 1 Main memory

1.9.3 Case study: Using the STM32F Flexible Memory Controller
to access SDRAM

The Flexible memory controller (FMC) found in STM32 microcontrollers consists
of the following main blocks:

1. the interface to the CPU’s Advanced High-performance Bus (AHB) bus,
2. the NOR Flash/SRAM memory controller,
3. the SDRAM memory controller, and
4. NAND Flash controller.

The block diagram of the FMC is shown in Figure 1.32. The AHB interface al-
lows the CPU (and other bus master peripherals) to access the external memories
through the FMC controller. Two primary purposes of The Flexible Memory Con-
troller (FMC) are to translate transactions on the high-speed CPU bus (namely AHB
bus) into the appropriate external protocol and to meet the access time requirements
of the external memory devices.

Fig. 1.32: FMC block diagram.

From the FMC (or microprocessor) point of view, the external memory is divided
into fixed-size regions of 256 Mbytes each, called banks (Figure 1.33). Bank 1 is
used to address NOR Flash memory devices. Bank 3 is used to address NAND
Flash memory devices. Banks 4 and 5 are used to address two SDRAM devices
(one device per bank). Let us focus only on the FMC SDRAM controller.

All external memories share the addresses, data and control signals with the con-
troller, and each external device is accessed utilizing a unique chip-select signal.

1.9 Synchronous DRAM 37

Fig. 1.33: Memory regions accesable from the FMC controller.

The FMC performs only one access at a time to an external device. Here, we will
describe only the SDRAM controller and its use to interface a 128 Mbit SDRAM
memory chip. All AHB transactions, in this case, translate into the SDRAM device
protocol.

The FMC SDRAM controller supports SDRAM devices of up to 256 Mbytes. It
can issue a 13-bit row address, an 11-bit column address, and a 2-bit bank address.
The memory accesses can be 8-bit, 16-bit, and 32-bit. We will use Micron’s 1 Meg
x 32 x 4 banks MT48LC4M32B2 SDRAM chip, organized as 4096 rows x 256
columns x 32 bits per bank. Hence, the memory controller would issue a 12-bit row
address, an 8-bit column address, and a 2-bit bank address.

The address bit 28 on the AHB bus (internal AHB address line 28) selects one of
the two memory devices. For our particular case, where the FMC SDRAM controller
is used to access the MT48LC4M32B2 SDRAM chip, the 32-bit memory address
from the AHB bus is mapped into the SDRAM address as presented in Figure 1.35.

The SDRAM controller in Figure 1.34 accepts single and burst read and write re-
quests and translates them into single memory accesses. In both cases, the SDRAM
controller keeps track of the active row in each bank to be able to perform consecu-
tive read and write accesses. The FMC SDRAM controller comprises a read FIFO (6
lines x 32 bits). It is used to read data in advance - the memory controller anticipates
READ commands to the open row if the RBURST bit is set in the FMC_SDCRx
register and stores data in the FIFO. Two bits RPIPE[1:0] in the FMC_SDCRx reg-
ister defines how much data will be anticipated and stored into the FIFO during the
read access. If we set both RPIPE[1:0] bits to zero, four data will be anticipated dur-
ing a single read access. The first read data will be transmitted to the AHB bus, and
the other three will be stored in the read FIFO buffer. The read FIFO buffer stores a
14-bit address tag for each line to identify its content: 11 bits for the column address,
2 bits for the internal bank in the active row, and 1 bit for the SDRAM device. Each
time a read request occurs, the SDRAM controller checks if the address matches
one of the address tags in the read FIFO buffer. In such a case, data are directly read

38 1 Main memory

from the FIFO buffer. Otherwise, a new read command is issued to the SDRAM
device, and new data is read to the FIFO buffer.

Fig. 1.34: FMC SDRAM Controller block diagram and signals.

