CHAPTER

WRITING AND
OPTIMIZING ARM
ASSEMBLY CODE

Embedded software projects often contain a few key subroutines that dominate system
performance. By optimizing these routines you can reduce the system power consumption
and reduce the clock speed needed for real-time operation. Optimization can turn an
infeasible system into a feasible one, or an uncompetitive system into a competitive one.

If you write your C code carefully using the rules given in Chapter 5, you will have
arelatively efficient implementation. For maximum performance, you can optimize critical
routines using hand-written assembly. Writing assembly by hand gives you direct control
of three optimization tools that you cannot explicitly use by writing C source:

B [nstruction scheduling: Reordering the instructions in a code sequence to avoid processor
stalls. Since ARM implementations are pipelined, the timing of an instruction can be
affected by neighboring instructions. We will look at this in Section 6.3.

m  Register allocation: Deciding how variables should be allocated to ARM registers or stack
locations for maximum performance. Our goal is to minimize the number of memory
accesses. See Section 6.4.

m  Conditional execution: Accessing the full range of ARM condition codes and conditional
instructions. See Section 6.5.

It takes additional effort to optimize assembly routines so don’t bother to optimize
noncritical ones. When you take the time to optimize a routine, it has the side benefit of
giving you a better understanding of the algorithm, its bottlenecks, and dataflow.

157



158 Chapter 6 Writing and Optimizing ARM Assembly Code

Section 6.1 starts with an introduction to assembly programming on the ARM. It shows
you how to replace a C function by an assembly function that you can then optimize for
performance.

We describe common optimization techniques, specific to writing ARM assembly.
Thumb assembly is not covered specifically since ARM assembly will always give better
performance when a 32-bit bus is available. Thumb is most useful for reducing the com-
piled size of C code that is not critical to performance and for efficient execution on a 16-bit
data bus. Many of the principles covered here apply equally well to Thumb and ARM.

The best optimization of a routine can vary according to the ARM core used in your
target hardware, especially for signal processing (covered in detail in Chapter 8). However,
you can often code a routine that is reasonably efficient for all ARM implementations. To be
consistent this chapter uses ARM9TDMI optimizations and cycle counts in the examples.
However, the examples will run efficiently on all ARM cores from ARM7TDMI to ARM10E.

61 WRITING ASSEMBLY CODE

EXAMPLE

6.1

This section gives examples showing how to write basic assembly code. We assume you are
familiar with the ARM instructions covered in Chapter 3; a complete instruction reference
is available in Appendix A. We also assume that you are familiar with the ARM and Thumb
procedure call standard covered in Section 5.4.

As with the rest of the book, this chapter uses the ARM macro assembler armasm for
examples (see Section A.4 in Appendix A for armasm syntax and reference). You can also
use the GNU assembler gas (see Section A.5 for details of the GNU assembler syntax).

This example shows how to convert a C function to an assembly function—usually the
first stage of assembly optimization. Consider the simple C program main. c following that
prints the squares of the integers from 0 to 9:

#include <stdio.h>
int square(int i);

int main(void)
{
int i;
for (i=0; 1<10; i++)
{
printf("Square of %d is %d\n", i, square(i));
1
1

int square(int i)



EXAMPLE

6.2

6.1 Writing Assembly Code 159

{

return i*i;

}

Let’s see how to replace square by an assembly function that performs the same action.
Remove the C definition of square, but not the declaration (the second line) to produce
a new C file mainl.c. Next add an armasm assembler file square.s with the following
contents:

AREA | .text|, CODE, READONLY
EXPORT  square

; int square(int i)

square
MUL rl, r0, rO ; rl =1r0*r0
MOV rO, rl ; r0 =rl
MOV pc, 1r ; return r0
END

The AREA directive names the area or code section that the code lives in. If you use
nonalphanumeric characters in a symbol or area name, then enclose the name in vertical
bars. Many nonalphanumeric characters have special meanings otherwise. In the previous
code we define a read-only code area called . text.

The EXPORT directive makes the symbol square available for external linking. At line
six we define the symbol square as a code label. Note that armasm treats nonindented text
as a label definition.

When square is called, the parameter passing is defined by the ATPCS (see Section 5.4).
The input argument is passed in register 70, and the return value is returned in register r0.
The multiply instruction has a restriction that the destination register must not be the same
as the first argument register. Therefore we place the multiply result into 71 and move this
to r0.

The END directive marks the end of the assembly file. Comments follow a semicolon.

The following script illustrates how to build this example using command line tools.

armcc -c mainl.c
armasm square.s
armlink -o mainl.axf mainl.o square.o

Example 6.1 only works if you are compiling your C as ARM code. If you compile your
C as Thumb code, then the assembly routine must return using a BX instruction.

When calling ARM code from C compiled as Thumb, the only change required to the
assembly in Example 6.1 is to change the return instruction to a BX. BX will return to ARM



160 Chapter 6 Writing and Optimizing ARM Assembly Code

EXAMPLE

6.3

or Thumb state according to bit 0 of Ir. Therefore this routine can be called from ARM or
Thumb. Use BX Trinstead of MOV pc, 1r whenever your processor supports BX (ARMv4T
and above). Create a new assembly file square2.s as follows:

AREA | .text|, CODE, READONLY
EXPORT  square

; int square(int i)

square
MUL rl, r0, rO ; rl =r0*r0
MOV  rO, rl1 ; r0 =rl
BX Tr s return r0
END

With this example we build the C file using the Thumb C compiler tcc. We assemble
the assembly file with the interworking flag enabled so that the linker will allow the Thumb
C code to call the ARM assembly code. You can use the following commands to build this
example:

tcc -c mainl.c
armasm -apcs /interwork square2.s
armlink -o main2.axf mainl.o square2.o

This example shows how to call a subroutine from an assembly routine. We will take
Example 6.1 and convert the whole program (including main) into assembly. We will call
the C library routine printf as a subroutine. Create a new assembly filemain3.s with the
following contents:

AREA |.text|, CODE, READONLY
EXPORT  main

IMPORT  |Lib$$Request$$armlib|, WEAK
IMPORT _ main 3 C library entry
IMPORT  printf ; prints to stdout

i RN 4

; int main(void)

main
STMFD  sp!, {i, 1r}
MoV i, #0



6.1 Writing Assembly Code 161

Toop
ADR r0, print_string
MOV rl, i
MUL r2, i, i
BL printf
ADD i, i, #1
CMP i, #10
BLT Toop

LDMFD  sp!, {i, pc}

print_string
DCB "Square of %d is %d\n", 0

END

We have used a new directive, IMPORT, to declare symbols that are defined in other files.
The imported symbol Lib$$Request$$armlib makes a request that the linker links with
the standard ARM C library. The WEAK specifier prevents the linker from giving an error
if the symbol is not found at link time. If the symbol is not found, it will take the value
zero. The second imported symbol _ main is the start of the C library initialization code.
You only need to import these symbols if you are defining your own main; amain defined
in C code will import these automatically for you. Importing printf allows us to call that
C library function.

The RN directive allows us to use names for registers. In this case we define i as
an alternate name for register 4. Using register names makes the code more readable.
It is also easier to change the allocation of variables to registers at a later date.

Recall that ATPCS states that a function must preserve registers r4 to 11 and sp. We
corrupt i(r4), and calling printf will corrupt Ir. Therefore we stack these two registers
at the start of the function using an STMFD instruction. The LDMFD instruction pulls these
registers from the stack and returns by writing the return address to pc.

The DCB directive defines byte data described as a string or a comma-separated list of
bytes.

To build this example you can use the following command line script:

armasm main3.s
armlink -o main3.axf main3.o

Note that Example 6.3 also assumes that the code is called from ARM code. If the code
can be called from Thumb code as in Example 6.2 then we must be capable of returning to
Thumb code. For architectures before ARMv5 we must use a BX to return. Change the last
instruction to the two instructions:

LDMFD  sp!, {i, 1r}
BX Ir



162 Chapter 6 Writing and Optimizing ARM Assembly Code

EXAMPLE

6.4

Finally, let’s look at an example where we pass more than four parameters. Recall that
ATPCS places the first four arguments in registers rOto r3. Subsequent arguments are placed

on the stack.

This example defines a function sumof that can sum any number of integers. The arguments
are the number of integers to sum followed by a list of the integers. The sumof function is
written in assembly and can accept any number of arguments. Put the C part of the example

inafilemain4d.c:

#include <stdio.

h>

/* N is the number of values to sum in Tist ... */

int sumof(int N, ...

int main(void)

{

)s

printf("Empty sum=%d\n", sumof(0));

printf("1=%d\n", sumof(1,1));

printf("1+2=%d\n", sumof(2,1,2));
printf("1+2+3=%d\n", sumof(3,1,2,3));
printf("1+2+3+4=%d\n", sumof(4,1,2,3,4));
printf("1+2+3+4+5=%d\n", sumof(5,1,2,3,4,5));
printf("1+2+3+4+5+6=%d\n", sumof(6,1,2,3,4,5,6));

Next define the sumof function in an assembly file sumof.s:

AREA

EXPORT
N RN 0
sum RN 1

; int sumof(int N, ...

sumof
SUBS
MOVLT
SUBS
ADDGE
SUBS
ADDGE
MoV
Toop
SUBS
LDMGEFD

| .text|, CODE, READONLY

sumof

; number of elements to sum

3 current sum

N, N, #1
sum, #0

N, N, #1
sum, sum, r2
N, N, #1
sum, sum, r3
r2, sp

N, N, #1
r2!, {r3}

do we have one element

no elements to sum!

do we have two elements
do we have three elements

top of stack

do we have another element

; load from the stack



6.3 Instruction Scheduling 163

ADDGE  sum, sum, r3

BGE loop

MOV r0, sum

MOV pc, 1Ir ; return r0
END

The code keeps count of the number of remaining values to sum, N. The first three
values are in registers r1, 72, r3. The remaining values are on the stack. You can build this
example using the commands

armcc -c maind.c
armasm sumof.s
armlink -o main4.axf main4.o sumof.o

62 PROFILING AND CYCLE COUNTING

The first stage of any optimization process is to identify the critical routines and measure
their current performance. A profiler is a tool that measures the proportion of time or
processing cycles spent in each subroutine. You use a profiler to identify the most critical
routines. A cycle counter measures the number of cycles taken by a specific routine. You can
measure your success by using a cycle counter to benchmark a given subroutine before and
after an optimization.

The ARM simulator used by the ADS1.1 debugger is called the ARMulator and pro-
vides profiling and cycle counting features. The ARMulator profiler works by sampling the
program counter pc at regular intervals. The profiler identifies the function the pcpoints to
and updates a hit counter for each function it encounters. Another approach is to use the
trace output of a simulator as a source for analysis.

Be sure that you know how the profiler you are using works and the limits of its accuracy.
A pc-sampled profiler can produce meaningless results if it records too few samples. You can
even implement your own pc-sampled profiler in a hardware system using timer interrupts
to collect the pc data points. Note that the timing interrupts will slow down the system you
are trying to measure!

