CHAPTER

EFFICIENT C
PROGRAMMING

The aim of this chapter is to help you write C code in a style that will compile efficiently
on the ARM architecture. We will look at many small examples to show how the compiler
translates C source to ARM assembler. Once you have a feel for this translation process,
you can distinguish fast C code from slow C code. The techniques apply equally to C++,
but we will stick to plain C for these examples.

We start with an overview of C compilers and optimization, which will give an idea
of the problems the C compiler faces when optimizing your code. By understanding these
problems you can write source code that will compile more efficiently in terms of increased
speed and reduced code size. The following sections are grouped by topic.

Sections 5.2 and 5.3 look at how to optimize a basic C loop. These sections use a data
packet checksum as a simple example to illustrate the ideas. Sections 5.4 and 5.5 look at
optimizing a whole C function body, including how the compiler allocates registers within
a function and how to reduce the overhead of a function call.

Sections 5.6 through 5.9 look at memory issues, including handling pointers and how to
pack data and access memory efficiently. Sections 5.10 through 5.12 look at basic operations
that are usually not supported directly by ARM instructions. You can add your own basic
operations using inline functions and assembler.

The final section summarizes problems you may face when porting C code from another
architecture to the ARM architecture.

103

104 Chapter 5 Efficient C Programming

51 OVERVIEW OF C COMPILERS AND OPTIMIZATION

This chapter assumes that you are familiar with the C language and have some knowledge
of assembly programming. The latter is not essential, but is useful for following the
compiler output examples. See Chapter 3 or Appendix A for details of ARM assembly
syntax.

Optimizing code takes time and reduces source code readability. Usually, it’s only
worth optimizing functions that are frequently executed and important for performance.
We recommend you use a performance profiling tool, found in most ARM simulators, to
find these frequently executed functions. Document nonobvious optimizations with source
code comments to aid maintainability.

C compilers have to translate your C function literally into assembler so that it works for
all possible inputs. In practice, many of the input combinations are not possible or won’t
occur. Let’s start by looking at an example of the problems the compiler faces. The memc1r
function clears N bytes of memory at address data.

void memclr(char *data, int N)
{
for (; N>0; N--)
{
*data=0;
datat+;
}
!

No matter how advanced the compiler, it does not know whether N can be 0 on input or
not. Therefore the compiler needs to test for this case explicitly before the first iteration of
the loop.

The compiler doesn’t know whether the data array pointer is four-byte aligned or not.
If it is four-byte aligned, then the compiler can clear four bytes at a time using an int store
rather than a char store. Nor does it know whether N is a multiple of four or not. If N is
a multiple of four, then the compiler can repeat the loop body four times or store four bytes
at a time using an int store.

The compiler must be conservative and assume all possible values for N and all possible
alignments for data. Section 5.3 discusses these specific points in detail.

To write efficient C code, you must be aware of areas where the C compiler has to be
conservative, the limits of the processor architecture the C compiler is mapping to, and the
limits of a specific C compiler.

Most of this chapter covers the first two points above and should be applicable to any
ARM C compiler. The third point will be very dependent on the compiler vendor and
compiler revision. You will need to look at the compiler’s documentation or experiment
with the compiler yourself.

5.2 Basic C Data Types 105

To keep our examples concrete, we have tested them using the following specific C
compilers:

®m armcc from ARM Developer Suite version 1.1 (ADS1.1). You can license this compiler,
or a later version, directly from ARM.

® arm-elf-gcc version 2.95.2. This is the ARM target for the GNU C compiler, gcc, and is
freely available.

We have used armcc from ADS1.1 to generate the example assembler output in this
book. The following short script shows you how to invoke armcc on a C file test.c. You
can use this to reproduce our examples.

armcc -Otime -c -o test.o test.c
fromelf -text/c test.o > test.txt

By default armcc has full optimizations turned on (the -02 command line switch). The
-0time switch optimizes for execution efficiency rather than space and mainly affects the
layout of for and while loops. If you are using the gcc compiler, then the following short
script generates a similar assembler output listing:

arm-elf-gcc -02 -fomit-frame-pointer -c -o test.o test.c
arm-elf-objdump -d test.o > test.txt

Full optimizations are turned off by default for the GNU compiler. The -fomit-frame-
pointer switch prevents the GNU compiler from maintaining a frame pointer register.
Frame pointers assist the debug view by pointing to the local variables stored on the stack
frame. However, they are inefficient to maintain and shouldn’t be used in code critical to
performance.

52 BAsic C DATA TYPES

Let’s start by looking at how ARM compilers handle the basic C data types. We will see
that some of these types are more efficient to use for local variables than others. There are
also differences between the addressing modes available when loading and storing data of
each type.

ARM processors have 32-bit registers and 32-bit data processing operations. The ARM
architecture is a RISC load/store architecture. In other words you must load values from
memory into registers before acting on them. There are no arithmetic or logical instructions
that manipulate values in memory directly.

Early versions of the ARM architecture (ARMvl to ARMv3) provided hardware
support for loading and storing unsigned 8-bit and unsigned or signed 32-bit values.

106 Chapter 5 Efficient C Programming

Table 5.1

Load and store instructions by ARM architecture.

Architecture Instruction Action
Pre-ARMv4 LDRB load an unsigned 8-bit value
STRB store a signed or unsigned 8-bit value
LDR load a signed or unsigned 32-bit value
STR store a signed or unsigned 32-bit value
ARMv4 LDRSB load a signed 8-bit value
LDRH load an unsigned 16-bit value
LDRSH load a signed 16-bit value
STRH store a signed or unsigned 16-bit value
ARMYv5 LDRD load a signed or unsigned 64-bit value
STRD store a signed or unsigned 64-bit value

These architectures were used on processors prior to the ARM7TDMI. Table 5.1 shows
the load/store instruction classes available by ARM architecture.

In Table 5.1 loads that act on 8- or 16-bit values extend the value to 32 bits before writing
to an ARM register. Unsigned values are zero-extended, and signed values sign-extended.
This means that the cast of a loaded value to an int type does not cost extra instructions.
Similarly, a store of an 8- or 16-bit value selects the lowest 8 or 16 bits of the register. The
cast of an int to smaller type does not cost extra instructions on a store.

The ARMv4 architecture and above support signed 8-bit and 16-bit loads and stores
directly, through new instructions. Since these instructions are a later addition, they do
not support as many addressing modes as the pre-ARMv4 instructions. (See Section 3.3
for details of the different addressing modes.) We will see the effect of this in the example
checksum_v3 in Section 5.2.1.

Finally, ARMv5 adds instruction support for 64-bit load and stores. This is available in
ARMOE and later cores.

Prior to ARMv4, ARM processors were not good at handling signed 8-bit or any 16-bit
values. Therefore ARM C compilers define char to be an unsigned 8-bit value, rather than
a signed 8-bit value as is typical in many other compilers.