The FMC SDRAM controller periodically issues auto-refresh commands to re-
fresh the SDRAM. The programmer should initialize the internal counter value in
the FMC_SDRTR. This value defines the number of memory clock cycles between
two refresh cycles (refresh rate). When this counter reaches zero, the FMC SDRAM
controller issues the auto-refresh command. If there is an ongoing memory access,
the auto-refresh request is delayed until the memory access finishes; otherwise, the
auto-refresh request takes precedence. If the memory access request occurs dur-
ing an auto-refresh operation, the request is buffered and processed when the auto-
refresh completes. Figure 1.35 illustrates how the 32-bit addresses issued by the
CPU on the AHB bus map to the 26-bit addresses issued by the SDRAM controller
to the SDRAM device.

Fig. 1.35: Address maping for a 128-bit SDRAM (4096 rows x 256 columns x 4
banks x 32 bit).

1.9 Synchronous DRAM 39

In order to use the FMC SDRAM controller with an external SDRAM device
residing in the SDRAM Bank 1, we should:

1. first, initialize the FMC SDRAM controller according to the used SDRAM de-
vice, and

2. secondly, initialize the SDRAM device.

The first step involves programming two FMC SDRAM controller configuration
registers, SDRAM Control Register 1 (FMC_SDCR1) and SDRAM Timing Regis-
ter 1 (FMC_SDTR1). The bits in FMC_SDCR1 (Figure 1.37) define the SDRAM
clock period, CAS Latency, whether the FMC anticipates READ commands (burst
read), data bus width and the internal organization of the SDRAM chip (rows,
columns and banks).

Fig. 1.36: Control register (FMC_SDCR).

The bits in FMC_SDTR1 define SDRAM timing parameters, e.g. RAS-to-CAS
delay, row-precharge delay, etc. In order to set the bits in these two registers, we
should consult the datasheet for a particular SDRAM chip.

Fig. 1.37: Timing register (FMC_SDTR).

The second step initializes the SDRAM chip. During the SDRAM chip initializa-
tion, the FMC controller sends several predefined commands to the SDRAM chip.
To send these commands, we should write them into the FMC SDRAM Command
Mode Register (FMC_SDCMR). The required initialization steps are described in
the datasheet for a particular SDRAM chip and involve the following:

1. providing stable CLOCK signal,
2. performing a PRECHARGE ALL command, which puts all rows in all banks

into an idle state,

40 1 Main memory

3. issuing several AUTO REFRESH commands
4. issuing several NOP commands before SDRAM is ready for access.

Instead of directly setting bits in the FMC SDRAM configuration registers, we
will rather use the HAL library. The code Listing 1.1 shows the FMC SDRAM
controller initialization.

1 uint8_t Init_SDRAM(void)
{

3 static uint8_t sdramstatus = SDRAM_ERROR;
/* SDRAM device configuration */

5 sdramHand.Instance = FMC_SDRAM_DEVICE;

7 /* Timing configuration for 100 Mhz as SDRAM clock frequency
(System clock is up to 200 Mhz) */

9 /* These parameters are from the MT48LC4M32B2 Data Sheet ,
Table 18 and Table 19 */

11 sdramTiming.LoadToActiveDelay = 2; // t_MRD
sdramTiming.ExitSelfRefreshDelay = 7; // t_XSR

13 sdramTiming.SelfRefreshTime = 5; // t_RAS
sdramTiming.RowCycleDelay = 7; // t_RC

15 sdramTiming.WriteRecoveryTime = 2; // t_WR
sdramTiming.RPDelay = 2; // t_RP

17 sdramTiming.RCDDelay = 2; // t_RCD

19

sdramHand.Init.SDBank = FMC_SDRAM_BANK1;
21 sdramHand.Init.ColumnBitsNumber = FMC_SDRAM_COLUMN_BITS_NUM_8;

sdramHand.Init.RowBitsNumber = FMC_SDRAM_ROW_BITS_NUM_12;
23 sdramHand.Init.MemoryDataWidth = FMC_SDRAM_MEM_BUS_WIDTH_32;

sdramHand.Init.InternalBankNumber = FMC_SDRAM_INTERN_BANKS_NUM_4;
25 sdramHand.Init.CASLatency = FMC_SDRAM_CAS_LATENCY_3;

sdramHand.Init.WriteProtection = FMC_SDRAM_WRITE_PROTECTION_DISABLE;
27 sdramHand.Init.SDClockPeriod = FMC_SDRAM_CLOCK_PERIOD_2;

sdramHand.Init.ReadBurst = FMC_SDRAM_RBURST_ENABLE;
29 sdramHand.Init.ReadPipeDelay = FMC_SDRAM_RPIPE_DELAY_0;