ARM implementations do not normally contain cycle-counting hardware, so to easily
measure cycle counts you should use an ARM debugger with ARM simulator. You can
configure the ARMulator to simulate a range of different ARM cores and obtain cycle
count benchmarks for a number of platforms.

6.3 INSTRUCTION SCHEDULING

The time taken to execute instructions depends on the implementation pipeline. For this
chapter, we assume ARM9TDMI pipeline timings. You can find these in Section D.3 of



164 Chapter 6 Writing and Optimizing ARM Assembly Code

Appendix D. The following rules summarize the cycle timings for common instruction
classes on the ARM9TDMI.

Instructions that are conditional on the value of the ARM condition codes in the cpsr
take one cycle if the condition is not met. If the condition is met, then the following rules

apply:

m  ALU operations such as addition, subtraction, and logical operations take one cycle.
This includes a shift by an immediate value. If you use a register-specified shift, then
add one cycle. If the instruction writes to the pc, then add two cycles.

®m  Loadinstructions thatload N 32-bit words of memory such as LDR and LDM take N cycles
to issue, but the result of the last word loaded is not available on the following cycle.
The updated load address is available on the next cycle. This assumes zero-wait-state
memory for an uncached system, or a cache hit for a cached system. An LDM of a single
value is exceptional, taking two cycles. If the instruction loads pc, then add two cycles.

m  Loadinstructions thatload 16-bit or 8-bit data such as LDRB, LDRSB, LDRH, and LDRSH
take one cycle to issue. The load result is not available on the following two cycles.
The updated load address is available on the next cycle. This assumes zero-wait-state
memory for an uncached system, or a cache hit for a cached system.

m  Branch instructions take three cycles.

m  Store instructions that store N values take N cycles. This assumes zero-wait-state
memory for an uncached system, or a cache hit or a write buffer with N free entries for
a cached system. An STM of a single value is exceptional, taking two cycles.

®m  Multiply instructions take a varying number of cycles depending on the value of the
second operand in the product (see Table D.6 in Section D.3).

To understand how to schedule code efficiently on the ARM, we need to understand
the ARM pipeline and dependencies. The ARM9TDMI processor performs five operations
in parallel:

m  Fetch: Fetch from memory the instruction at address pc. The instruction is loaded into
the core and then processes down the core pipeline.

B Decode: Decode the instruction that was fetched in the previous cycle. The processor
also reads the input operands from the register bank if they are not available via one of
the forwarding paths.

m  ALU:Executes the instruction that was decoded in the previous cycle. Note this instruc-
tion was originally fetched from address pc — 8 (ARM state) or pc — 4 (Thumb state).
Normally this involves calculating the answer for a data processing operation, or the
address for a load, store, or branch operation. Some instructions may spend several
cycles in this stage. For example, multiply and register-controlled shift operations take
several ALU cycles.



Figure 6.1

EXAMPLE

6.5

EXAMPLE

6.6

6.3 Instruction Scheduling 165

Instruction address P¢ pc—4  pc=8  pc—-12  pc-16
Action [ Fetch [Decode| ALU | Ls1 | Ls2 |

ARMITDMI pipeline executing in ARM state.

m  [SI:Load or store the data specified by a load or store instruction. If the instruction is
not a load or store, then this stage has no effect.

m  [S2: Extract and zero- or sign-extend the data loaded by a byte or halfword load
instruction. If the instruction is not a load of an 8-bit byte or 16-bit halfword item,
then this stage has no effect.

Figure 6.1 shows a simplified functional view of the five-stage ARM9TDMI pipeline.
Note that multiply and register shift operations are not shown in the figure.

After an instruction has completed the five stages of the pipeline, the core writes the
result to the register file. Note that pc points to the address of the instruction being fetched.
The ALU is executing the instruction that was originally fetched from address pc — 8 in
parallel with fetching the instruction at address pc.

How does the pipeline affect the timing of instructions? Consider the following
examples. These examples show how the cycle timings change because an earlier instruc-
tion must complete a stage before the current instruction can progress down the pipeline.
To work out how many cycles a block of code will take, use the tables in Appendix D that
summarize the cycle timings and interlock cycles for a range of ARM cores.

If an instruction requires the result of a previous instruction that is not available, then
the processor stalls. This is called a pipeline hazard or pipeline interlock.

This example shows the case where there is no interlock.

ADD r0, r0, rl
ADD rO, r0, r2

This instruction pair takes two cycles. The ALU calculates 70 + r1 in one cycle. Therefore
this result is available for the ALU to calculate 70 + r2 in the second cycle.
This example shows a one-cycle interlock caused by load use.

LDR r1, [r2, #4]
ADD rO, r0, rl

This instruction pair takes three cycles. The ALU calculates the address r2 + 4 in the first
cycle while decoding the ADD instruction in parallel. However, the ADD cannot proceed on



166 Chapter 6 Writing and Optimizing ARM Assembly Code

Figure 6.2

EXAMPLE

6.7

Figure 6.3

Pipeline | Fetch [ Decode [ ALU | LS1 [1S2 |

Cycle 1 500 ADD LDR 000
Cycle 2 500 ADD LDR 500
Cycle 3 500 ADD — LDR

One-cycle interlock caused by load use.

the second cycle because the load instruction has not yetloaded the value of r1. Therefore the
pipeline stalls for one cycle while the load instruction completes the LS1 stage. Now that 1
is ready, the processor executes the ADD in the ALU on the third cycle.

Figure 6.2 illustrates how this interlock affects the pipeline. The processor stalls the
ADD instruction for one cycle in the ALU stage of the pipeline while the load instruction
completes the LS1 stage. We’ve denoted this stall by an italic ADD. Since the LDR instruction
proceeds down the pipeline, but the ADD instruction is stalled, a gap opens up between them.
This gap is sometimes called a pipeline bubble. We’ve marked the bubble with a dash.

This example shows a one-cycle interlock caused by delayed load use.

LDRB r1, [r2, #1]
ADD r0, r0, r2
EOR r0, r0, ril

This instruction triplet takes four cycles. Although the ADD proceeds on the cycle following
the load byte, the EOR instruction cannot start on the third cycle. The rI value is not ready
until the load instruction completes the LS2 stage of the pipeline. The processor stalls the
EOR instruction for one cycle.

Note that the ADD instruction does not affect the timing at all. The sequence takes four
cycles whether it is there or not! Figure 6.3 shows how this sequence progresses through the
processor pipeline. The ADD doesn’t cause any stalls since the ADD does not use r1, the result
of the load.

Pipeline | Fetch | Decode [ALU | LS1 | LS2 |
Cyclel [EOR  ADD LDRB

Cycle 2 000 EOR ADD LDRB
Cycle 3 000G EOR ADD LDRB
Cycle 4 500 EOR — ADD

One-cycle interlock caused by delayed load use.



6.3 Instruction Scheduling 167

Pipeline | Fetch | Decode[ALU [ LS1 [1LS2 |

Cycle 1 | AND B MoV 500

Cycle2 | EOR AND B MOV ..
Cycle3 | SUB — — B MoV
Cycled4 | ... SUB - - B
Cycle 5 000 SUB - -

Figure 6.4 Pipeline flush caused by a branch.

ExAMPLE This example shows why a branch instruction takes three cycles. The processor must flush
6.8 the pipeline when jumping to a new address.

MOV rl, #1

B casel

AND r0, r0, ri1
EOR r2, r2, r3

casel
SUB  r0, r0, rl

The three executed instructions take a total of five cycles. The MOV instruction executes on
the first cycle. On the second cycle, the branch instruction calculates the destination address.
This causes the core to flush the pipeline and refill it using this new pcvalue. The refill takes
two cycles. Finally, the SUB instruction executes normally. Figure 6.4 illustrates the pipeline
state on each cycle. The pipeline drops the two instructions following the branch when the
branch takes place.

6.3.1 SCHEDULING OF LOAD INSTRUCTIONS

Load instructions occur frequently in compiled code, accounting for approximately one-
third of all instructions. Careful scheduling of load instructions so that pipeline stalls don’t
occur can improve performance. The compiler attempts to schedule the code as best it
can, but the aliasing problems of C that we looked at in Section 5.6 limits the available
optimizations. The compiler cannot move a load instruction before a store instruction
unless it is certain that the two pointers used do not point to the same address.

Let’s consider an example of a memory-intensive task. The following function,
str_tolower, copies a zero-terminated string of characters from in to out. It converts
the string to lowercase in the process.



168 Chapter 6 Writing and Optimizing ARM Assembly Code

EXAMPLE

6.9

void str_tolower(char *out, char *in)

{

unsigned int c;

do
{
c = *(in++);
if (c>='A"' && c<='Z")
{
c=c+ ('a' -'A');
1
*(out++) = (char)c;
} while (c);
}

The ADS1.1 compiler generates the following compiled output. Notice that the compiler
optimizes the condition (c>='A' && c<='Z') to the check that 0<=c-'A'<='Z'-"'A".
The compiler can perform this check using a single unsigned comparison.

str_tolower
LDRB r2,[rl],#1 3 ¢ = *(in++)
SUB r3,r2,#0x41 ; r3 = c -'A'
CMP r3,#0x19 s if (c <='Z'-'A")
ADDLS  r2,r2,#0x20 c +='a'-'A'
STRB r2,[r0],#1 ; *(out++) = (char)c

Cmp r2,#0 ; if (c!=0)
BNE str_tolower goto str_tolower
MOV pc,rla 3 return

Unfortunately, the SUB instruction uses the value of ¢ directly after the LDRB instruction
that loads c. Consequently, the ARMITDMI pipeline will stall for two cycles. The compiler
can’t do any better since everything following the load of ¢ depends on its value. However,
there are two ways you can alter the structure of the algorithm to avoid the cycles by using
assembly. We call these methods load scheduling by preloading and unrolling.

6.3.1.1 Load Scheduling by Preloading

In this method of load scheduling, we load the data required for the loop at the end of
the previous loop, rather than at the beginning of the current loop. To get performance
improvement with little increase in code size, we don’t unroll the loop.

This assembly applies the preload method to the str_tolower function.

out RN 0 ; pointer to output string
in RN 1 ; pointer to input string



EXAMPLE

6.10

6.3 Instruction Scheduling 169

c RN 2 ; character loaded

t RN 3 ; scratch register
; void str_tolower preload(char *out, char *in)
str_tolower_preload

LDRB c, [in], #1 3 ¢ = *(int++)
loop
SUB t, c, #'A' ;s t = c-'A
CMP t, #'7'-'A" s if (t <= 'Z'-'AY)
ADDLS ¢, c, #'a'-'A' ;s c 4= 'a'-'A';
STRB c, [out], #1 s *(out++) = (char)c;
TEQ c, #0 ; test if c==0
LDRNEB ¢, [in], #1 5 if (c1=0) { c=*in++;
BNE Toop : goto Toop; }
MOV pc, Ir 3 return

The scheduled version is one instruction longer than the C version, but we save two
cycles for each inner loop iteration. This reduces the loop from 11 cycles per character to
9 cycles per character on an ARM9TDMI, giving a 1.22 times speed improvement.