Compilers armcc and gec use the datatype mappings in Table 5.2 for an ARM target.
The exceptional case for type char is worth noting as it can cause problems when you are
porting code from another processor architecture. A common example is using a char type
variable i as a loop counter, with loop continuation condition i > 0. As i is unsigned for
the ARM compilers, the loop will never terminate. Fortunately armcc produces a warning
in this situation: unsigned comparison with 0. Compilers also provide an override switch to
make char signed. For example, the command line option -fsigned-char will make char
signed on gcc. The command line option -zc¢ will have the same effect with armcc.

For the rest of this book we assume that you are using an ARMv4 processor or above.
This includes ARM7TDMI and all later processors.

Table 5.2

5.2 Basic C Data Types 107

C compiler datatype mappings.

C Data Type Implementation

char unsigned 8-bit byte

short signed 16-bit halfword
int signed 32-bit word

Tong signed 32-bit word

long Tong signed 64-bit double word

5.2.1 LocAL VARIABLE TYPES

ARMv4-based processors can efficiently load and store 8-, 16-, and 32-bit data. However,
most ARM data processing operations are 32-bit only. For this reason, you should use
a 32-bit datatype, int or 1ong, for local variables wherever possible. Avoid using char and
short as local variable types, even if you are manipulating an 8- or 16-bit value. The one
exception is when you want wrap-around to occur. If you require modulo arithmetic of the
form 255 + 1 = 0, then use the char type.

To see the effect of local variable types, let’s consider a simple example. We’ll look in
detail at a checksum function that sums the values in a data packet. Most communication
protocols (such as TCP/IP) have a checksum or cyclic redundancy check (CRC) routine to
check for errors in a data packet.

The following code checksums a data packet containing 64 words. It shows why you
should avoid using char for local variables.

int checksum v1(int *data)
{

char i;

int sum=0;

for (i=0; i<64; i++)
{

sum += data[i];
}

return sum;

At first sight it looks as though declaring i as a char is efficient. You may be thinking
that a char uses less register space or less space on the ARM stack than an int. On the
ARM, both these assumptions are wrong. All ARM registers are 32-bit and all stack entries
are at least 32-bit. Furthermore, to implement the i++ exactly, the compiler must account
for the case when i = 255. Any attempt to increment 255 should produce the answer 0.

108 Chapter 5 Efficient C Programming

Consider the compiler output for this function. We’ve added labels and comments to
make the assembly clear.

checksum vl

MOV r2,r0 ; r2 = data
MOV r0,#0 5 sum = 0
MoV rl,#0 ;1 =0

checksum_v1_Toop

LDR r3,[r2,r1,LSL #2] ; r3 = data[i]
ADD rl,rl,#1 s rl = i+l

AND rl,rl,#0xff 5 i = (char)rl
CMP rl,#0x40 ; compare i, 64
ADD r0,r3,r0 5 sum += r3

BCC checksum_v1_Toop ; if (i<64) Toop
MOV pc,rl4 5 return sum

Now compare this to the compiler output where instead we declare i asan unsigned int.

checksum_v2

MOV r2,r0 ; r2 = data
MOV r0,#0 ;5 sum = 0
MoV rl,#0 ;1 =0

checksum_v2_Toop
LDR r3,[r2,r1,LSL #2] ; r3 = data[i]

ADD rl,rl,#1 5 rl++

CMpP rl,#0x40 5 compare i, 64

ADD r0,r3,r0 5 sum += r3

BCC checksum_v2_Toop s if (i<64) goto loop
MOV pc,rld 3 return sum

In the first case, the compiler inserts an extra AND instruction to reduce i to the range 0 to
255 before the comparison with 64. This instruction disappears in the second case.

Next, suppose the data packet contains 16-bit values and we need a 16-bit checksum. It
is tempting to write the following C code:

short checksum v3(short *data)

{
unsigned int i;
short sum=0;

for (i=0; 1<64; i++)
{

sum = (short) (sum + data[i]);

5.2 Basic C Data Types 109

}

return sum;

}

You may wonder why the for loop body doesn’t contain the code
sum += data[i];

With armcc this code will produce a warning if you enable implicit narrowing cast warnings
using the compiler switch -W +n. The expression sum+data[i] is an integer and so can
only be assigned to a short using an (implicit or explicit) narrowing cast. As you can see
in the following assembly output, the compiler must insert extra instructions to implement
the narrowing cast:

checksum_v3

MOV r2,r0 ; r2 = data
MOV r0,#0 ;3 sum = 0
MoV rl,#0 ;=0

checksum_v3_Toop

ADD r3,r2,rl,LSL #1 ; r3 = &data[i]

LDRH r3,[r3,#0] ; r3 = data[i]

ADD rl,rl,#1 ; i+t

CMP rl,#0x40 ; compare i, 64

ADD r0,r3,r0 ; r0 = sum + r3

MoV r0,r0,LSL #16

MoV r0,r0,ASR #16 ; sum = (short)r0

BCC checksum v3 loop ; if (i<64) goto loop
MOV pc,rl4 ; return sum

The loop is now three instructions longer than the loop for example checksum v2
earlier! There are two reasons for the extra instructions:

m The LDRH instruction does not allow for a shifted address offset as the LDR instruction
did in checksum_v2. Therefore the first ADD in the loop calculates the address of item i
in the array. The LDRH loads from an address with no offset. LDRH has fewer addressing
modes than LDR as it was a later addition to the ARM instruction set. (See Table 5.1.)

m The cast reducing total +array[i] to a short requires two MOV instructions. The
compiler shifts left by 16 and then right by 16 to implement a 16-bit sign extend.
The shift right is a sign-extending shift so it replicates the sign bit to fill the upper
16 bits.

We can avoid the second problem by using an int type variable to hold the partial sum.
We only reduce the sum to a short type at the function exit.

110 Chapter 5 Efficient C Programming

EXAMPLE

5.1

However, the first problem is a new issue. We can solve it by accessing the array by
incrementing the pointer data rather than using an index as in data[i]. This is efficient
regardless of array type size or element size. All ARM load and store instructions have
a postincrement addressing mode.

The checksum_v4 code fixes all the problems we have discussed in this section. It uses int
type local variables to avoid unnecessary casts. It increments the pointer data instead of
using an index offset data[i].

short checksum_v4(short *data)
{

unsigned int i;

int sum=0;

for (i=0; i<64; i++)
{

sum += *(datat+);
}
return (short)sum;

}

The *(data++) operation translates to a single ARM instruction that loads the data and
increments the data pointer. Of course you could write sum += *data; data++; or even
*data++ instead if you prefer. The compiler produces the following output. Three instruc-
tions have been removed from the inside loop, saving three cycles per loop compared to
checksum_v3.

checksum_v4

MoV r2,#0 ;3 sum = 0

MoV rl,#0 ;1 =0
checksum_v4 Toop

LDRSH r3,[r0],#2 ; r3 = *(data++)

ADD rl,rl,#1 s i+t

CMP rl,#0x40 ; compare i, 64

ADD r2,r3,r2 3 sum += r3

BCC checksum v4 loop ; if (sum<64) goto Toop

MOV r0,r2,LSL #16

MoV r0,r0,ASR #16 ; r0 = (short)sum

MOV pc,rl4 5 return r0

The compiler is still performing one cast to a 16-bit range, on the function return. You
could remove this also by returning an int result as discussed in Section 5.2.2.