31 /* SDRAM controller initialization */

33 if(HAL_SDRAM_Init (&sdramHand , &sdramTiming) != HAL_OK)
{

35 sdramstatus = SDRAM_ERROR;
}

37 else
{

39 sdramstatus = SDRAM_OK;
}

41

/* Once the FMC SDRAM Ctrl is initialized , we can access
43 and initialize the SDRAM chip */

/* SDRAM initialization sequence */
45 SDRAM_Initialization_sequence(REFRESH_COUNT);

47 return sdramstatus;
}

Listing 1.1: FMC SDRAM Controller initialization.

Firstly, we set the SDRAM timing parameters (in the FMC_SDTR1 register) con-
sidering the 100MHz SDRAM clock, and then we set the SDRAM configuration (in
the FMC_SDCR1 register).

1.9 Synchronous DRAM 41

The code Listing 1.2 shows the FMC SDRAM chip initialization. The SDRAM
initialization sequence is described in the SDRAM datasheet in detail. SDRAMs
must be powered up and initialized in a predefined manner. Briefly, the initialization
procedure contains four steps:

1. Enable the stable SDRAM clock.
2. Wait for at least 100us prior to issuing any command.
3. Perform a PRECHARGE ALL command.
4. Issue at least two AUTO REFRESH commands.
5. The SDRAM is now ready for mode register programming. Because the mode

register will power up in an unknown state, it should be loaded with desired bit
values prior to applying any operational command.

/**
2 * @brief Init the SDRAM device.

* SDRAMs must be initialized in a predefined manner. Operational -
procedures

4 * other than those specified in the SDRAM Data Sheet may result in -
undefined operation .

* @param RefreshCount : SDRAM refresh counter value
6 * @retval None

*/
8 void SDRAM_Initialization_sequence(uint32_t RefreshCount)

{
10 __IO uint32_t tmpmrd = 0;

12 /* Step 1: Configure a clock configuration enable command */
sdramCmd.CommandMode = FMC_SDRAM_CMD_CLK_ENABLE;

14 sdramCmd.CommandTarget = FMC_SDRAM_CMD_TARGET_BANK1;
sdramCmd.AutoRefreshNumber = 1;

16 sdramCmd.ModeRegisterDefinition = 0;

18

/* Send the Clock Configuration Enable command to the target bank */
20 /* The command is sent as soon as the Command MODE field in the

CMR is written */
22 HAL_SDRAM_SendCommand (&sdramHand , &sdramCmd , SDRAM_TIMEOUT);

24 /*
* Once the clock is stable , the SDRAM requires a 100 us delay

26 * prior to issuing any command
*/

28

/* Step 2: Insert 100 us minimum delay */
30 /* Inserted delay is equal to 1 ms due to systick time base unit */

HAL_Delay (1);
32

34 /*
* Once the 100 us delay has been satisfied , a PRECHARGE command

36 * should be applied. All banks must then be precharged ,
* thereby placing the device in the all banks idle state.

38 */
/* Step 3: Configure a PALL (precharge all) command */

40 sdramCmd.CommandMode = FMC_SDRAM_CMD_PALL;
sdramCmd.CommandTarget = FMC_SDRAM_CMD_TARGET_BANK1;

42 sdramCmd.AutoRefreshNumber = 1;
sdramCmd.ModeRegisterDefinition = 0;

44

/* Send the Precharge All command to the target bank */

42 1 Main memory

46 /* The command is sent as soon as the Command MODE field
in the CMR is written */

48 HAL_SDRAM_SendCommand (&sdramHand , &sdramCmd , SDRAM_TIMEOUT);

50 /*
* Once in the idle state , at least two AUTO REFRESH cycles must

52 * be performed . If desired , more than two AUTO REFRESH
* commands can be issued in the sequence.