The ARM architecture is particularly well suited to this type of preloading because
instructions can be executed conditionally. Since loop i is loading the data for loop i + 1
there is always a problem with the first and last loops. For the first loop, we can preload data
by inserting extra load instructions before the loop starts. For the last loop it is essential that
the loop does not read any data, or it will read beyond the end of the array. This could cause
a data abort! With ARM, we can easily solve this problem by making the load instruction
conditional. In Example 6.9, the preload of the next character only takes place if the loop
will iterate once more. No byte load occurs on the last loop.

6.3.1.2 Load Scheduling by Unrolling

This method of load scheduling works by unrolling and then interleaving the body of the
loop. For example, we can perform loop iterations i, i + 1, i + 2 interleaved. When the result
of an operation from loop i is not ready, we can perform an operation from loop i + 1 that
avoids waiting for the loop i result.

The assembly applies load scheduling by unrolling to the str_tolower function.

out RN 0 ; pointer to output string
in RN 1 ; pointer to input string
cal RN 2 ; character 0

t RN 3 ; scratch register



170 Chapter 6 Writing and Optimizing ARM Assembly Code

cal RN 12 ; character 1

ca?2 RN 14 ; character 2
; void str_tolower unrolled(char *out, char *in)
str_tolower_unrolled

STMFD  sp!, {1r} ; function entry
Toop_next3
LDRB ca0, [in], #1 3 cal = *in++;
LDRB cal, [in], #1 ; cal = *int++,
LDRB ca2, [in], #1 ; ca2 = *int+;
SUB t, ca0, #'A' ; convert ca0 to lower case

CMP t, #'72'-'A'

ADDLS  ca0, caO, #'a'-'A'

SUB t, cal, #'A' ; convert cal to Tower case
CMP t, #'2'-'A'

ADDLS  cal, cal, #'a'-'A'

SUB t, ca2, #'A' ; convert ca2 to lower case
CMP t, #'72'-'A'

ADDLS  ca2, ca2, #'a'-'A'

STRB ca0, [out], #1 ; *out++ = cal;

TEQ ca0, #0 ; if (ca0!=0)

STRNEB cal, [out], #1 3 *out++ = cal;

TEQNE  cal, #0 ; if (ca0!=0 && call=0)

STRNEB ca2, [out], #1 s *out++ = ca2;

TEQNE  ca2, #0 ; if (ca0!=0 && call!=0 && ca2!=0)
BNE loop_next3 5 goto Toop next3;

LDMFD  sp!, {pc} ; return;

This loop is the most efficient implementation we’ve looked at so far. The implemen-
tation requires seven cycles per character on ARMITDMI. This gives a 1.57 times speed
increase over the original str_tolower. Again it is the conditional nature of the ARM
instructions that makes this possible. We use conditional instructions to avoid storing
characters that are past the end of the string.

However, the improvement in Example 6.10 does have some costs. The routine is
more than double the code size of the original implementation. We have assumed that
you can read up to two characters beyond the end of the input string, which may not
be true if the string is right at the end of available RAM, where reading off the end
will cause a data abort. Also, performance can be slower for very short strings because
(1) stacking Ir causes additional function call overhead and (2) the routine may process
up to two characters pointlessly, before discovering that they lie beyond the end of the
string.

You should use this form of scheduling by unrolling for time-critical parts of an appli-
cation where you know the data size is large. If you also know the size of the data at compile
time, you can remove the problem of reading beyond the end of the array.



6.4 Register Allocation 171

SUuMMARY Instruction Scheduling

®  ARM cores have a pipeline architecture. The pipeline may delay the results of certain
instructions for several cycles. If you use these results as source operands in a following
instruction, the processor will insert stall cycles until the value is ready.

®m  Load and multiply instructions have delayed results in many implementations. See
Appendix D for the cycle timings and delay for your specific ARM processor core.

B You have two software methods available to remove interlocks following load instruc-
tions: You can preload so that loop iloads the data for loop i + 1, or you can unroll the
loop and interleave the code for loops iand i + 1.

6.4 REGISTER ALLOCATION

You can use 14 of the 16 visible ARM registers to hold general-purpose data. The other two
registers are the stack pointer r13 and the program counter r15. For a function to be ATPCS
compliant it must preserve the callee values of registers r4 to r11. ATPCS also specifies that
the stack should be eight-byte aligned; therefore you must preserve this alignment if calling
subroutines. Use the following template for optimized assembly routines requiring many
registers:

routine_name
STMFD sp!, {ra-r12, 1r} ; stack saved registers
3 body of routine
; the fourteen registers r0-rl2 and 1r are available
LDMFD sp!, {r4-ri2, pc} ; restore registers and return

Our only purpose in stacking 712 is to keep the stack eight-byte aligned. You need not stack
r12if your routine doesn’t call other ATPCS routines. For ARMv5 and above you can use
the preceding template even when being called from Thumb code. If your routine may be
called from Thumb code on an ARMvAT processor, then modify the template as follows:

routine_name
STMFD sp!, {r4-r12, 1r} ; stack saved registers
3 body of routine
; registers r0-rl12 and 1r available
LDMFD sp!, {r4-r12, 1r} 5 restore registers
BX Ir ; return, with mode switch

In this section we look at how best to allocate variables to register numbers for register-
intensive tasks, how to use more than 14 local variables, and how to make the best use of
the 14 available registers.



172 Chapter 6 Writing and Optimizing ARM Assembly Code

6.4.1 ALLOCATING VARIABLES TO REGISTER NUMBERS

When you write an assembly routine, it is best to start by using names for the variables,
rather than explicit register numbers. This allows you to change the allocation of variables
to register numbers easily. You can even use different register names for the same physical
register number when their use doesn’t overlap. Register names increase the clarity and
readability of optimized code.

For the most part ARM operations are orthogonal with respect to register number. In
other words, specific register numbers do not have specific roles. If you swap all occurrences
of two registers Ra and Rb in a routine, the function of the routine does not change.
However, there are several cases where the physical number of the register is important:

m  Argument registers. The ATPCS convention defines that the first four arguments to
a function are placed in registers r0 to r3. Further arguments are placed on the stack.
The return value must be placed in 0.

m  Registers used in a load or store multiple. Load and store multiple instructions LDM and
STM operate on a list of registers in order of ascending register number. If 70 and rI
appear in the register list, then the processor will always load or store 70 using a lower
address than rI and so on.

®m  Load and store double word. The LDRD and STRD instructions introduced in ARMv5E
operate on a pair of registers with sequential register numbers, Rd and Rd + 1.
Furthermore, Rd must be an even register number.

For an example of how to allocate registers when writing assembly, suppose we want
to shift an array of N bits upwards in memory by k bits. For simplicity assume that N is
large and a multiple of 256. Also assume that 0 < k < 32 and that the input and output
pointers are word aligned. This type of operation is common in dealing with the arithmetic
of multiple precision numbers where we want to multiply by 2*. It is also useful to block
copy from one bit or byte alignment to a different bit or byte alignment. For example, the
C library function memcpy can use the routine to copy an array of bytes using only word
accesses.

The Croutine shift_bits implements the simple k-bit shift of N'bits of data. It returns
the k bits remaining following the shift.

unsigned int shift bits(unsigned int *out, unsigned int *in,
unsigned int N, unsigned int k)

{

unsigned int carry=0, x;

do
{
X = *int+;
*out++ = (x<<k) | carry;



carry = x>>(32-k);

N -= 32;
} while (N);

return carry;

}

6.4 Register Allocation 173

The obvious way to improve efficiency is to unroll the loop to process eight words of
256 bits at a time so that we can use load and store multiple operations to load and store
eight words at a time for maximum efficiency. Before thinking about register numbers, we
write the following assembly code:

shift_bits
STMFD
RSB
Mov

Toop
LDMIA
ORR
MoV
ORR
Mov
ORR
MoV
ORR
Mov
ORR
Mov
ORR
MoV
ORR
Mov
ORR
MoV
STMIA
SUBS
BNE
Mov
LDMFD

sp!, {r4-rll, 1r}

kr, k, #32

carry, #0

inl, {x_0-x_7}

y_0, carry, x_0, LSL
carry, x_0, LSR kr
y_1, carry, x_1, LSL
carry, x_1, LSR kr
y_2, carry, x_2, LSL
carry, x_2, LSR kr
y_ 3, carry, x 3, LSL
carry, x_3, LSR kr
y_4, carry, x_ 4, LSL
carry, x_4, LSR kr
y_5, carry, x 5, LSL
carry, x 5, LSR kr
y_6, carry, x 6, LSL
carry, x_6, LSR kr
y_7, carry, x_7, LSL
carry, x_7, LSR kr
out!, {y 0-y 7}

N, N, #256

loop

r0, carry

sp!, {r4-rll, pc}

B

B

; save registers
3 kr = 32-k;

load 8 words

; shift the 8 words

store 8 words
N -= (8 words * 32 bits)

; if (N!=0) goto Toop;

return carry;

Now to the register allocation. So that the input arguments do not have to move registers,
we can immediately assign

out RN O
in RN 1



174 Chapter 6 Writing and Optimizing ARM Assembly Code

N RN 2
k RN 3

For the load multiple to work correctly, we must assign xy through x; to sequentially
increasing register numbers, and similarly for y, through y;. Notice that we finish with x;
before starting with y;. In general, we can assign x;, to the same register as ;4. Therefore,

assign

x 0 RN5S
x1 RNG6

x 2 RN7
x3 RNS8
x4 RNY
x5 RN 10
x 6 RN 11
x 7 RN 12
y 0 RN4
y 1 RN xO
y 2 RN x1
y3 RNx2
y 4 RNx3
y.5 RN x4
y 6 RN x5
y_7 RN x_ 6

We are nearly finished, but there is a problem. There are two remaining variables carry
and kr, but only one remaining free register Ir. There are several possible ways we can
proceed when we run out of registers:

®m  Reduce the number of registers we require by performing fewer operations in each
loop. In this case we could load four words in each load multiple rather than eight.

m  Use the stack to store the least-used values to free up more registers. In this case we
could store the loop counter N on the stack. (See Section 6.4.2 for more details on
swapping registers to the stack.)

m  Alter the code implementation to free up more registers. This is the solution we consider
in the following text. (For more examples, see Section 6.4.3.)

We often iterate the process of implementation followed by register allocation several
times until the algorithm fits into the 14 available registers. In this case we notice that the
carry value need not stay in the same register at alll We can start off with the carry value
in yo and then move it to y; when xp is no longer required, and so on. We complete the
routine by allocating kr to Ir and recoding so that carry is not required.