5.2 Basic C Data Types 111

5.2.2 FUNCTION ARGUMENT TYPES

We saw in Section 5.2.1 that converting local variables from types char or short to type
int increases performance and reduces code size. The same holds for function arguments.
Consider the following simple function, which adds two 16-bit values, halving the second,
and returns a 16-bit sum:

short add_vl(short a, short b)
{
return a + (b>>1);

}

This function is a little artificial, but it is a useful test case to illustrate the problems
faced by the compiler. The input values a, b, and the return value will be passed in 32-bit
ARM registers. Should the compiler assume that these 32-bit values are in the range of
a short type, that is, —32,768 to +32,767¢ Or should the compiler force values to be in
this range by sign-extending the lowest 16 bits to fill the 32-bit register? The compiler must
make compatible decisions for the function caller and callee. Either the caller or callee must
perform the cast to a short type.

We say that function arguments are passed wide if they are not reduced to the range
of the type and narrow if they are. You can tell which decision the compiler has made by
looking at the assembly output for add_v1. If the compiler passes arguments wide, then
the callee must reduce function arguments to the correct range. If the compiler passes
arguments narrow, then the caller must reduce the range. If the compiler returns values
wide, then the caller must reduce the return value to the correct range. If the compiler
returns values narrow, then the callee must reduce the range before returning the value.

For armcc in ADS, function arguments are passed narrow and values returned narrow.
In other words, the caller casts argument values and the callee casts return values. The
compiler uses the ANSI prototype of the function to determine the datatypes of the function
arguments.

The armcc output for add_v1 shows that the compiler casts the return value to a short
type, but does not cast the input values. It assumes that the caller has already ensured that
the 32-bit values r0 and rl are in the range of the short type. This shows narrow passing
of arguments and return value.

add_v1
ADD r0,r0,r1,ASR #1 ; r0 = (int)a + ((int)b>>1)
MOV r0,r0,LSL #16
MOV r0,r0,ASR #16 ; r0 = (short)r0
MOV pc,rl4 ; return r0

The gcc compiler we used is more cautious and makes no assumptions about the range
of argument value. This version of the compiler reduces the input arguments to the range

112 Chapter 5 Efficient C Programming

of a short in both the caller and the callee. It also casts the return value to a short type.
Here is the compiled code for add_v1:

add_vl gcc
MOV r0, r0, LSL #16
MOV rl, r1, LSL #16
MoV rl, rl, ASR #17 ;s rl = (int)b>>1
ADD rl, rl, r0, ASR #16 ; rl += (int)a
MOV rl, r1, LSL #16
MoV r0, rl, ASR #16 ;3 r0 = (short)rl
MOV pc, Ir 5 return r0

Whatever the merits of different narrow and wide calling protocols, you can see that
char or short type function arguments and return values introduce extra casts. These
increase code size and decrease performance. It is more efficient to use the int type for
function arguments and return values, even if you are only passing an 8-bit value.

5.2.3 SIGNED VERSUS UNSIGNED TYPES

The previous sections demonstrate the advantages of using int rather than a char or short
type for local variables and function arguments. This section compares the efficiencies of
signedint and unsigned int.

Ifyour code uses addition, subtraction, and multiplication, then there is no performance
difference between signed and unsigned operations. However, there is a difference when it
comes to division. Consider the following short example that averages two integers:

int average v1(int a, int b)
{

return (a+b)/2;
1

This compiles to

average vl
ADD r0,r0,rl ;r0=a+b
ADD r0,r0,r0,LSR #31 ; if (r0<0) rO++
MOV r0,r0,ASR #1 ; r0 = r0>>1
MOV pc,rl4 ; return r0

Notice that the compiler adds one to the sum before shifting by right if the sum is
negative. In other words it replaces x/2 by the statement:

(x<0) ? ((x+1)>>1): (x>>1)

5.3 C Looping Structures 113

It must do this because x is signed. In C on an ARM target, a divide by two is not a right
shift if x is negative. For example, —3 > 1 = —2 but —3/2 = —1. Division rounds towards
zero, but arithmetic right shift rounds towards —oo.

It is more efficient to use unsigned types for divisions. The compiler converts unsigned
power of two divisions directly to right shifts. For general divisions, the divide routine in the
C library is faster for unsigned types. See Section 5.10 for discussion on avoiding divisions
completely.

sumMMARY The Efficient Use of C Types

m For local variables held in registers, don’t use a char or short type unless 8-bit or
16-bit modular arithmetic is necessary. Use the signed or unsigned int types instead.
Unsigned types are faster when you use divisions.

m For array entries and global variables held in main memory, use the type with the
smallest size possible to hold the required data. This saves memory footprint. The
ARMV4 architecture is efficient at loading and storing all data widths provided you
traverse arrays by incrementing the array pointer. Avoid using offsets from the base of
the array with short type arrays, as LDRH does not support this.

m Use explicit casts when reading array entries or global variables into local variables, or
writing local variables out to array entries. The casts make it clear that for fast operation
you are taking a narrow width type stored in memory and expanding it to a wider type
in the registers. Switch on implicit narrowing cast warnings in the compiler to detect
implicit casts.

B Avoid implicit or explicit narrowing casts in expressions because they usually cost extra
cycles. Casts on loads or stores are usually free because the load or store instruction
performs the cast for you.

® Avoid char and short types for function arguments or return values. Instead use the
int type even if the range of the parameter is smaller. This prevents the compiler
performing unnecessary casts.

5.3 C LOOPING STRUCTURES

This section looks at the most efficient ways to code for and while loops on the ARM. We
start by looking at loops with a fixed number of iterations and then move on to loops with
a variable number of iterations. Finally we look at loop unrolling.

5.3.1 LooPs WITH A FIXED NUMBER OF ITERATIONS

What is the most efficient way to write a for loop on the ARM? Let’s return to our checksum
example and look at the looping structure.

114 Chapter 5 Efficient C Programming

Here is the last version of the 64-word packet checksum routine we studied in
Section 5.2. This shows how the compiler treats a loop with incrementing count i++.

int checksum v5(int *data)

{
unsigned int i;
int sum=0;

for (i=0; i<64; i++)
{

sum += *(data++);
1

return sum;

}

This compiles to

checksum_v5

MOV r2,r0 ; r2 = data

MOV r0,#0 ;3 sum = 0

MoV rl,#0 ;1 =0
checksum_v5_Toop

LDR r3,[r2] . #4 ; r3 = *(data++)

ADD rl,rl,#1 ; i+t

CMP rl1,#0x40 ; compare i, 64

ADD r0,r3,r0 5 sum += r3

BCC checksum v5 loop ; if (i<64) goto loop

MoV pc,rl4 3 return sum

It takes three instructions to implement the for loop structure:

® An ADD to increment i
m A compare to check if i is less than 64

m A conditional branch to continue the loop if i < 64
This is not efficient. On the ARM, a loop should only use two instructions:

m A subtract to decrement the loop counter, which also sets the condition code flags on
the result

® A conditional branch instruction

The key point is that the loop counter should count down to zero rather than counting
up to some arbitrary limit. Then the comparison with zero is free since the result is stored

EXAMPLE

5.2

5.3 C Looping Structures 115

in the condition flags. Since we are no longer using i as an array index, there is no problem
in counting down rather than up.