54 */
/* Step 4: Configure an Auto Refresh command */

56 sdramCmd.CommandMode = FMC_SDRAM_CMD_AUTOREFRESH_MODE;
sdramCmd.CommandTarget = FMC_SDRAM_CMD_TARGET_BANK1;

58 sdramCmd.AutoRefreshNumber = 8;
sdramCmd.ModeRegisterDefinition = 0;

60

/* Send the Auto -refresh commands to the target bank */
62 /* The command is sent as soon as the Command MODE

field in the CMR is written */
64 HAL_SDRAM_SendCommand (&sdramHand , &sdramCmd , SDRAM_TIMEOUT);

66

/*
68 * The SDRAM is now ready for mode register programming .

* Because the mode register will power up in an unknown state ,
70 * it should be loaded with desired bit values prior to

* applying any operational command. Using the LMR command ,
72 * program the mode register.

*/
74 /* Step 5: Program the external memory mode register */

tmpmrd = (uint32_t)SDRAM_MODEREG_BURST_LENGTH_1 |\
76 SDRAM_MODEREG_BURST_TYPE_SEQUENTIAL |\

SDRAM_MODEREG_CAS_LATENCY_3 |\
78 SDRAM_MODEREG_OPERATING_MODE_STANDARD |\

SDRAM_MODEREG_WRITEBURST_MODE_SINGLE;
80

sdramCmd.CommandMode = FMC_SDRAM_CMD_LOAD_MODE;
82 sdramCmd.CommandTarget = FMC_SDRAM_CMD_TARGET_BANK1;

sdramCmd.AutoRefreshNumber = 1;
84 sdramCmd.ModeRegisterDefinition = tmpmrd;

86 /* Send the Load Mode Register command to the target bank */
/* The command is sent as soon as the Command MODE field in

88 the CMR is written */
HAL_SDRAM_SendCommand (&sdramHand , &sdramCmd , SDRAM_TIMEOUT);

90

/*
92 * Wait for at least tMRD time. This is automatically performed by

* the FMC SDRAM controller . At this point the DRAM is ready for
94 * any valid command.

*/
96

/* Step 6: Set the refresh rate counter in Refresh Timer register */
98 /* This 13-bit field defines the refresh rate of the SDRAM device.

It is expressed in number of memory clock cycles. */
100 HAL_SDRAM_ProgramRefreshRate (&sdramHand , RefreshCount);

}

Listing 1.2: SDRAM initialization sequence.

To enable the above procedure, the FMC SDRAM controller provides a spe-
cial register called Command Mode register (FMC_SDCMR), illustrated in Fig-
ure 1.38. It contains four fields. The MODE field defines the command issued to
the SDRAM chip. The possible commands are, for example, "CLK ENABLE",
"PRECHARGE ALL", "AUTO REFRESH", and "LOAD MODE REGISTER". The

1.9 Synchronous DRAM 43

Fig. 1.38: Command Mode register (FMC_SDCMR).

CTB1 and CTB2 fields select the SDRAM chip to which the command is sent. As
soon as the MODE field is written, the FMC SDRAM controller will issue the corre-
sponding command to SDRAM chips selected by CTB1 and CTB2 command bits.
The NRFS field defines how many consecutive Auto-refresh commands are issued
in the fourth step of the initialization sequence, the MRD field contains the con-
tent that should be written to the SDRAM Mode Register. The mode register is a
12-bit special register inside the SDRAM chip and is used to define the specific
mode of operation of the SDRAM. This definition includes the selection of a burst
length (BL), a burst type, a CAS latency (CL), an operating mode and a write burst
mode, as shown in Figure 1.39. The mode register is programmed from the FMC
SDRAM controller via the "LOAD MODE REGISTER" command and retains the
stored information until it is programmed again or the SDRAM device loses power.