6.4 Register Allocation 175

ExAMPLE This assembly shows our final shift_bits routine. It uses all 14 available ARM registers.

6.11

6.4.2 USING MORE THAN 14 LOCAL VARIABLES

EXAMPLE

6.12

kr RN 1r

shift_bits
STMFD
RSB
MoV
Toop

LDMIA
ORR
MoV
ORR
MoV
ORR
MoV
ORR
MoV
ORR
MoV
ORR
MoV
ORR
MOV
ORR
STMIA
MoV
SUBS
BNE
MOV
LDMFD

sp!, {r4-ril, 1r}
kr, k, #32
y 0, #0

int, {x 0-x_7}

y 0, y 0, x 0, LSL
y_1, x 0, LSR kr

y 1, y 1, x 1, LSL
y_ 2, x_1, LSR kr
y2,y2,x2,LSL
y 3, x 2, LSR kr

y 3, y.3, x 3, LSL
y_4, x 3, LSR kr

y 4, y 4, x4, LSL
y 5, x 4, LSR kr

y 5, y5, x5, LSL
y 6, x 5, LSR kr

y 6, y 6, x 6, LSL
y_ 7, x_6, LSR kr
y7,y7,x7,LSL
out!, {y 0-y 7}

y 0, x 7, LSR kr
N, N, #256

Toop

r0, y 0

sp!, {r4-r11, pc}

save registers
kr = 32-k;
initial carry

load 8 words
shift the 8 words
recall x 0 =y 1

store 8 words

N -= (8 words * 32 bits)
if (N!=0) goto loop;
return carry;

If you need more than 14 local 32-bit variables in a routine, then you must store some
variables on the stack. The standard procedure is to work outwards from the inner-
most loop of the algorithm, since the innermost loop has the greatest performance

impact.

This example shows three nested loops, each loop requiring state information inherited
from the loop surrounding it. (See Section 6.6 for further ideas and examples of looping

constructs.)



176 Chapter 6 Writing and Optimizing ARM Assembly Code

EXAMPLE

6.13

nested_loops

STMFD  sp!, {r4-rll, 1r}

5 set up Toop 1

Toopl
STMFD  sp!, {loopl
5 set up Toop 2
loop2
STMFD  sp!, {loop2
5 set up Toop 3
Toop3

s body of loop 3
B{cond} loop3

LDMFD  sp!, {Toop2

5 body of Toop 2
B{cond} Toop2

LDMFD  sp!, {loopl

s body of loop 1
B{cond} loopl

registers}

registers}

registers}

registers}

LDMFD  sp!, {r4-rll, pc}

You may find that there are insufficient registers for the innermost loop even using the
construction in Example 6.12. Then you need to swap inner loop variables out to the stack.
Since assembly code is very hard to maintain and debug if you use numbers as stack address
offsets, the assembler provides an automated procedure for allocating variables to the

stack.

This example shows how you can use the ARM assembler directives MAP (alias ) and FIELD
(alias #) to define and allocate space for variables and arrays on the processor stack. The
directives perform a similar function to the struct operator in C.

MAP
a FIELD
b FIELD
C FIELD
d FIELD
length  FIELD

example
STMFD
SuB

STR
LDRSH

0
4
2
2

64
0

; map symbols to offsets starting at offset 0
; a is 4 byte integer (at offset 0)

; b is 2 byte integer (at offset 4)

; ¢ is 2 byte integer (at offset 6)

; d is an array of 64 characters (at offset 8)
; length records the current offset reached

sp!, {r4-rll, 1r} ; save callee registers
sp, sp, #length ; create stack frame

r0,

[sp, #a] ; a = r0;

rl, [sp, #b] ; rl = b;



6.4 Register Allocation 177

ADD r2, sp, #d ; r2 = &d[0]

ADD sp, sp, #length ; restore the stack pointer
LDMFD  sp!, {r4-rll, pc} ; return

6.4.3 MAKING THE MOST OF AVAILABLE REGISTERS

EXAMPLE

6.14

EXAMPLE

6.15

On a load-store architecture such as the ARM, it is more efficient to access values held in
registers than values held in memory. There are several tricks you can use to fit several
sub-32-bit length variables into a single 32-bit register and thus can reduce code size and
increase performance. This section presents three examples showing how you can pack
multiple variables into a single ARM register.

Suppose we want to step through an array by a programmable increment. A common
example is to step through a sound sample at various rates to produce different pitched
notes. We can express this in C code as

sample = table[index];
index += increment;

Commonly index and increment are small enough to be held as 16-bit values. We can
pack these two variables into a single 32-bit variable indinc:

Bit 31 16 15 0

indinc = (index<<16) + increment = index increment

The C code translates into assembly code using a single register to hold indinc:

LDRB sample, [table, indinc, LSR#16] ; table[index]
ADD indinc, indinc, indinc, LSL#16 ; indext+=increment

Note that if index and increment are 16-bit values, then putting index in the top
16 bits of indinc correctly implements 16-bit-wrap-around. In other words, index =
(short) (index +increment). This can be useful if you are using a buffer where you want
to wrap from the end back to the beginning (often known as a circular buffer).

When you shift by a register amount, the ARM uses bits 0 to 7 as the shift amount. The
ARM ignores bits 8 to 31 of the register. Therefore you can use bits 8 to 31 to hold a second
variable distinct from the shift amount.



178 Chapter 6 Writing and Optimizing ARM Assembly Code

EXAMPLE

6.16

This example shows how to combine a register-specified shift shift and loop counter
count to shift an array of 40 entries right by shift bits. We define a new variable cntshf
that combines count and shift:

Bit 31 87 0
cntshf = (count<<8) + shift = count shift
out RN 0 ; address of the output array
in RN 1 ; address of the input array
cntshf RN 2 ; count and shift right amount
X RN 3 ; scratch variable

; void shift right(int *out, int *in, unsigned shift);
shift_right

ADD cntshf, cntshf, #39<<8 ; count = 39
shift_loop

LDR X, [in], #4

SUBS cntshf, cntshf, #1<<8 ; decrement count

MOV X, X, ASR cntshf ; shift by shift

STR x, [out], #4

BGE shift_loop ; continue if count>=0
MoV pc, Ir

If you are dealing with arrays of 8-bit or 16-bit values, it is sometimes possible to manipulate
multiple values at a time by packing several values into a single 32-bit register. This is called
single issue multiple data (SIMD) processing.

ARM architecture versions up to ARMv5 do not support SIMD operations explicitly.
However, there are still areas where you can achieve SIMD type compactness. Section 6.6
shows how you can store multiple loop values in a single register. Here we look at a graphics
example of how to process multiple 8-bit pixels in an image using normal ADD and MUL
instructions to achieve some SIMD operations.

Suppose we want to merge two images X and Y to produce a new image Z. Let x,, yy,
and z, denote the nth 8-bit pixel in these images, respectively. Let 0 < a < 256 be a scaling
factor. To merge the images, we set

zn = (ax, + (256 — a)y,)/256 (6.1)

In other words image Z is image X scaled in intensity by a/256 added to image Y scaled by
1 — (a/256). Note that

zy = wyl256, where w, = a(x, — y,) + 256y, (6.2)

Therefore each pixel requires a subtract, a multiply, a shifted add, and a right
shift. To process multiple pixels at a time, we load four pixels at once using a



6.4 Register Allocation 179

word load. We use a bracketed notation to denote several values packed into the
same word:

Bit 24 16 8 0

[x3,x2,x1,x0]=x3224+x2216+x128+x0= X3 | X | X1 | Xp

We then unpack the 8-bit data and promote it to 16-bit data using an AND with a mask
register. We use the notation

Bit 31 16 15 0

[x2, x0] = x2216 +Xx5= Xy Xy

Note that even for signed values [a, b] + [¢, d] = [a + b, ¢ + d] if we interpret [a, b] using
the mathematical equation a2'® 4 b. Therefore we can perform SIMD operations on these
values using normal arithmetic instructions.

The following code shows how you can process four pixels at a time using only two
multiplies. The code assumes a 176 x 144 sized quarter CIF image.

IMAGE_WIDTH EQU 176 3 QCIF width

IMAGE_HEIGHT EQU 144 3 QCIF height

pz RN 0 ; pointer to destination image (word aligned)
pX RN 1 ; pointer to first source image (word aligned)
py RN 2 ; pointer to second source image (word aligned)
a RN 3 ; 8-bit scaling factor (0-256)

XX RN ; holds four x pixels [x3, x2, x1, x0]

4
yy RN 5 ; holds four y pixels [y3, y2, yl, y0]
X RN 6 ; holds two expanded x pixels [x2, x0]
y RN 7 ; holds two expanded y pixels [y2, y0]
z RN 8 ; holds four z pixels [z3, z2, z1, z0]
count RN 12 ; number of pixels remaining

mask RN 14 ; constant mask with value 0x00ffQOff

; void merge images(char *pz, char *px, char *py, int a)
merge_images

STMFD  sp!, {r4-r8, 1r}

MOV count, #IMAGE_WIDTH*IMAGE HEIGHT

LDR mask, =0x00FFOOFF s L 0, OxFF, 0, OxFF ]

merge_Toop

LDR xx, [px], #4 s [ x3, x2, «xI1,

LDR vy, [pyl, #4 s [oy3,  y2, vyl

AND X, mask, Xxx s [ 0, x2, 0, x0
[
[

< X
o o

AND y, mask, yy 5
SUB X, X, Y H

(x2-y2), (x0-y0)



180 Chapter 6 Writing and Optimizing ARM Assembly Code

MUL X, a, X s [ a*(x2-y2), a*(x0-y0) ]
ADD X, X, ¥, LSL#8 .l w2, wo ]
AND z, mask, x, LSR#8 ; [ 0, z2, 0, z0 ]
AND x, mask, xx, LSR#8 ; [ 0, X3, 0, x1 ]
AND y, mask, yy, LSR#8 ; [ 0, 3, 0, yl1
SuB Xs X, Y s [ (x3-y3), (x1-y1) 1]
MUL X, d, X s [ a*(x3-y3), a*(xl-yl) ]
ADD X, X, ¥, LSL#8 s [ w3, wl ]
AND x, mask, x, LSR#8 ; [ 0, z3, 0, z1 ]
ORR z, z, X, LSL#8 s [ z3, z2, z1, 20 ]
STR z, [pz], #4 ; store four z pixels
SUBS count, count, #4
BGT merge_Toop
LDMFD  sp!, {r4-r8, pc}
The code works since

0 < wy < 255a + 255(256 — a) = 256 x 255 = 0xFF00 (6.3)

Therefore it is easy to separate the value [w;, wy] into w, and wy by taking the most signif-
icant and least significant 16-bit portions, respectively. We have succeeded in processing
four 8-bit pixels using 32-bit load, stores, and data operations to perform operations in
parallel.