This example shows the improvement if we switch to a decrementing loop rather than an
incrementing loop.

int checksum v6(int *data)

{
unsigned int i;
int sum=0;

for (i=64; i!=0; i--)
{

sum += *(data++);

}

return sum;

This compiles to

checksum_v6

MOV r2,r0 ; r2 = data

MOV r0,#0 ; sum = 0

MoV r1,#0x40 ; 1 =64
checksum_v6_Toop

LDR r3,[r2],#4 ; r3 = *(data++)

SUBS rl,rl,#1 ; i-- and set flags

ADD r0,r3,r0 5 sum += r3

BNE checksum v6 loop ; if (i!=0) goto loop

MOV pc,rl4 ; return sum

The SUBS and BNE instructions implement the loop. Our checksum example now has
the minimum number of four instructions per loop. This is much better than six for
checksum_v1 and eight for checksum_v3.

For an unsigned loop counter i we can use either of the loop continuation conditions
i1=0or i>0. As i can’t be negative, they are the same condition. For a signed loop counter,
it is tempting to use the condition i>0 to continue the loop. You might expect the compiler
to generate the following two instructions to implement the loop:

SUBS rl,rl,#1 ; compare i with 1, i=i-1
BGT Toop ; if (i+1>1) goto loop

116 Chapter 5 Efficient C Programming

In fact, the compiler will generate

SUB rl,rl,#1 ; 1--
CMP rl1,#0 ; compare i with 0
BGT loop ; if (i>0) goto Toop

The compiler is not being inefficient. It must be careful about the case when
i = -0x80000000 because the two sections of code generate different answers in this case.
For the first piece of code the SUBS instruction compares i with 1 and then decrements 1.
Since -0x80000000 < 1, the loop terminates. For the second piece of code, we decrement
i and then compare with 0. Modulo arithmetic means that i now has the value
+0x7fffffff, which is greater than zero. Thus the loop continues for many iterations.

Of course, in practice, i rarely takes the value -0x80000000. The compiler can’t usu-
ally determine this, especially if the loop starts with a variable number of iterations (see
Section 5.3.2).

Therefore you should use the termination condition i!=0 for signed or unsigned loop
counters. It saves one instruction over the condition >0 for signed 1.

5.3.2 LooPs USING A VARIABLE NUMBER OF ITERATIONS

Now suppose we want our checksum routine to handle packets of arbitrary size. We pass
in a variable N giving the number of words in the data packet. Using the lessons from the
last section we count down until N = 0 and don’t require an extra loop counter 1.

The checksum_v7 example shows how the compiler handles a for loop with a variable
number of iterations N.

int checksum v7(int *data, unsigned int N)

{

int sum=0;

for (; N!=0; N--)
{

sum += *(data++);
}

return sum;

}

This compiles to

checksum_v7
MOV r2,#0 ; sum = 0
CMP rl,#0 ; compare N, 0
BEQ checksum v7 end ; if (N==0) goto end

5.3 C Looping Structures 117

checksum_v7_Toop

LDR r3,[r0],#4 ; r3 = *(datat+)
SUBS rl,rl,#1 ; N-- and set flags
ADD r2,r3,r2 3 sum += r3

BNE checksum v7 loop ; if (N!=0) goto loop
checksum_v7_end

MOV r0,r2 ; r0 = sum

MOV pc,rl4 ; return r0

Notice that the compiler checks that N is nonzero on entry to the function. Often this
check is unnecessary since you know that the array won’t be empty. In this case a do-while
loop gives better performance and code density than a for loop.

ExampPLE This example shows how to use a do-while loop to remove the test for N being zero that
5.3 occursina for loop.

int checksum v8(int *data, unsigned int N)

{

int sum=0;

do
{

sum += *(datat+);
} while (--N!=0);
return sum;

}

The compiler output is now

checksum_v8

MoV r2,#0 5 sum = 0
checksum_v8 Toop

LDR r3,[r0],#4 ; r3 = *(data++)

SUBS rl,rl,#1 ; N-- and set flags

ADD r2,r3,r2 5 sum += r3

BNE checksum v8 loop ; if (N!=0) goto loop

MOV r0,r2 ; r0 = sum

MOV pc,rl4 ; return r0

Compare this with the output for checksum_v7 to see the two-cycle saving.

5.3.3 LooP UNROLLING

We saw in Section 5.3.1 that each loop iteration costs two instructions in addition to
the body of the loop: a subtract to decrement the loop count and a conditional branch.

118 Chapter 5 Efficient C Programming

We call these instructions the loop overhead. On ARM7 or ARMY processors the
subtract takes one cycle and the branch three cycles, giving an overhead of four cycles

per loop.

You can save some of these cycles by unrolling a loop—repeating the loop body several
times, and reducing the number of loop iterations by the same proportion. For example,

let’s unroll our packet checksum example four times.

ExAMPLE The following code unrolls our packet checksum loop by four times. We assume that the

5.4 number of words in the packet N is a multiple of four.

int checksum v9(int *data, unsigned int N)

{

int sum=0;

do

{
sum += *(data++);
sum += *(data++);
sum += *(data++);
sum += *(data++);
N -= 4;

} while (N!=0);

return sum;

}
This compiles to

checksum_v9

MOV r2,#0 ;5 sum = 0
checksum_v9 _Toop
LDR r3,[r0],#4
SUBS rl,rl,#4
ADD r2,r3,r2
LDR r3,[r0],#4
ADD r2,r3,r2
LDR r3,[r0],#4
ADD r2,r3,r2
LDR r3,[r0],#4
ADD r2,r3,r2
BNE checksum_v9 Toop
MOV r0,r2
MOV pc,rl4

; r3 = *(data++)

s N -=4 & set flags
5 sum += r3

; r3 = *(datat+)

5 sum += r3

; r3 = *(data++)

5 sum += r3

; r3 = *(data++)

5 sum += r3

; if (N!=0) goto loop
3 r0 = sum

3 return r0

EXAMPLE

5.5

5.3 C Looping Structures 119

We have reduced theloop overhead from 4N cycles to (4N)/4 = N cycles. On the ARM7TDMI,
this accelerates the loop from 8 cycles per accumulate to 20/4 = 5 cycles per accumulate,
nearly doubling the speed! For the ARM9TDMI, which has a faster load instruction, the
benefit is even higher.

There are two questions you need to ask when unrolling a loop:

® How many times should I unroll the loop?

® What if the number of loop iterations is not a multiple of the unroll amount? For
example, what if N is not a multiple of four in checksum_v9?

