

## Sound

## What is sound?

- Wave of pressure in medium
- Particles repeatedly compressed and expanded
- Longitudinal waves
- Requires medium (air, water)
- Wave phenomenon
- Reflection - bouncing
- Refraction - angle change when entering different medium
- Diffraction - bending around obstacle


## Measurable sound characteristics

- Frequency (Hz)
- Number of occurrences of a repeating event per unit of time
- Amplitude, pressure, intensity (W/m²)
- Amount of change over a period
- Duration (seconds)
- Direction
- Speed
- Speed based on medium

- Air: ~331 m/s


## Human auditory perception

- Sound travels the ear canal to the eardrum that vibrates
- Ossicles amplify the vibration
- Cochlea contains liquid that vibrates
- Liquid shakes hair cells
- Hair cells are sensitive to different frequencies
- Responses are transmitted via auditory nerve



## Human ear sensitivity

- Frequencies between 20 Hz and 20 kHz
- Some have to be louder than other
- Threshold of hearing
- Amplitude where a pure tone is detected with 50\% accuracy



## Perception of sound

ystemslab

- Pitch (low/high)
- Loudness (loud/soft)
- Timbre, tone color
- Combination of multiple frequencies
- Change over time
- Sonic texture

Measured Quantities Connection Perceived (subjective) Quantities in the lab


- Multiple sources
- Unison, polyphony, homophony, cacophony
- Spatial location


## Signal-to-noise (SNR)

- Random fluctuations in signal (noise)
- Ratio between power of signal and noise (voltage)
- Measured with decibels (tenth of a bel) $\quad S N R=20 \log _{10} \frac{V_{\text {signal }}}{V_{\text {noise }}}$
- Everyday usage
- Comparison to just-audible sound of 1 kHz
- Conversation: 60 dB
- Train: 90 dB
- Pain: 140 dB


## Digital sound

- Digital processing and storage
- Sound is an analog signal
- Sampling - observe pressure at fixed intervals
- Aliasing - artifacts due to low sampling
- Quantization - encode values with fixed interval of integers
- Quantization noise - loss due to rounding



## Signal sampling

- Uniform sampling (Dirac comb)
- Nyquist-Shannon theorem
- Avoid aliasing

$\phi=\theta$
- Band-limited signal
- Sample rate twice the maximum frequency
- Low pass filter (< f/2) + Sampling with frequency $f$

$\phi=2 \theta$


## Signal quantization

- Assign integer values to measured ones
- [-V ... V] $\rightarrow$ [0 ... N]
- Quantization error (rounding)
- Signal-to-quantization noise (SQNR)
- Higher is better (more signal vs. noise)
- Worst case (peak signal) $\quad S Q N R=20 \log _{10} 2^{N}=6.02 \times N(d B)$
- Statistical independence $S Q N R=6.02 \times N+1.76(d B)$
- 12 bit fine for adequate reproduction
- Dithering
- Small amount of noise added to the signal
- Quantization errors are more random and less noticeable


## Pulse-code modulation

- Formal term for sampling + quantization
- Linear quantization
- Uniform levels
- Non-linear quantization

- Better signal-to-noise ratio for low-amplitude signals
- A-law, $\mu$-law algorithm
- (Adaptive) Differential Pulse Code Modulation
- Encode difference to previous value
- Encode difference to predicted value



## Frequency spectrum

- Linear combination of basis functions
- Sinusoids (sine and cosine) repeatability

- Coefficients - presence of individual basis functions
- Computed for a time window


## Fourier analysis

- General functions represented/approximated by sums of simpler trigonometric functions
- Decomposing signal into base sine waves
- Frequency distribution
- Simplifies certain operations
- Fourier transform
- Inverse transform



## Discrete Fourier Transform

 ystemslab- N point signal described with N coefficients

$$
\left\{x_{0}, x_{1}, \ldots, x_{N-1}\right\} \rightarrow\left\{X_{0}, X_{1}, \ldots, X_{N-1}\right\} \quad X_{k}=\sum_{n=0}^{N-1} x_{n} \cdot[\cos (2 \pi k n / N)-i \cdot \sin (2 \pi k n / N)]
$$

- Fast implementation (FFT) $O\left(n^{2}\right) \rightarrow O(n \log n)$



Sampling frequency $R=8000 \mathrm{~Hz}, N=100$

## Common digital sound parameters

|  | Use case | Sampling <br> rate | Bits per <br> sample |
| :--- | ---: | ---: | :--- |
| Frequency band (Hz) |  |  |  |
| Telephony (GSM) | 8.000 Hz | 8 | $200-3400$ |
| G.722 (voice over IP) | 16.000 Hz | 14 | $50-7000$ |
| Audio CD | 44.100 Hz | 16 | $5-20 \mathrm{k}$ |
| Digital Audio Tape, Dolby AC-3 | 48.000 Hz | 16 | $5-20 \mathrm{k}$ |
| High-quality acquisition and reproduction. <br> Supported in DVD-Audio , Dolby TrueHD, DTS- <br> HD ... | 192.000 Hz | 24 (max) | $0-96 \mathrm{k}$ (max) |