SUMMARY  Register Allocation

ARM has 14 available registers for general-purpose use: r0 to rI12 and rl4. The
stack pointer r13 and program counter r15 cannot be used for general-purpose data.
Operating system interrupts often assume that the user mode r13 points to a valid stack,
so don’t be tempted to reuse r13.

If you need more than 14 local variables, swap the variables out to the stack, working
outwards from the innermost loop.

Use register names rather than physical register numbers when writing assembly
routines. This makes it easier to reallocate registers and to maintain the code.

To ease register pressure you can sometimes store multiple values in the same register.
For example, you can store a loop counter and a shift in one register. You can also store
multiple pixels in one register.

6.5 CONDITIONAL EXECUTION

The processor core can conditionally execute most ARM instructions. This conditional
execution is based on one of 15 condition codes. If you don’t specify a condition, the



EXAMPLE

6.17

EXAMPLE

6.18

6.5 Conditional Execution 181

assembler defaults to the execute always condition (AL). The other 14 conditions split into
seven pairs of complements. The conditions depend on the four condition code flags N, Z,
C, Vstored in the cpsr register. See Table A.2 in Appendix A for the list of possible ARM
conditions. Also see Sections 2.2.6 and 3.8 for an introduction to conditional execution.

By default, ARM instructions do not update the N, Z, C, V flags in the ARM cpsr. For
most instructions, to update these flags you append an S suffix to the instruction mnemonic.
Exceptions to this are comparison instructions that do not write to a destination register.
Their sole purpose is to update the flags and so they don’t require the S suffix.

By combining conditional execution and conditional setting of the flags, you can imple-
ment simple if statements without any need for branches. This improves efficiency since
branches can take many cycles and also reduces code size.

The following C code converts an unsigned integer 0 < i < 15 to a hexadecimal character c:

if (i<10)
{

c=1+"'0";

We can write this in assembly using conditional execution rather than conditional
branches:

CMpP i, #10
ADDLO c, i, #'0'
ADDHS c, i, #'A'-10

The sequence works since the first ADD does not change the condition codes. The second
ADD is still conditional on the result of the compare. Section 6.3.1 shows a similar use of
conditional execution to convert to lowercase.

Conditional execution is even more powerful for cascading conditions.
The following C code identifies if ¢ is a vowel:
if (c=='a' || c==

{

vowel++;



182 Chapter 6 Writing and Optimizing ARM Assembly Code

EXAMPLE

6.19

SUMMARY

In assembly you can write this using conditional comparisons:

TEQ c, #'a'
TEQNE ¢, #'e'
TEQNE ¢, #'i'
TEQNE ¢, #'o'
TEQNE ¢, #'u'

ADDEQ vowel, vowel, #1

As soon as one of the TEQ comparisons detects a match, the Z flag is set in the cpsr. The
following TEQNE instructions have no effect as they are conditional on Z = 0.

The next instruction to have effect is the ADDEQ that increments vowel. You can use this
method whenever all the comparisons in the if statement are of the same type.

Consider the following code that detects if ¢ is a letter:

if ((c>='A" && c<='Z"') || (c>='a' && c<='z"))
{
letter++;

}

To implement this efficiently, we can use an addition or subtraction to move each range
to the form 0 < ¢ < [limit. Then we use unsigned comparisons to detect this range and
conditional comparisons to chain together ranges. The following assembly implements this
efficiently:

SuB temp, c, #'A'
CMP temp, #'Z'-'A'
SUBHI temp, c, #'a'
CMPHI  temp, #'z'-'a'
ADDLS  Tetter, letter, #1

For more complicated decisions involving switches, see Section 6.8.

Note that the logical operations AND and OR are related by the standard logical relations
as shown in Table 6.1. You can invert logical expressions involving OR to get an expression
involving AND, which can often be useful in simplifying or rearranging logical expressions.

Conditional Execution

®  You can implement most if statements with conditional execution. This is more
efficient than using a conditional branch.



6.6 Looping Constructs 183

Table 6.1 Inverted logical relations

Inverted expression Equivalent
I(a && b) (ta) || (!b)
(a || b) (la) && (!b)

B You can implement if statements with the logical AND or OR of several similar
conditions using compare instructions that are themselves conditional.

66 LOOPING CONSTRUCTS

Most routines critical to performance will contain a loop. We saw in Section 5.3 that on the
ARM loops are fastest when they count down towards zero. This section describes how to
implement these loops efficiently in assembly. We also look at examples of how to unroll
loops for maximum performance.

6.6.1 DECREMENTED COUNTED LOOPS

For a decrementing loop of N iterations, the loop counter i counts down from N to 1
inclusive. The loop terminates with i = 0. An efficient implementation is

MOV i, N
Toop
; loop body goes here and i=N,N-1,...,1
SUBS i, i, #1
BGT Toop

The loop overhead consists of a subtraction setting the condition codes followed by
a conditional branch. On ARM7 and ARMO9 this overhead costs four cycles per loop. If i
is an array index, then you may want to count down from N — 1 to 0 inclusive instead so
that you can access array element zero. You can implement this in the same way by using
a different conditional branch:

SUBS i, N, #1
Toop
; loop body goes here and i=N-1,N-2,...,0
SUBS i, i, #1
BGE Toop



184 Chapter 6 Writing and Optimizing ARM Assembly Code

In this arrangement the Zflag is set on the last iteration of the loop and cleared for other
iterations. If there is anything different about the last loop, then we can achieve this using
the EQ and NE conditions. For example, if you preload data for the next loop (as discussed
in Section 6.3.1.1), then you want to avoid the preload on the last loop. You can make all
preload operations conditional on NE as in Section 6.3.1.1.

There is no reason why we must decrement by one on each loop. Suppose we require
N/3 loops. Rather than attempting to divide N by three, it is far more efficient to subtract
three from the loop counter on each iteration:

MOV i, N
Toop
; loop body goes here and iterates (round up)(N/3) times
SUBS i, i, #3
BGT Toop

6.6.2 UNROLLED COUNTED LoOOPS

This brings us to the subject of loop unrolling. Loop unrolling reduces the loop overhead by
executing the loop body multiple times. However, there are problems to overcome. What
if the loop count is not a multiple of the unroll amount? What if the loop count is smaller
than the unroll amount? We looked at these questions for C code in Section 5.3. In this
section we look at how you can handle these issues in assembly.

We'll take the C library function memset as a case study. This function sets N bytes of
memory at address s to the byte value c. The function needs to be efficient, so we will look
at how to unroll the loop without placing extra restrictions on the input operands. Our
version of memset will have the following C prototype:

void my memset(char *s, int c, unsigned int N);

To be efficient for large N, we need to write multiple bytes at a time using STR or STM
instructions. Therefore our first task is to align the array pointer s. However, it is only
worth us doing this if N is sufficiently large. We aren’t sure yet what “sufficiently large”
means, butlet’s assume we can choose a threshold value T} and only bother to align the array
when N > Tj. Clearly T} > 3 as there is no point in aligning if we don’t have four bytes to
write!

Now suppose we have aligned the array s. We can use store multiples to set memory
efficiently. For example, we can use a loop of four store multiples of eight words each to set
128 bytes on each loop. However, it will only be worth doing this if N > T, > 128, where
T, is another threshold to be determined later on.

Finally, we are left with N < T, bytes to set. We can write bytes in blocks of four using
STR until N < 4. Then we can finish by writing bytes singly with STRB to the end of the
array.



EXAMPLE

6.20

6.6 Looping Constructs 185

This example shows the unrolled memset routine. We’ve separated the three sections corre-
sponding to the preceding paragraphs with rows of dashes. The routine isn’t finished until
we’ve decided the best values for T and T,.

S RN 0 ; current string pointer
o RN 1 ; the character to fill with
N RN 2 ; the number of bytes to fill
cl RN 3 ; copies of ¢
c? RN 4
c3 RN 5
c 4 RN 6
c5 RN 7
c6 RNB8
c7 RN 12
; void my memset(char *s, unsigned int c, unsigned int N)
my_memset
;s First section aligns the array
CMP N, #T 1 ; We know that T_1>=3
BCC memset_1ByteBlk ; if (N<T_1) goto memset_ 1ByteBlk
ANDS ¢ 1, s, #3 ; find the byte alignment of s
BEQ aligned s branch if already aligned
RSB cl,cl, #4 ; number of bytes until alignment
SUB N, N, c1 5 number of bytes after alignment
CMP c 1, #2
STRB ¢, [s], #1
STRGEB ¢, [s], #1 ; 1f (c_1>=2) then output byte
STRGTB c, [s], #1 ; if (c_1>=3) then output byte
aligned ;the s array is now aligned

ORR c, C, C, LSL#8 ; duplicate the character

ORR c, C, C, LSL#16 ; to fill all four bytes of c

; Second section writes blocks of 128 bytes

CMP N, #T 2 ; We know that T 2 >= 128

BCC memset 4ByteBlk ; if (N<T_2) goto memset 4ByteBlk
STMFD  sp!, {c_2-c_6} ; stack scratch registers

MOV cl,c
MOV c2,c
MOV c3,c
MOV céd, c
Mov c5,c
MOV cb,c



186 Chapter 6 Writing and Optimizing ARM Assembly Code

MOV c7,c

SUB N, N, #128 ; bytes left after next block
loopl28 ; write 32 words = 128 bytes

STMIA s!, {c, c_ 1-c 6, c 7} ; write 8 words

STMIA s!, {c, c_ 1-c 6, c 7} ; write 8 words

STMIA s!, {c, c_1-c_6, c_7} ; write 8 words

STMIA s!, {c, c_1-c_6, c_7} ; write 8 words

SUBS N, N, #128 ; bytes left after next block
BGE loopl28
ADD N, N, #128 ; number of bytes left

LDMFD sp!, {c_2-c 6} ; restore corrupted registers

5 Third section deals with left over bytes
memset 4ByteBlk

SUBS N, N, #4 ; try doing 4 bytes
loopd ; write 4 bytes

STRGE ¢, [s], #4

SUBGES N, N, #4

BGE loop4

ADD N, N, #4 ; number of bytes Teft
memset 1ByteBTk

SUBS N, N, #1
loopl ; write 1 byte

STRGEB ¢, [s], #1

SUBGES N, N, #1

BGE Toopl

MOV pc, 1Ir ; finished so return

It remains to find the best values for the thresholds T; and T5. To determine these we
need to analyze the cycle counts for different ranges of N. Since the algorithm operates on
blocks of size 128 bytes, 4 bytes, and 1 byte, respectively, we start by decomposing N with
respect to these block sizes:

N = 128N}, + 4N,, + N;, where0 < N,, <32 and 0<N; <4

We now partition into three cases. To follow the details of these cycle counts, you will
need to refer to the instruction cycle timings in Appendix D.

m  Case 0 < N < Ti: The routine takes 5N + 6 cycles on an ARM9TDMI including the
return.

m  Case T < N < T;: The first algorithm block takes 6 cycles if the sarray is word aligned
and 10 cycles otherwise. Assuming each alignment is equally likely, this averages to
(6 + 10 + 10 + 10)/4 = 9 cycles. The second algorithm block takes 6 cycles. The final



Table 6.2

6.6 Looping Constructs 187

Cycles taken for each range of N values.