To start with the first question, only unroll loops that are important for the overall
performance of the application. Otherwise unrolling will increase the code size with little
performance benefit. Unrolling may even reduce performance by evicting more important
code from the cache.

Suppose the loop is important, for example, 30% of the entire application. Suppose you
unroll the loop until it is 0.5 KB in code size (128 instructions). Then the loop overhead
is at most 4 cycles compared to a loop body of around 128 cycles. The loop overhead cost
is 3/128, roughly 3%. Recalling that the loop is 30% of the entire application, overall the
loop overhead is only 1%. Unrolling the code further gains little extra performance, but has
a significant impact on the cache contents. It is usually not worth unrolling further when
the gain is less than 1%.

For the second question, try to arrange it so that array sizes are multiples of your unroll
amount. If this isn’t possible, then you must add extra code to take care of the leftover cases.
This increases the code size a little but keeps the performance high.

This example handles the checksum of any size of data packet using a loop that has been
unrolled four times.

int checksum v10(int *data, unsigned int N)
{

unsigned int i;

int sum=0;

for (i=N/4; i!=0; i--)

{
sum += *(data++);
sum += *(data++);
sum += *(data++);
sum += *(data++);

1

for (i=N&3; i!=0; i--)

{

120 Chapter 5 Efficient C Programming

SUMMARY

sum += *(data++);
1
return sum;

}

The second for loop handles the remaining cases when N is not a multiple of four. Note
that both N/4 and N&3 can be zero, so we can’t use do-while loops.

Writing Loops Efficiently

m Use loops that count down to zero. Then the compiler does not need to allocate
a register to hold the termination value, and the comparison with zero is free.

m Use unsigned loop counters by default and the continuation condition i ! =0 rather than
i>0. This will ensure that the loop overhead is only two instructions.

m Use do-while loops rather than for loops when you know the loop will iterate at least
once. This saves the compiler checking to see if the loop count is zero.

m Unroll important loops to reduce the loop overhead. Do not overunroll. If the loop
overhead is small as a proportion of the total, then unrolling will increase code size and
hurt the performance of the cache.

m Tryto arrange that the number of elements in arrays are multiples of four or eight. You
can then unroll loops easily by two, four, or eight times without worrying about the
leftover array elements.

5.4 REGISTER ALLOCATION

The compiler attempts to allocate a processor register to each local variable you use in
a C function. It will try to use the same register for different local variables if the use of the
variables do not overlap. When there are more local variables than available registers, the
compiler stores the excess variables on the processor stack. These variables are called spilled
or swapped out variables since they are written out to memory (in a similar way virtual
memory is swapped out to disk). Spilled variables are slow to access compared to variables
allocated to registers.
To implement a function efficiently, you need to

® minimize the number of spilled variables

m ensure that the most important and frequently accessed variables are stored in registers

First let’s look at the number of processor registers the ARM C compilers have avail-
able for allocating variables. Table 5.3 shows the standard register names and usage when
following the ARM-Thumb procedure call standard (ATPCS), which is used in code
generated by C compilers.

Table 5.3

5.4 Register Allocation 121

C compiler register usage.

Alternate

Register register

number names ATPCS register usage

0 al Argument registers. These hold the first four function

rl a2 arguments on a function call and the return value on a

2 a3 function return. A function may corrupt these registers and

r3 a4 use them as general scratch registers within the function.

4 12 General variable registers. The function must preserve the callee

5 v2 values of these registers.

r6 v3

r7 v4

r8 v5

r9 v6 sb General variable register. The function must preserve the callee
value of this register except when compiling for read-write
position independence (RWPI). Then r9 holds the static base
address. This is the address of the read-write data.

r10 v7 sl General variable register. The function must preserve the callee
value of this register except when compiling with stack limit
checking. Then r10 holds the stack limit address.

rll v8 fp General variable register. The function must preserve the callee
value of this register except when compiling using a frame
pointer. Only old versions of armcc use a frame pointer.

rl2 ip A general scratch register that the function can corrupt. It is
useful as a scratch register for function veneers or other
intraprocedure call requirements.

rl3 sp The stack pointer, pointing to the full descending stack.

rl4 Ir The link register. On a function call this holds the return
address.

rl5 pc The program counter.

Provided the compiler is not using software stack checking or a frame pointer, then
the C compiler can use registers r0 to r12 and r14 to hold variables. It must save the callee
values of 74 to r11 and r14 on the stack if using these registers.

In theory, the C compiler can assign 14 variables to registers without spillage. In practice,
some compilers use a fixed register such as r12 for intermediate scratch working and do not
assign variables to this register. Also, complex expressions require intermediate working
registers to evaluate. Therefore, to ensure good assignment to registers, you should try to
limit the internal loop of functions to using at most 12 local variables.

122 Chapter 5 Efficient C Programming

SUMMARY

If the compiler does need to swap out variables, then it chooses which variables to swap
out based on frequency of use. A variable used inside a loop counts multiple times. You can
guide the compiler as to which variables are important by ensuring these variables are used
within the innermost loop.

The register keyword in C hints that a compiler should allocate the given variable to
a register. However, different compilers treat this keyword in different ways, and different
architectures have a different number of available registers (for example, Thumb and ARM).
Therefore we recommend that you avoid using register and rely on the compiler’s normal
register allocation routine.

Efficient Register Allocation

® Try to limit the number of local variables in the internal loop of functions to 12. The
compiler should be able to allocate these to ARM registers.

®m You can guide the compiler as to which variables are important by ensuring these
variables are used within the innermost loop.

55 FUNCTION CALLS

The ARM Procedure Call Standard (APCS) defines how to pass function arguments and
return values in ARM registers. The more recent ARM-Thumb Procedure Call Standard
(ATPCS) covers ARM and Thumb interworking as well.

The first four integer arguments are passed in the first four ARM registers: 10, rl, r2,
and r3. Subsequent integer arguments are placed on the full descending stack, ascending in
memory as in Figure 5.1. Function return integer values are passed in r0.

This description covers only integer or pointer arguments. Two-word arguments such as
Tong Tong or double are passed in a pair of consecutive argument registers and returned in
10, r1. The compiler may pass structures in registers or by reference according to command
line compiler options.

The first point to note about the procedure call standard is the four-register rule.
Functions with four or fewer arguments are far more efficient to call than functions with
five or more arguments. For functions with four or fewer arguments, the compiler can
pass all the arguments in registers. For functions with more arguments, both the caller
and callee must access the stack for some arguments. Note that for C++ the first argument
to an object method is the this pointer. This argument is implicit and additional to the
explicit arguments.

If your C function needs more than four arguments, or your C++ method more
than three explicit arguments, then it is almost always more efficient to use structures.
Group related arguments into structures, and pass a structure pointer rather than mul-
tiple arguments. Which arguments are related will depend on the structure of your
software.

Figure 5.1

5.5 Function Calls 123

sp+ 16 | Argument 8

sp+12 | Argument 7

sp+8 Argument 6

sp+4 Argument 5

sp Argument 4

r3 Argument 3

r2 Argument 2

rl Argument 1

r0 Argument O | Return value
ATPCS argument passing.