## Analog vs. digital sound processing

- Analog audio processing
- Continuous signal - electrical current or voltage
- Processing done via electronic components
- Digital signal processing
- Sampled signal
- Processing done on general purpose computers
- More powerful and efficient


## Audio filter

- Analog audio filter
- Medium that transmits and modifies audio signal
- Electronic components
- Speakers - cannot cover entire spectrum
- Mouth cavity - changing shape
- Digital audio filter
- Algorithm that operates on digital signals
- Approximation of analog filters
- Better SNR



## Filter taxonomy

ystemslab

- Linear filters / Non-linear filters
- Is the output result of a linear difference equation?
- Non-linear filters create additional frequency components, not present in the original signal
- Causal / Non-causal
- Is the output result only of past values?
- Time-invariant / Time-variant
- Is the output the same if we send it to the filter a bit later?


## Linear filters

$\frac{y(n)}{\text { Output }}=\frac{b_{0} x(n)+b_{1} x(n-1)+b_{2} x(n-2)+\cdots-\frac{a_{1} y(n-1)-a_{2} y(n-2)-\cdots}{\text { Input }}}{\text { Past output }}$

- Non-recursive filters (FIR): $a_{n}=0 ; \forall n>1$
- Finite response
- Recursive filters (IIR)
- Potentially infinite response
- Implementations more compact


## Frequency-response analysis

- Compare input and output frequency spectrum
- Only possible for LTI filters
- Retain sinusoidal signal
- Observe parametric properties of elementary inputs


## Low-pass filter

- Ideal low-pass filter
- Requires infinite signal
- Simple low-pass filter
- Cutoff is Fs / 2
- Transition is very gradual
- Low-pass filter design
- Delay (see into the future)
- Computational complexity


$$
y(n)=x(x)+x(n-1)
$$



## Low-pass filter implementations

- Butterworth
- Chebyshev
- Elliptic





## Frequency filtering

- Combinations of prototype low-pass filter
- Pass only frequencies in passband
- Low-pass
- High-pass
- Band-pass
- Band-stop
band-pass


## Splitting frequency bands




## Audio equalization

- Multi-band signal can be combined back
- Split signal into multiple bands
- Weight individual bands
- Combine signal again



## Comb filter

ystemslab

- Basic building block of many effects

$$
y(n)=x(n)+\alpha_{1} x\left(n-t_{1}\right)+\alpha_{2} y\left(n-t_{2}\right)
$$

- Feedforward
- Feedback



## Delay

ystemslab

- A time-shifted signal is added to the original
- Delay below $50-100 \mathrm{~ms}$ is not perceived as delay



## Echo

- Echo filter - simulate acoustics of a room
- Multiple decaying delays - early reflections
- Subsequent reverberation - random signal



## Flanger and phaser

- Delay varies with low frequency
- Feedback loop
- Time-variant filter


Chorus

- Sounds with almost same time and similar pitch
- Naturally: choir, string orchestra
- Similar to flanger
- Longer delay times
- Different combing effect



## Non-linear filters

- Not describable by a LDE
- New frequencies in the signal
- Noise removal
- Median filter
- Dynamic range compression
- Companding - handling dynamic range
- Clipping - amplitude clipping
- Distortion - non-linear amplitude modificaton


## Distortion

- Overdriven guitar effect
- Clipping of high energy frequencies
- Soft clipping
- Hard clipping

$$
y(n)=\frac{(1+k) x(n)}{1+k|x(n)|}
$$



## Changing playback speed/pitch

- Sample rate conversion
- Timing is changed
- Transposed pitch (chipmunk effect)
- Frequency domain
- Process windows (STFT)
- Time domain


## Spectrum Analysis

- Process signal in small segments
- Simulates human perception (10-20ms segments)
- Computationally efficient (STFT)
- Transient events (e.g. percussion)





## Extracting a segment

- Window function
- Filters out a short segment of signal
- Zero outside the interval
- Symmetric (typically)
- Spectral leakage


- Side-lobes
- Cross-talk
- Windows distribute leakage differently


## Overlap-Add

ystemsiab

- Combine frames back to a signal
- Constant Overlap-Add
- Hop size
- Overlap size



## Convolution with Overlap-Add

- Efficient convolution implementation
- Interval size L
- Filter size M
- Convolution is multiplication in Fourier domain



## Time stretch

ystemslab

- Short, smoothly windowed block of samples
- FFT transform
- Processing to the Fourier transform
- Resampling the FFT blocks
- Inverse STFT
- Combine blocks (overlap-add)


## Pitch shift

ystemsiab

- Preserve time, shift pitch (frequencies)
- Using time stretching
- Stretch time
- Re-sample to original length
- Modification of sinusoidal model



## Filter banks

- Set of filters that decomposes signal into components
- Efficiently implemented using STFT
- Shared computation
- Vocoders
- Compression (MPEG)