Nrange Cycles taken

0<N<T 640N}, + 20N, + 5N; + 6

T) < N<T 160N}, 4 5N, + 5N; 4+ 17 + 57

T, < N 36N}, 4 5Ny + 5N; + 32 + 521 + 57,

block takes 5(32Ny, + N,;) + 5(N; + Z;) + 2 cycles, where Z;is 1 if N} = 0, and 0
otherwise. The total cycles for this case is 5(32Ny, + Ny, + N; + Z;) + 17.

m Case N > T,: As in the previous case, the first algorithm block averages 9 cycles.
The second algorithm block takes 36Ny, + 21 cycles. The final algorithm block takes
5(Nm + Zm + Ni + Z;) + 2 cycles, where Z,,; is 1 if N, is 0, and 0 otherwise. The total
cycles for this case is 36Ny, + 5(Ny, + Z, + N; + Z;) + 32.

Table 6.2 summarizes these results. Comparing the three table rows it is clear that the
second row wins over the first row as soon as N,,, > 1, unless N,,, = 1 and N; = 0. We set
T1 = 5 to choose the best cycle counts from rows one and two. The third row wins over
the second row as soon as Nj, > 1. Therefore take T, = 128.

This detailed example shows you how to unroll any important loop using threshold
values and provide good performance over a range of possible input values.

6.6.3 MULTIPLE NESTED LOOPS

EXAMPLE

6.21

How many loop counters does it take to maintain multiple nested loops? Actually, one will
suffice—or more accurately, one provided the sum of the bits needed for each loop count
does not exceed 32. We can combine the loop counts within a single register, placing the
innermost loop count at the highest bit positions. This section gives an example showing
how to do this. We will ensure the loops count down from max — 1 to 0 inclusive so that
the loop terminates by producing a negative result.

This example shows how to merge three loop counts into a single loop count. Suppose we
wish to multiply matrix B by matrix C to produce matrix A, where A, B, C have the
following constant dimensions. We assume that R, S, T are relatively large but less
than 256.

Matrix A: Rrows x T columns
Matrix B: Rrows x S columns
Matrix C: Srows x T columns



188 Chapter 6 Writing and Optimizing ARM Assembly Code

We represent each matrix by a lowercase pointer of the same name, pointing to an array
of words organized by row. For example, the element at row i, column j, A[j, j], is at the
byte address

&A[1,3] = a + 4*(i*T+j)
A simple C implementation of the matrix multiply uses three nested loops i, j, and k:

#define R 40
#define S 40
#define T 40

void ref matrix_mul(int *a, int *b, int *c)
{

unsigned int i,j,k;

int sum;

for (i=0; i<R; i++)
{
for (j=0; j<T; j++)
{
/* calculate a[i,j] */
sum = 03
for (k=0; k<S; k++)
{
/* add b[i,k]*c[k,i] */
sum += b[i*S+k]*c[k*T+j];
}

a[i*T+j] = sum;

There are many ways to improve the efficiency here, starting by removing the address
indexing calculations, but we will concentrate on the looping structure. We allocate
a register counter count containing all three loop counters i, j, k:

Bit 31 24 23 16 15 87 0

count = 0 S—1-k| T-1-j| R-1-i

Note that S — 1 — k counts from S — 1 down to 0 rather than counting from0to S — 1 as k
does. The following assembly implements the matrix multiply using this single counter in
register count:

R EQU 40
S EQU 40



T EQU 40
a RN 0
RN 1
RN 2
sum RN 3
bval RN 4
cval RN 12

count RN 14

6.6 Looping Constructs

5 points to an R rows x T columns matrix
5 points to an R rows x S columns matrix
5 points to an S rows x T columns matrix

; void matrix_mul(int *a, int *b, int *c)

matrix_mul
STMFD
MoV
Toop_i
ADD
Toop_j
ADD
MoV
Toop_k
LDR
LDR
SUBS
MLA
BPL
STR
SuB
ADD
ADDS
SUBPL
BPL
SuB
ADDS
BPL
LDMFD

sp!, {r4, 1r}
count, #(R-1) 3 i=0

count, count, #(T-1)<<8 5 J=0

count, count, #(S-1)<<16 ; k=0

sum, #0

bval, [b], #4 ; bval = B[i,k], b=&B[i,k+1]
cval, [c], #4*T ; cval = C[k,j], c=&C[k+1,3]
count, count, #l1<<16 5 k+t

sum, bval, cval, sum 3 sum += bval*cval

Toop_k ; branch if k<=S-1

sum, [a], #4 s A[i,j] = sum, a=&A[i,j+1]
c, c, #4*S*T ; ¢ = &C[0,]]

c, c, #4 ; ¢ = &C[0,J+1]

count, count, #(1<<16)-(1<<8) ; zero (S-1-k), j++

b, b, #4*S ; b = &B[i,0]

Toop_j 3 branch if j<=T-1

c, c, #4*T ; ¢ = 8&C[0,0]

count, count, #(1>>8)-1 ; zero (T-1-j), i++

Toop_i 3 branch if i<=R-1

sp!, {r4, pc}

189

The preceding structure saves two registers over a naive implementation. First, we
decrement the count at bits 16 to 23 until the result is negative. This implements the kloop,
counting down from S — 1 to 0 inclusive. Once the result is negative, the code adds 2'6
to clear bits 16 to 31. Then we subtract 28 to decrement the count stored at bits 8 to 15,
implementing the jloop. We can encode the constant 216 — 28 = 0xFF00 efficiently using
a single ARM instruction. Bits 8 to 15 now count down from T' — 1 to 0. When the result



190 Chapter 6 Writing and Optimizing ARM Assembly Code

of the combined add and subtract is negative, then we have finished the jloop. We repeat
the same process for the i loop. ARM’s ability to handle a wide range of rotated constants
in addition and subtraction instructions makes this scheme very efficient.

6.6.4 OTHER COUNTED LOOPS

You may want to use the value of a loop counter as an input to calculations in the loop. It’s
not always desirable to count down from Nto 1 or N — 1 to 0. For example, you may want
to select bits out of a data register one at a time; in this case you may want a power-of-two
mask that doubles on each iteration.

The following subsections show useful looping structures that count in different
patterns. They use only a single instruction combined with a branch to implement
the loop.

6.6.4.1 Negative Indexing
This loop structure counts from —N to 0 (inclusive or exclusive) in steps of size STEP.

RSB i, N, #0 3 i=-N
loop
s loop body goes here and i=-N,-N+STEP,...,
ADDS i, i, #STEP
BLT Toop ; use BLT or BLE to exclude 0 or not

6.6.4.2 Logarithmic Indexing

This loop structure counts down from 2N to 1 in powers of two. For example, if N = 4,
then it counts 16, 8, 4, 2, 1.

MoV i, #1

MoV i, i, LSL N
loop

s Toop body

MOVS i, i, LSR#1

BNE Toop

The following loop structure counts down from an N-bit mask to a one-bit mask. For
example, if N = 4, then it counts 15, 7, 3, 1.

MOV i, #1
RSB i, 1, 1, LSL N ; i=(1<<N)-1



SUMMARY

6.7 Bit Manipulation 191

Toop
; loop body
MOVS i, i, LSR#1
BNE loop
Looping Constructs

®m  ARM requires two instructions to implement a counted loop: a subtract that sets flags
and a conditional branch.

m  Unroll loops to improve loop performance. Do not overunroll because this will hurt
cache performance. Unrolled loops may be inefficient for a small number of iterations.
You can test for this case and only call the unrolled loop if the number of iterations is
large.

m  Nested loops only require a single loop counter register, which can improve efficiency
by freeing up registers for other uses.

®  ARM can implement negative and logarithmic indexed loops efficiently.

6.7 BIT MANIPULATION

Compressed file formats pack items at a bit granularity to maximize the data density.
The items may be of a fixed width, such as a length field or version field, or they may be of
avariable width, such as a Huffman coded symbol. Huffman codes are used in compression
to associate with each symbol a code of bits. The code is shorter for common symbols and
longer for rarer symbols.

In this section we look at methods to handle a bitstream efficiently. First we look at
fixed-width codes, then variable width codes. See Section 7.6 for common bit manipulation
routines such as endianness and bit reversal.

6.7.1 FIXED-WIDTH BIT-FIELD PACKING AND UNPACKING

EXAMPLE

6.22

You can extract an unsigned bit-field from an arbitrary position in an ARM register in
one cycle provided that you set up a mask in advance; otherwise you require two cycles.
A signed bit-field always requires two cycles to unpack unless the bit-field lies at the top of
a word (most significant bit of the bit-field is the most significant bit of the register). On
the ARM we use logical operations and the barrel shifter to pack and unpack codes, as in
the following examples.

The assembly code shows how to unpack bits 4 to 15 of register 0, placing the result in r1.

; unsigned unpack with mask set up in advance
; mask=0x00000FFF



192  Chapter 6 Writing and Optimizing ARM Assembly Code

EXAMPLE

6.23

AND rl, mask, r0, LSR#4

; unsigned unpack with no mask
MoV rl, r0, LSL#16 ; discard bits 16-31
MoV rl, rl, LSR#20 ; discard bits 0-3 and zero extend

3 signed unpack
MOV rl, r0, LSL#16 ; discard bits 16-31
MOV rl, rl, ASR#20 ; discard bits 0-3 and sign extend

Packing the value rI into the bit-packed register 70 requires one cycle if rI is already
restricted to the correct range and the corresponding field of 10 is clear. In this example, r1
is a 12-bit number to be inserted at bit 4 of r0.

s pack rl into r0
ORR r0, r0, rl1, LSL #4

Otherwise you need a mask register set up:

3 pack rl into r0

5 mask=0x00000FFF set up in advance

AND rl, rl, mask ; restrict the rl range

BIC r0, r0, mask, LSL#4 ; clear the destination bits
ORR r0, r0, rl, LSL#4 ; pack in the new data

6.7.2 VARIABLE-WIDTH BITSTREAM PACKING

Our task here is to pack a series of variable-length codes to create a bitstream. Typically
we are compressing a datastream and the variable-length codes represent Huffman or
arithmetic coding symbols. However, we don’t need to make any assumptions about what
the codes represent to pack them efficiently.

We do need to be careful about the packing endianness. Many compressed file formats
use a big-endian bit-packing order where the first code is placed at the most significant bits
of the first byte. For this reason we will use a big-endian bit-packing order for our examples.
This is sometimes known as network order. Figure 6.5 shows how we form a bytestream out
of variable-length bitcodes using a big-endian packing order. High and low represent the
most and least significant bit ends of the byte.