The next example illustrates the benefits of using a structure pointer. First we show a
typical routine to insert Nbytes from array datainto a queue. We implement the queue using
a cyclic buffer with start address Q_start (inclusive) and end address Q_end (exclusive).

char *queue_bytes v1(
*Q_start,
*Q_end,
*Q_ptr,
*data,

char
char
char
char

unsigned int N)

do
{

/* Queue buffer start address */

/* Queue buffer end address */

/* Current queue pointer position */
/* Data to insert into the queue */
/* Number of bytes to insert */

*(Q_ptr++) = *(datat+);

if (Q_ptr == Q_end)

{
}

} while (--N);
return Q_ptr;

Q_ptr = Q_start;

124 Chapter 5 Efficient C Programming

This compiles to

queue_bytes vl
STR rl4,[rl13,#-4]!
LDR ri2,[rl13,#4]
queue_v1 Toop
LDRB rld,[r3],#1
STRB rl4,[r2],#1
CMP r2,rl
MOVEQ r2,r0
SUBS ri2,rl12,#1
BNE queue_v1 loop
MoV r0,r2
LDR pc,[r13],#4

; save Ir on the stack
; rl2 =N

; rld = *(data++)
; *(Q _ptr++) = rl4
; if (Q_ptr == Q_end)

{Q ptr = Q start;}

; --N and set flags

; if (N!'=0) goto loop
; r0 = Q_ptr

3 return r0

Compare this with a more structured approach using three function arguments.

ExaMPLE The following code creates a Queue structure and passes this to the function to reduce the

5.6 number of function arguments.

typedef struct {
char *Q_start;
char *Q end;
char *Q ptr;

} Queue;

/* Queue buffer start address */
/* Queue buffer end address */
/* Current queue pointer position */

void queue_bytes v2(Queue *queue, char *data, unsigned int N)

{
char *Q ptr = queue->Q ptr;
char *Q_end = queue->Q_end;

do

{
*(Q_ptr++) = *(datat+);

if (Q_ptr == Q_end)
{
Q_ptr = queue->Q_start;
}
} while (--N);
queue->Q_ptr = Q_ptr;

EXAMPLE

5.7

5.5 Function Calls 125

This compiles to

queue_bytes v2
STR rl4,[r13,#-4]! ; save 1r on the stack

LDR r3, [r0,#8] ; r3 = queue->Q ptr
LDR r14,[r0,#4] ; rl4 = queue->Q_end
queue_v2_loop
LDRB ri2,[r1],#1 ; rl2 = *(data++)
STRB r12,[r3],.#1 3 *(Qptr++) = rl2
CMP r3,rl4 ; if (Q_ptr == Q_end)
LDREQ r3,[r0,#0] ; Q _ptr = queue->Q_start
SUBS r2,r2,#1 ; --N and set flags
BNE queue v2_loop ; if (N!=0) goto loop
STR r3,[r0,#8] ; queue->Q ptr = r3
LDR pc, [r13],#4 ; return

The queue_bytes v2 is one instruction longer than queue_bytes vl, but it is in fact
more efficient overall. The second version has only three function arguments rather than
five. Each call to the function requires only three register setups. This compares with four
register setups, a stack push, and a stack pull for the first version. There is a net saving
of two instructions in function call overhead. There are likely further savings in the callee
function, as it only needs to assign a single register to the Queue structure pointer, rather
than three registers in the nonstructured case.

There are other ways of reducing function call overhead if your function is very small
and corrupts few registers (uses few local variables). Put the C function in the same C file as
the functions that will call it. The C compiler then knows the code generated for the callee
function and can make optimizations in the caller function:

® The caller function need not preserve registers that it can see the callee doesn’t corrupt.
Therefore the caller function need not save all the ATPCS corruptible registers.

m If the callee function is very small, then the compiler can inline the code in the caller
function. This removes the function call overhead completely.

The function uint_to_hex converts a 32-bit unsigned integer into an array of eight hexa-
decimal digits. It uses a helper function nybble_to_hex, which converts a digit d in the
range 0 to 15 to a hexadecimal digit.

unsigned int nybble to hex(unsigned int d)
{

if (d<10)

{

return d + '0';

126 Chapter 5 Efficient C Programming

SUMMARY

1
return d - 10 + 'A';

}

void uint_to_hex(char *out, unsigned int in)

{

unsigned int i;

for (i=8; i!=0; i--)
{
in = (in<<4) | (in>>28); /* rotate in left by 4 bits */
*(out++) = (char)nybble to hex(in & 15);
1
1

When we compile this, we see that uint_to_hex doesn’t call nybble to_hex at all!
In the following compiled code, the compiler has inlined the uint_to_hex code. This is
more efficient than generating a function call.

uint_to_hex
MoV r3,#8 ;1 =28
uint_to_hex_loop
MoV rl,rl,ROR #28 ; in = (in<<4)|(in>>28)
AND r2,rl,#0xf ; r2 =1in & 15
CMP r2,#0xa 3 if (r2>=10)
ADDCS r2,r2,#0x37 5 r2 +='A'-10
ADDCC r2,r2,#0x30 ; else r2 +='0'
STRB r2,[r0],#1 ; *(out++) = r2
SUBS r3,r3,#1 ; i-- and set flags
BNE uint_to _hex loop ; if (i!=0) goto loop
MOV pc,rla 3 return

The compiler will only inline small functions. You can ask the compiler to inline
a function using the __inline keyword, although this keyword is only a hint and the
compiler may ignore it (see Section 5.12 for more on inline functions). Inlining large
functions can lead to big increases in code size without much performance improvement.

Calling Functions Efficiently

m Try to restrict functions to four arguments. This will make them more efficient to
call. Use structures to group related arguments and pass structure pointers instead of
multiple arguments.

5.6 Pointer Aliasing

127

m Define small functions in the same source file and before the functions that call them.
The compiler can then optimize the function call or inline the small function.

m Critical functions can be inlined using the __in1ine keyword.

5.6 POINTER ALIASING

Two pointers are said to alias when they point to the same address. If you write to one
pointer, it will affect the value you read from the other pointer. In a function, the compiler
often doesn’t know which pointers can alias and which pointers can’t. The compiler must
be very pessimistic and assume that any write to a pointer may affect the value read from
any other pointer, which can significantly reduce code efficiency.

Let’s start with a very simple example. The following function increments two timer
values by a step amount:

void timers_v1(int *timerl, int *timer2, int *step)

{

*timerl +=
*timer2 +=

This compiles to

timers_vl
LDR
LDR
ADD
STR
LDR
LDR
ADD
STR
MoV

*step;
*step;

r3,[r0,#0]
ri2,[r2,#0]
r3,r3,rl2
r3,[r0,#0]
r0, [r1,#0]
r2,[r2,#0]
r0,r0,r2
r0, [rl,#0]
pc,rl4

5 r3 = *timerl
3 rl2 = *step
5 r3 += rl2

3 *timerl = r3
;3 r0
3 r2 = *step

5 r0 += r2

3 *timer2 = t0
3 return

*timer2

Note that the compiler loads from step twice. Usually a compiler optimization called
common subexpression elimination would kick in so that *step was only evaluated once,
and the value reused for the second occurrence. However, the compiler can’t use this
optimization here. The pointers timerl and step might alias one another. In other words,
the compiler cannot be sure that the write to timerl doesn’t affect the read from step.