At the end of the SDRAM chip initialization, we set the auto-refresh period in the
FMC SDRAM controller. The AUTO REFRESH command is used during the regu-
lar operation of the SDRAM to refresh its content. This command is nonpersistent,
so it must be issued each time a refresh is required. If memory access is in progress,
the auto-refresh request is delayed. The refresh controller inside the SDRAM chip
generates the address of the row that should be refreshed. For example, the 128Mb
SDRAM requires 4096 AUTO REFRESH commands every 64ms. To ensure that
each row is refreshed according to this requirement, the SDRAM controller must is-
sue an AUTO REFRESH command every 15.625us. The FMC SDRAM controller
provides the Refresh Timer register (FMC_SDRTR). This register holds the 13-bit
refresh rate in number of SDRAM clock cycles. This 13-bit field should be set im-
mediately after the initialization of SDRAM. The 13-bit refresh rate is calculated
as follows. As the SDRAM clock runs at 100 Mhz (10 ns period), 15.625 us equals
1562 SDRAM clock periods. We should subtract at least 20 SDRAM clock periods
from this value to obtain a safe margin if an auto-refresh request occurs when a
read request has been accepted. Hence, the 13-bit refresh rate in the FMC_SDRTR
register corresponds to 1542.

To demonstrate the different scenarios when using the FMC SDRAM controller,
we copy a matrix of size 32 rows times 256 columns from the internal SRAM to
the external SDRAM and then read it back. The elements of the matrix are 32-
bit unsigned integers. In the first scenario (Listing 1.3), the matrix is accessed in
row-major order, while in the second scenario (Listing 1.4), the matrix is accessed

44 1 Main memory

Fig. 1.39: SDRAM Mode Register.

in column-major order. The constants SDRAM_DEVICE_ADDR and SDRAM_COLS in
Listings 1.3 and 1.4 equal 0xC0000000 and 256, respectively.

1 void SDRAM_mat_row_access_test(void){
volatile uint32_t address;

3

for (int i = 0; i<MAT_ROWS; i++) {
5 for(int j=0; j<SDRAM_COLS; j++) {

address = SDRAM_DEVICE_ADDR + ((i*SDRAM_COLS + j) <<2);
7 matrixB[i][j] = *(uint32_t *) address;

}
9 }

}

Listing 1.3: Read matrix from SDRAM in row-major order.

void SDRAM_mat_col_access_test(void){
2 volatile uint32_t address;

4 for (int i = 0; i<SDRAM_COLS; i++) {
for(int j=0; j<MAT_ROWS; j++) {

6 address = SDRAM_DEVICE_ADDR + ((j*SDRAM_COLS + i) <<2);
matrixB[j][i] = *(uint32_t *) address;

8 }
}

1.9 Synchronous DRAM 45

10 }

Listing 1.4: Read matrix from SDRAM in column-major order.

Figure 1.40 illustrates one read issued from the CPU for the first scenario (row-
major order access). The FMC SDRAM controller does not support SDRAM burst
reads or writes (the only allowable burst length is 1). Instead, it supports burst reads
on the CPUs AHB bus by utilizing the internal FIFO. Hence, it anticipates four
READ commands to fill in the internal FIFO. The FIFO content is then transferred
to the CPU using the AHB burst read of length 4.

CK

CMD ACT NOP READ READ READ READ NOP NOP NOP

ADDR ROW COL(x) COL(x+1) COL(x+2) COL(x+3)

DQ D0 D1 D2 D3

t_RCD=2 CL=3

7 SDRAM clocks

1 2 3 4 5 6 7 8 9

Fig. 1.40: Using row-major order to read a matrix, the SDRAM controller antici-
pates four consecutive READ command to the active SDRAM row for each read
initiated from the CPU

In the second scenario, the matrix is accessed using column-major order. Figure
1.41 illustrates two consecutive reads issued from the CPU. As the CPU reads data
from consecutive rows in each iteration, the CPU controller first reads four consecu-
tive words from the active SRAM row and fills the internal FIFO, but it only returns
one word to the CPU over the AHB bus. As the CPU starts another read from the
next row, the SDRAM controller first precharges the active row. It then waits for
two SDRAM clock periods (Row Precharge time) before activating the next row.