To implement packing efficiently on the ARM we use a 32-bit register as a buffer to
hold four bytes, in big-endian order. In other words we place byte 0 of the bytestream in
the most significant 8 bits of the register. Then we can insert codes into the register one at
a time, starting from the most significant bit and working down to the least significant bit.



Figure 6.5

Figure 6.6

EXAMPLE

6.24

6.7 Bit Manipulation 193

High LowHigh LowHigh LowHigh LowHigh Low

Byte O Byte 1 Byte 2 Byte 3

Code 0|Code 1|Code 2|Code 3| Code 4

Big-endian bitcodes packed into a bytestream.

31 bitsfree 0

bitbuffer = Code bits 0

Format of bitbuffer.

Once the register is full we can store 32 bits to memory. For a big-endian memory system
we can store the word without modification. For a little-endian memory system we need to
reverse the byte order in the word before storing.

We call the 32-bit register we insert codes into bitbuffer. We need a second register
bitsfree to record the number of bits that we haven’t used in bitbuffer. In other words,
bitbuffer contains 32 — bitsfree code bits, and bitsfree zero bits, as in Figure 6.6. To insert a
code of k bits into bitbuffer, we subtract k from bitsfree and then insert the code with a left
shift of bitsfree.

We also need to be careful about alignment. A bytestream need not be word aligned, and
so we can’t use word accesses to write it. To allow word accesses we will start by backing up
to the last word-aligned address. Then we fill the 32-bit register bitbuffer with the backed-up
data. From then on we can use word (32-bit) read and writes.

This example provides three functionsbitstream write_start,bitstream write code,
and bitstream write flush. These are not ATPCS-compliant functions because they
assume registers such as bitbuffer are preserved between calls. In practice you will inline this
code for efficiency, and so this is not a problem.

The bitstream write start function aligns the bitstream pointer bitstream and
initializes the 32-bit buffer bitbuffer. Each callto bitstream write_code inserts a value
code of bit-length codebits. Finally, the bitstream write flush function writes any
remaining bytes to the bitstream to terminate the stream.

bitstream RN 0 ; current byte address in the output bitstream
code RN 4 ; current code



194 Chapter 6 Writing and Optimizing ARM Assembly Code

codebits RN 5 ; Tength in bits of current code
bitbuffer RN 6 ; 32-bit output big-endian bitbuffer
bitsfree RN 7 ; number of bits free in the bitbuffer
tmp RN 8 ; scratch register

mask RN 12 ; endian reversal mask OxFFFFOOFF

bitstream write_start
MOV bitbuffer, #0
MoV bitsfree, #32

align_Toop
TST bitstream, #3
LDRNEB code, [bitstream, #-1]!
SUBNE  bitsfree, bitsfree, #8
ORRNE  bitbuffer, code, bitbuffer, ROR #8
BNE align_loop
MoV bitbuffer, bitbuffer, ROR #8
MoV pc, 1r

bitstream write_code
SUBS bitsfree, bitsfree, codebits
BLE full_buffer
ORR bitbuffer, bitbuffer, code, LSL bitsfree
MOV pc, Ir
full_buffer
RSB bitsfree, bitsfree, #0
ORR bitbuffer, bitbuffer, code, LSR bitsfree
IF {ENDIAN}="Tittle"
; byte reverse the bit buffer prior to storing
EOR  tmp, bitbuffer, bitbuffer, ROR #16
AND  tmp, mask, tmp, LSR #8
EOR  bitbuffer, tmp, bitbuffer, ROR #8
ENDIF
STR bitbuffer, [bitstream], #4
RSB bitsfree, bitsfree, #32
MOV bitbuffer, code, LSL bitsfree
MOV pc, Ir

bitstream write_flush
RSBS bitsfree, bitsfree, #32
flush_loop
MOVGT  bitbuffer, bitbuffer, ROR #24
STRGTB bitbuffer, [bitstream], #1
SUBGTS bitsfree, bitsfree, #8
BGT flush_Toop
MoV pc, Ir



6.7 Bit Manipulation 195

6.7.3 VARIABLE-WIDTH BITSTREAM UNPACKING

EXAMPLE

6.25

Figure 6.7

It is much harder to unpack a bitstream of variable-width codes than to pack it. The
problem is that we usually don’t know the width of the codes we are unpacking! For
Huffman-encoded bitstreams you must derive the length of each code by looking at the
next sequence of bits and working out which code it can be.

Here we will use a lookup table to speed up the unpacking process. The idea is to take
the next N bits of the bitstream and perform a lookup in two tables, look_codebits[] and
look_codel], each of size 2N entries. If the next N bits are sufficient to determine the code,
then the tables tell us the code length and the code value, respectively. If the next N bits
are insufficient to determine the code, then the Took _codebits table will return an escape
value of OxFF. An escape value is just a flag to indicate that this case is exceptional.

In a sequence of Huffman codes, common codes are short and rare codes are long. So,
we expect to decode most common codes quickly, using the lookup tables. In the following
example we assume that N = 8 and use 256-entry lookup tables.

This example provides three functions to unpack a big-endian bitstream stored in a
bytestream. As with Example 6.24, these functions are not ATPCS compliant and will
normally be inlined. The function bitstream read start initializes the process, start-
ing to decode a bitstream at byte address bitstream. Each call to bitstream read code
returns the next code in register code. The function only handles short codes that can
be read from the lookup table. Long codes are trapped at the label Tong_code, but the
implementation of this function depends on the codes you are decoding.

The code uses a register bitbuffer that contains N + bitsleft code bits starting at the
most significant bit (see Figure 6.7).

bitstream RN 0 ; current byte address in the input bitstream
Took_code RN 2 ; Tookup table to convert next N bits to a code
Took_codebits RN 3 ; Tlookup table to convert next N bits to a code length
code RN 4 ; code read
codebits RN 5 ; length of code read
bitbuffer RN 6 3 32-bit input buffer (big endian)
bitsleft RN 7 5 number of valid bits in the buffer - N

31 0
bitbuffer = N bits bitsleft bits 0
Format of bitbuffer.



196 Chapter 6 Writing and Optimizing ARM Assembly Code

tmp RN 8 ; scratch

tmp2 RN 9 ; scratch

mask RN 12 ; N-bit extraction mask (1<<N)-1

N EQU 8 ; use a lookup table on 8 bits (N must be <= 9)

bitstream_read_start
MoV bitsleft, #32
read_fill_Toop
LDRB tmp, [bitstream], #1
ORR bitbuffer, tmp, bitbuffer, LSL#8
SUBS bitsleft, bitsleft, #8
BGT read_fill_Toop
MoV bitsleft, #(32-N)
MoV mask, #(1<<N)-1
MOV pc, Ir

bitstream read code
LDRB codebits, [look codebits, bitbuffer, LSR# (32-N)]
AND code, mask, bitbuffer, LSR#(32-N)
LDR code, [lTook code, code, LSL#2]
SUBS bitsleft, bitsleft, codebits
BMI empty_buffer_or long code
MoV bitbuffer, bitbuffer, LSL codebits
MOV pc, 1Ir
empty buffer _or_long code
TEQ codebits, #O0xFF
BEQ Tong_code
; empty buffer - fill up with 3 bytes
; as N <=9, we can fill 3 bytes without overflow
LDRB tmp, [bitstream], #1
LDRB  tmp2, [bitstream], #1
MOV bitbuffer, bitbuffer, LSL codebits
LDRB codebits, [bitstream], #1
ORR tmp, tmp2, tmp, LSL#8
RSB bitsleft, bitsleft, #(8-N)
ORR tmp, codebits, tmp, LSL#8
ORR bitbuffer, bitbuffer, tmp, LSL bitsleft
RSB bitsleft, bitsleft, #(32-N)
MoV pc, Ir

Tong_code
5 handle the long code case depending on the application
; here we just return a code of -1
MOV code, #-1
MoV pc, Ir



SUMMARY

6.8 Efficient Switches 197

The counter bitsleft actually counts the number of bits remaining in the buffer
bitbuffer less the N bits required for the next lookup. Therefore we can perform the
next table lookup as long as bitsleft > 0. As soon as bitsleft < 0 there are two
possibilities. One possibility is that we found a valid code but then have insufficient bits to
look up the next code. Alternatively, codebits contains the escape value OxFF to indicate
that the code was longer than N bits. We can trap both these cases at once using a call to
empty_buffer_or_Tong_code. If the buffer is empty, then we fill it with 24 bits. If we have
detected a long code, then we branch to the Tong_code trap.

The example has a best-case performance of seven cycles per code unpack on an
ARMOITDMI. You can obtain faster results if you know the sizes of the packed bitfields
in advance.

Bit Manipulation

m  The ARM can pack and unpack bits efficiently using logical operations and the barrel
shifter.

®m  To access bitstreams efficiently use a 32-bit register as a bitbuffer. Use a second register
to keep track of the number of valid bits in the bitbuffer.

®  To decode bitstreams efficiently, use a lookup table to scan the next N bits of the
bitstream. The lookup table can return codes of length at most N bits directly, or return
an escape character for longer codes.

68 EFFICIENT SWITCHES

A switch or multiway branch selects between a number of different actions. In this section
we assume the action depends on a variable x. For different values of x we need to per-
form different actions. This section looks at assembly to implement a switch efficiently for
different types of x.

6.8.1 SwITCHES OoN THE RANGE 0 < x < N

The example C function ref switch performs different actions according to the value
of x. We are only interested in x values in the range 0 < x < 8.

int ref_switch(int x)
{

switch (x)

{

case 0: return method 0();



198 Chapter 6 Writing and Optimizing ARM Assembly Code

case 1: return method 1();
case 2: return method 2();
case 3: return method 3();
case 4: return method 4();
case 5: return method 5();
case 6: return method 6();

case 7: return method 7();
default: return method d();

There are two ways to implement this structure efficiently in ARM assembly. The first
method uses a table of function addresses. We load pc from the table indexed by x.

ExaMPLE The switch_absolute code performs a switch using an inlined table of function pointers:
6.26
X RN O

; int switch_absolute(int x)
switch_absolute

CMP X, #8
LDRLT  pc, [pc, x, LSL#2]
B method_d

DCD method_0
DCD method 1
DCD method_2
DCD method_3
DCD method 4
DCD method_5
DCD method 6
DCD method_7

The code works because the pc register is pipelined. The pc points to the method_0 word
when the ARM executes the LDR instruction.

The method above is very fast, but has one drawback: The code is not position
independent since it stores absolute addresses to the method functions in memory. Position-
independent code is often used in modules that are installed into a system at run time. The
next example shows how to solve this problem.