128 Chapter 5 Efficient C Programming

EXAMPLE

5.8

In this case the second value of *step is different from the first and has the value *timerl.
This forces the compiler to insert an extra load instruction.

The same problem occurs if you use structure accesses rather than direct pointer access.
The following code also compiles inefficiently:

typedef struct {int step;} State;
typedef struct {int timerl, timer2;} Timers;

void timers v2(State *state, Timers *timers)
{
timers->timerl += state->step;
timers->timer2 += state->step;

}

The compiler evaluates state->step twice in case state->step and timers->timerl are
at the same memory address. The fix is easy: Create a new local variable to hold the value
of state->step so the compiler only performs a single load.

In the code for timers_v3 we use a local variable step to hold the value of state->step.
Now the compiler does not need to worry that state may alias with timers.

void timers v3(State *state, Timers *timers)

{

int step = state->step;

timers->timerl += step;
timers->timer2 += step;

You must also be careful of other, less obvious situations where aliasing may occur.
When you call another function, this function may alter the state of memory and so change
the values of any expressions involving memory reads. The compiler will evaluate the
expressions again. For example suppose you read state->step, call a function and then
read state->step again. The compiler must assume that the function could change the
value of state->step in memory. Therefore it will perform two reads, rather than reusing
the first value it read for state->step.

Another pitfall is to take the address of a local variable. Once you do this, the variable is
referenced by a pointer and so aliasing can occur with other pointers. The compiler is likely
to keep reading the variable from the stack in case aliasing occurs. Consider the following
example, which reads and then checksums a data packet:

int checksum_next_packet(void)

{
int *data;
int N, sum=0;

5.6 Pointer Aliasing 129

data = get next_packet(&N);

do
{

sum += *(data++);
} while (--N);

return sum;

Here get_next_packet is a function returning the address and size of the next data packet.
The previous code compiles to

checksum_next_packet

STMFD r13!,{r4,rl14} ; save r4, 1r on the stack
SUB ri13,rl3,#8 ; create two stacked variables
ADD r0,rl3,#4 ; r0 = &N, N stacked
MOV rd,#0 ; sum = 0
BL get_next_packet ; r0 = data

checksum_Toop
LDR rl,[r0],#4 ; rl = *(data++)
ADD rd,rl,r4 3 sum += rl
LDR rl,[r13,#4] ; rl = N (read from stack)
SUBS rl,rl,#1 ; rl-- & set flags
STR rl, [r13,#4] ; N =rl (write to stack)
BNE checksum_Toop ; if (N!=0) goto Toop
MOV r0,r4 ; r0 = sum
ADD r13,rl13,#8 ; delete stacked variables
LDMFD r13!,{rd,pc} 3 return r0

Note how the compiler reads and writes N from the stack for every N--. Once you

take the address of N and pass it to get_next packet, the compiler needs to worry about
aliasing because the pointers data and &N may alias. To avoid this, don’t take the address
of local variables. If you must do this, then copy the value into another local variable
before use.

You may wonder why the compiler makes room for two stacked variables when it only
uses one. This is to keep the stack eight-byte aligned, which is required for LDRD instructions
available in ARMV5TE. The example above doesn’t actually use an LDRD, but the compiler
does not know whether get _next packet will use this instruction.

130 Chapter 5 Efficient C Programming

SUMMARY

Avoiding Pointer Aliasing

® Do not rely on the compiler to eliminate common subexpressions involving memory
accesses. Instead create new local variables to hold the expression. This ensures the
expression is evaluated only once.

m Avoid taking the address of local variables. The variable may be inefficient to access
from then on.

5.7 STRUCTURE ARRANGEMENT

Table 5.4

The way you lay out a frequently used structure can have a significant impact on its perfor-
mance and code density. There are two issues concerning structures on the ARM: alignment
of the structure entries and the overall size of the structure.

For architectures up to and including ARMvV5TE, load and store instructions are only
guaranteed to load and store values with address aligned to the size of the access width.
Table 5.4 summarizes these restrictions.

For this reason, ARM compilers will automatically align the start address of a structure
to a multiple of the largest access width used within the structure (usually four or eight
bytes) and align entries within structures to their access width by inserting padding.

For example, consider the structure

struct {
char a;
int b;
char c;
short d;
}

For a little-endian memory system the compiler will lay this out adding padding to ensure
that the next object is aligned to the size of that object:

Address +3 +2 +1 +0
+0 pad pad pad a
+4 | b[31,24] | b[23,16] | b[15,8] | b[7,0]
+8 | d[15,8] d[7,0] pad C

Load and store alignment restrictions for ARMv5TE.

Transfer size Instruction Byte address

1 byte LDRB, LDRSB, STRB any byte address alignment
2 bytes LDRH, LDRSH, STRH multiple of 2 bytes

4 bytes LDR, STR multiple of 4 bytes

8 bytes LDRD, STRD multiple of 8 bytes

5.7 Structure Arrangement 131

To improve the memory usage, you should reorder the elements

struct {
char a;
char c;
short d;
int b;

This reduces the structure size from 12 bytes to 8 bytes, with the following new layout:

Address +3 +2 +1 +0

40 | d[15,8] d[7,0] o a
+4 | b[31,24] | b[23,16] | b[15,8] | b[7,0]

Therefore, it is a good idea to group structure elements of the same size, so that the
structure layout doesn’t contain unnecessary padding. The armcc compiler does include
a keyword __packed that removes all padding. For example, the structure

__packed struct {
char a;
int b;
char c;
short d;
1

will be laid out in memory as

Address +3 +2 +1 +0
40 | b[23,16] | b[15,8] | b[7,0] a
+4 | d[15,8] d[7,0] c b[31,24]

However, packed structures are slow and inefficient to access. The compiler emulates
unaligned load and store operations by using several aligned accesses with data operations
to merge the results. Only use the __packed keyword where space is far more important
than speed and you can’t reduce padding by rearragement. Also use it for porting code that
assumes a certain structure layout in memory.

The exact layout of a structure in memory may depend on the compiler vendor and
compiler version you use. In API (Application Programmer Interface) definitions it is often

132 Chapter 5 Efficient C Programming

Table 5.5

a good idea to insert any padding that you cannot get rid of into the structure manually.
This way the structure layout is not ambiguous. It is easier to link code between compiler
versions and compiler vendors if you stick to unambiguous structures.

Another point of ambiguity is enum. Different compilers use different sizes for an enu-
merated type, depending on the range of the enumeration. For example, consider the type

typedef enum {
FALSE,
TRUE

} Bool;

The armcc in ADS1.1 will treat Bool as a one-byte type as it only uses the values 0 and 1.
BooT will only take up 8 bits of space in a structure. However, gcc will treat Boo1 as a word
and take up 32 bits of space in a structure. To avoid ambiguity it is best to avoid using enum
types in structures used in the API to your code.