CK

CMD ACT NOP READ READ READ READ PRE NOP ACT NOP READ READ READ READ

ADDR ROW(y) COL(x) COL(x+1) COL(x+2) COL(x+3) ROW(y+1) COL(x) COL(x+1) COL(x+2) COL(x+3)

DQ D0 D1 D2 D3 D0

t_RCD=2 CL=3 t_RP=2 t_RCD=2 CL=3

8 SDRAM clocks

1 2 3 4 5 6 7 8 a b c d e f

Fig. 1.41: Using column major order results in activating, reading and precharging
an SDRAM row for every read issued from the CPU.

46 1 Main memory

It is obvious that row-major order access is considerably faster than column-
major order access. A rough estimate of the access time for row-major order access
considering an already open row is seven (7) SDRAM clock periods per four words.
On the other side, a rough estimate of the access time for column-major order access
is eight (8) SDRAM clock periods per word. Recall that only one word is transferred
to the CPU, although the SDRAM controller anticipates four consecutive reads from
the active row.

To assess the performance (speed) of the row-major and column-major matrix
reads, we use the code in Listing 1.5. For each test, the code first sets the PC8 pin
and reads the timer TIM3 counter value (this is the start of the test). After the test,
we reset the PC8 pin and read the timer TIM3 counter value (this is the start of the
test). By setting and resetting the PC8 pin, we can measure the duration of each test
using an oscilloscope. The timer TIM3 runs at 1MHz (1 us resolution). Hence, we
can estimate the duration of each test simply by reading the timer counter before
and after the test.

// Row -major order access:
2 HAL_GPIO_WritePin(GPIOC , GPIO_PIN_8 , GPIO_PIN_SET);

timer_val_start = __HAL_TIM_GET_COUNTER (& TIM3Handle);
4 SDRAM_mat_row_access_test ();

HAL_GPIO_WritePin(GPIOC , GPIO_PIN_8 , GPIO_PIN_RESET);
6 timer_val_end = __HAL_TIM_GET_COUNTER (& TIM3Handle);

if (timer_val_end > timer_val_start)
8 elapsed_rows = timer_val_end - timer_val_start;

else
10 elapsed_rows = timer_val_end + (65536 - timer_val_start);

12 // Column -major order access:
HAL_GPIO_WritePin(GPIOC , GPIO_PIN_8 , GPIO_PIN_SET);

14 timer_val_start = __HAL_TIM_GET_COUNTER (& TIM3Handle);
SDRAM_mat_col_access_test ();

16 timer_val_end = __HAL_TIM_GET_COUNTER (& TIM3Handle);
HAL_GPIO_WritePin(GPIOC , GPIO_PIN_8 , GPIO_PIN_RESET);

18 if (timer_val_end > timer_val_start)
elapsed_cols = timer_val_end - timer_val_start;

20 else
elapsed_cols = timer_val_end + (65536 - timer_val_start);

Listing 1.5: Code used to test the speed of row-major and column-major matrix read
from the SDRAM.

Figure 1.42 shows the oscilloscope trace for the signal on the GPIOC pin. It
shows that the row-major order read lasts for about 2.3 ms, while the column-major
order read lasts for about 10 ms. Using the timer counter, we estimate the duration
of the row-major order read to 2365 us and the duration of the column-major order
read to 9816 us. Both measurements show that the row-major order read is about
four times faster than the column-major order read, which is in accordance with the
rough estimation from figures 1.40 and 1.41.

1.9 Synchronous DRAM 47

Fig. 1.42: Oscilloscope trace on the GPIOC pin 8. The row-major order matrix read
lasts for about 2.5 ms while the column-major order matrix read lasts for more than
10 ms.