ExaMPLE The code switch relative is slightly slower compared to switch_absolute, but it is
6.27 position independent:

; int switch relative(int x)
switch_relative



6.8 Efficient Switches 199

CMP X, #8
ADDLT  pc, pc, X, LSL#2
method_d
method_0
method_1
method_2
method 3
method_4
method_5
method_6
method 7

W 0 0 0 0 0 ™ ™ @

There is one final optimization you can make. If the method functions are short, then
you can inline the instructions in place of the branch instructions.

ExXAMPLE Suppose each nondefault method has a four-instruction implementation. Then you can
6.28 use code of the form

CMP X, #8
ADDLT  pc, pc, x, LSL#4 ; each method is 16 bytes long
B method_d
method_0
; the four instructions for method 0 go here
method_1
; the four instructions for method 1 go here
3 ... continue in this way ...

6.8.2 SWITCHES ON A GENERAL VALUE X

Now suppose that x does not lie in some convenient range 0 < x < N for N small enough
to apply the methods of Section 6.8.1. How do we perform the switch efficiently, without
having to test x against each possible value in turn?

Avery useful technique in these situations is to use a hashing function. A hashing function
is any function y = f(x) that maps the values we are interested in into a continuous range
of the form 0 < y < N. Instead of a switch on x, we can use a switch on y = f(x). There is
a problem if we have a collision, that is, if two x values map to the same y value. In this case
we need further code to test all the possible x values that could have led to the y value. For
our purposes a good hashing function is easy to compute and does not suffer from many
collisions.

To perform the switch we apply the hashing function and then use the optimized switch
code of Section 6.8.1 on the hash value y. Where two x values can map to the same hash,
we need to perform an explicit test, but this should be rare for a good hash function.



200 Chapter 6 Writing and Optimizing ARM Assembly Code

EXAMPLE

6.29

SUMMARY

Suppose we want to callmethod_k when x = 2 for eight possible methods. In other words
we want to switch on the values 1, 2, 4, 8, 16, 32, 64, 128. For all other values of x we need to
call the default method method_d. We look for a hash function formed out of multiplying
by powers of two minus one (this is an efficient operation on the ARM). By trying different
multipliers we find that 15 x 31 x x has a different value in bits 9 to 11 for each of the eight
switch values. This means we can use bits 9 to 11 of this product as our hash function.

The following switch_hash assembly uses this hash function to perform the switch.
Note that other values that are not powers of two will have the same hashes as the values
we want to detect. The switch has narrowed the case down to a single power of two that we
can test for explicitly. If x is not a power of two, then we fall through to the default case of
callingmethod_d.

X RN 0
hash RN 1

; int switch_hash(int x)
switch_hash

RSB hash, x, x, LSL#4 s hash=x*15

RSB hash, hash, hash, LSL#5 ; hash=x*15*31

AND hash, hash, #7<<9 ; mask out the hash value
ADD pc, pc, hash, LSR#6

NOP

TEQ x, #0x01
BEQ method 0
TEQ x, #0x02
BEQ method_1
TEQ x, #0x40
BEQ method_6
TEQ X, #0x04
BEQ method 2
TEQ X, #0x80
BEQ method_7
TEQ x, #0x20
BEQ method_5
TEQ x, #0x10
BEQ method 4
TEQ X, #0x08
BEQ method_3
B method_d

Efficient Switches

m  Make sure the switch value is in the range 0 < x < N for some small N. To do this you
may have to use a hashing function.



6.9 Handling Unaligned Data 201

m  Use the switch value to index a table of function pointers or to branch to short
sections of code at regular intervals. The second technique is position independent;
the first isn’t.

6.9 HANDLING UNALIGNED DATA

EXAMPLE

6.30

Recall that a load or store is unaligned if it uses an address that is not a multiple of the data
transfer width. For code to be portable across ARM architectures and implementations,
you must avoid unaligned access. Section 5.9 introduced unaligned accesses and ways of
handling them in C. In this section we look at how to handle unaligned accesses in assembly
code.

The simplest method is to use byte loads and stores to access one byte at a time. This
is the recommended method for any accesses that are not speed critical. The following
example shows how to access word values in this way.

This example shows how to read or write a 32-bit word using the unaligned address p. We
use three scratch registers t0, t1, t2 to avoid interlocks. All unaligned word operations
take seven cycles on an ARM9TDMI. Note that we need separate functions for 32-bit words
stored in big- or little-endian format.

p RN 0
X RN 1
t0 RN 2
tl RN 3
t2 RN 12

; int Toad 32 Tittle(char *p)
Toad_32 Tittle

LDRB x, [p]

LDRB  t0, [p, #1]

LDRB  t1, [p, #2]

LDRB  t2, [p, #3]

ORR X, X, t0, LSL#8

ORR X, X, tl, LSL#16

ORR r0, x, t2, LSL#24

MOV pc, Ir

; int load_32_big(char *p)
Toad_32_big

LDRB x, [p]

LDRB  t0, [p, #1]

LDRB  t1, [p, #2]



202 Chapter 6 Writing and Optimizing ARM Assembly Code

EXAMPLE

6.31

LDRB t2, [p, #3]

ORR x, t0, x, LSL#8
ORR x, tl, x, LSL#8
ORR r0, t2, x, LSL#8
MoV pc, 1r

; void store 32 Tittle(char *p, int x)
store 32 Tittle

STRB x, [p]

MOV t0, x, LSR#8

STRB t0, [p, #1]

MoV t0, x, LSR#16

STRB  t0, [p, #2]

MoV t0, x, LSR#24

STRB  t0, [p, #3]

MoV pc, Ir

; void store 32 big(char *p, int x)
store_32 big

MOV t0, x, LSR#24

STRB 0, [p]

MoV t0, x, LSR#16

STRB t0, [p, #1]

MoV t0, x, LSR#8

STRB t0, [p, #2]

STRB x, [p, #3]

MoV pc, Ir

If you require better performance than seven cycles per access, then you can write
several variants of the routine, with each variant handling a different address alignment.
This reduces the cost of the unaligned access to three cycles: the word load and the two
arithmetic instructions required to join values together.

This example shows how to generate a checksum of N words starting at a possibly unaligned
address data. The code is written for a little-endian memory system. Notice how we can
use the assembler MACRO directive to generate the four routines checksum_0, checksum_1,
checksum_2, and checksum_3. Routine checksum_a handles the case where data is an
address of the form 4¢q + a.

Using a macro saves programming effort. We need only write a single macro and
instantiate it four times to implement our four checksum routines.

sum RN 0 ; current checksum
N RN 1 ; number of words Teft to sum



6.9 Handling Unaligned Data 203

data RN 2 ; word aligned input data pointer
w RN 3 ; data word

; int checksum 32 Tittle(char *data, unsigned int N)
checksum_32 Tittle

BIC data, r0, #3 ; aligned data pointer
AND w, r0, #3 ; byte alignment offset
MOV sum, #0 ; initial checksum

LDR pc, [pc, w, LSL#2] ; switch on alignment
NOP ; padding

DCD checksum_0
DCD checksum_1
DCD checksum_2
DCD checksum_3

MACRO
CHECKSUM $alignment
checksum_$alignment
LDR w, [data], #4 ; preload first value
10 ; loop
IF $alignment<>0
ADD  sum, sum, w, LSR#8*$alignment
LDR w, [data], #4
SUBS N, N, #1
ADD  sum, sum, w, LSL#32-8*$alignment
ELSE
ADD  sum, sum, w
LDR w, [data], #4
SUBS N, N, #1

ENDIF

BGT %BT10
MOV pc, 1Ir
MEND

; generate four checksum routines

; one for each possible byte alignment
CHECKSUM 0

CHECKSUM 1

CHECKSUM 2

CHECKSUM 3

You can now unroll and optimize the routines as in Section 6.6.2 to achieve the fastest
speed. Due to the additional code size, only use the preceding technique for time-critical
routines.



204 Chapter 6 Writing and Optimizing ARM Assembly Code

sumMaRYy  Handling Unaligned Data

If performance is not an issue, access unaligned data using multiple byte loads and
stores. This approach accesses data of a given endianness regardless of the pointer
alignment and the configured endianness of the memory system.

If performance is an issue, then use multiple routines, with a different routine optimized
for each possible array alignment. You can use the assembler MACRO directive to generate
these routines automatically.

6.10 SUMMARY

For the best performance in an application you will need to write optimized assembly
routines. It is only worth optimizing the key routines that the performance depends on.
You can find these using a profiling or cycle counting tool, such as the ARMulator simulator
from ARM.

This chapter covered examples and useful techniques for optimizing ARM assembly.

Here are the key ideas:

Schedule code so that you do not incur processor interlocks or stalls. Use Appendix D
to see how quickly an instruction result is available. Concentrate particularly on load
and multiply instructions, which often take a long time to produce results.

Hold as much data in the 14 available general-purpose registers as you can. Sometimes
it is possible to pack several data items in a single register. Avoid stacking data in the
innermost loop.

For small if statements, use conditional data processing operations rather than
conditional branches.

Use unrolled loops that count down to zero for the maximum loop performance.

For packing and unpacking bit-packed data, use 32-bit register buffers to increase
efficiency and reduce memory data bandwidth.

Use branch tables and hash functions to implement efficient switch statements.

To handle unaligned data efficiently, use multiple routines. Optimize each routine for
a particular alignment of the input and output arrays. Select between the routines at
run time.



This Page Intentionally Left Blank



7.1

7.2

73]

7.4

7.5

7.6

7.7

7.8
7.9

DOUBLE-PRECISION INTEGER MULTIPLICATION
7.1.1 Tong long Multiplication

7.1.2 Unsigned 64-Bit by 64-Bit Multiply with 128-Bit Result

7.1.3 Signed 64-Bit by 64-Bit Multiply with 128-Bit Result

INTEGER NORMALIZATION AND COUNT LEADING ZEROS

7.2.1 Normalization on ARMv5 and Above

7.2.2 Normalization on ARMv4

7.2.3 Counting Trailing Zeros

DivisiON

7.3.1 Unsigned Division by Trial Subtraction

7.3.2 Unsigned Integer Newton-Raphson Division
7.3.3 Unsigned Fractional Newton-Raphson Division
7.3.4 Signed Division

SQUARE RoOTS

7.4.1 Square Root by Trial Subtraction

7.4.2 Square Root by Newton-Raphson Iteration

TRANSCENDENTAL FUNCTIONS: LOG, EXP, SIN, COS

7.5.1 The Base-Two Logarithm

7.5.2 Base-Two Exponentiation

7.5.3 Trigonometric Operations

ENDIAN REVERSAL AND BIT OPERATIONS
7.6.1 Endian Reversal

7.6.2 Bit Permutations

7.6.3 Bit Population Count

SATURATED AND ROUNDED ARITHMETIC
7.7.1 Saturating 32 Bits to 16 Bits

7.7.2 Saturated Left Shift

7.7.3 Rounded Right Shift

7.7.4 Saturated 32-Bit Addition and Subtraction
7.7.5 Saturated Absolute

RANDOM NUMBER GENERATION
SUMMARY