Another consideration is the size of the structure and the offsets of elements within the
structure. This problem is most acute when you are compiling for the Thumb instruction
set. Thumb instructions are only 16 bits wide and so only allow for small element offsets
from a structure base pointer. Table 5.5 shows the load and store base register offsets
available in Thumb.

Therefore the compiler can only access an 8-bit structure element with a single instruc-
tion if it appears within the first 32 bytes of the structure. Similarly, single instructions can
only access 16-bit values in the first 64 bytes and 32-bit values in the first 128 bytes. Once
you exceed these limits, structure accesses become inefficient.

The following rules generate a structure with the elements packed for maximum
efficiency:

m Place all 8-bit elements at the start of the structure.
m Place all 16-bit elements next, then 32-bit, then 64-bit.
m DPlace all arrays and larger elements at the end of the structure.

m [f the structure is too big for a single instruction to access all the elements, then group
the elements into substructures. The compiler can maintain pointers to the individual
substructures.

Thumb load and store offsets.

Instructions Offset available from the base register
LDRB, LDRSB, STRB 0 to 31 bytes
LDRH, LDRSH, STRH 0 to 31 halfwords (0 to 62 bytes)

LDR, STR 0 to 31 words (0 to 124 bytes)

5.8 Bit-fields 133

summaRy Efficient Structure Arrangement

m Lay structures out in order of increasing element size. Start the structure with the
smallest elements and finish with the largest.

B Avoid very large structures. Instead use a hierarchy of smaller structures.

m For portability, manually add padding (that would appear implicitly) into API
structures so that the layout of the structure does not depend on the compiler.

m Beware of using enum types in API structures. The size of an enum type is compiler
dependent.

5.8 BIT-FIELDS

Bit-fields are probably the least standardized part of the ANSI C specification. The compiler
can choose how bits are allocated within the bit-field container. For this reason alone, avoid
using bit-fields inside a union or in an API structure definition. Different compilers can
assign the same bit-field different bit positions in the container.

It is also a good idea to avoid bit-fields for efficiency. Bit-fields are structure ele-
ments and usually accessed using structure pointers; consequently, they suffer from the
pointer aliasing problems described in Section 5.6. Every bit-field access is really a memory
access. Possible pointer aliasing often forces the compiler to reload the bit-field several
times.

The following example, dostages vl, illustrates this problem. It also shows that
compilers do not tend to optimize bit-field testing very well.

void dostageA(void);
void dostageB(void);
void dostageC(void);

typedef struct {
unsigned int stageA : 1;
unsigned int stageB : 1;
unsigned int stageC : 1;
} Stages vl;

void dostages vl(Stages vl *stages)
{
if (stages->stageA)
{
dostageA();

134 Chapter 5 Efficient C Programming

if (stages->stageB)

{

dostageB();

}

if (stages->stageC)

{

dostageC();

}
}

Here, we use three bit-field flags to enable three possible stages of processing. The example

compiles to

dostages_vl

STMFD ri3!,{rd,r14} ; stack r4, 1r

MOV rd,r0 ; move stages to r4

LDR r0, [r0, #0] ; r0 = stages bitfield
TST r0,#1 ; if (stages->stageA)
BLNE dostageA ; {dostageA();}

LDR r0, [r4,#0] ; r0 = stages bitfield
MOV r0,r0,LSL #30 ; shift bit 1 to bit 31
CMP r0,#0 s if (bit31)

BLLT dostageB 3 {dostageB();}

LDR r0, [r4,#0] ; r0 = stages bitfield
MOV r0,r0,LSL #29 ; shift bit 2 to bit 31
CMP r0,#0 s if (1bit31)

LDMLTFD r13!,{r4,rl4} : return

BLT dostageC ; dostageC();

LDMFD r13!,{r4,pc} ; return

Note that the compiler accesses the memory location containing the bit-field three times.
Because the bit-field is stored in memory, the dostage functions could change the value.
Also, the compiler uses two instructions to test bit 1 and bit 2 of the bit-field, rather than
a single instruction.

You can generate far more efficient code by using an integer rather than a bit-field. Use
enum or #define masks to divide the integer type into different fields.

ExAMPLE The following code implements the dostages function using logical operations rather than
5.9 bit-fields:

typedef unsigned Tong Stages v2;
#define STAGEA (1ul<<0)

5.8 Bit-fields 135

#define STAGEB (1lul<<1)
#define STAGEC (1lul=<<2)

void dostages v2(Stages v2 *stages v2)
{

Stages v2 stages = *stages vZ;

if (stages & STAGEA)
{
dostageA();
1
if (stages & STAGEB)
{
dostageB();
}
if (stages & STAGEC)
{
dostageC();
1
1

Now that a single unsigned Tong type contains all the bit-fields, we can keep a copy of
their values in a single local variable stages, which removes the memory aliasing problem
discussed in Section 5.6. In other words, the compiler must assume that the dostageX
(where X is A, B, or C) functions could change the value of *stages_v2.

The compiler generates the following code giving a saving of 33% over the previous
version using ANSI bit-fields:

dostages v2
STMFD r13!,{r4,r14} ; stack r4, 1Ir

LDR rd, [r0,#0] ; stages = *stages v2
TST r4,#1 ; if (stage & STAGEA)
BLNE dostageA ; {dostageA();}

TST r4,#2 ; if (stage & STAGEB)
BLNE dostageB ; {dostageB();}

TST rd,#4 ; if (!(stage & STAGEC))
LDMNEFD r13!,{r4,r14} ; return;

BNE dostageC ; dostageC();

LDMFD r13!,{r4,pc} ; return

You can also use the masks to set and clear the bit-fields, just as easily as for testing
them. The following code shows how to set, clear, or toggle bits using the STAGE masks:

stages |= STAGEA; /* enable stage A */

136 Chapter 5 Efficient C Programming

stages &= ~STAGEB; /* disable stage B */
stages "= STAGEC; /* toggle stage C */

These bit set, clear, and toggle operations take only one ARM instruction each, using ORR,
BIC, and EOR instructions, respectively. Another advantage is that you can now manipulate
several bit-fields at the same time, using one instruction. For example:

stages |= (STAGEA | STAGEB); /* enable stages A and B */
stages &= ~(STAGEA | STAGEC); /* disable stages A and C */

SUMMARY Bit-fields

B Avoid using bit-fields. Instead use #define or enum to define mask values.

m Test, toggle, and set bit-fields using integer logical AND, OR, and exclusive OR oper-
ations with the mask values. These operations compile efficiently, and you can test,
toggle, or set multiple fields at the same time.

5.9 UNALIGNED DATA AND ENDIANNESS

Unaligned data and endianness are two issues that can complicate memory accesses and
portability. Is the array pointer aligned? Is the ARM configured for a big-endian or little-
endian memory system?

The ARM load and store instructions assume that the address is a multiple of the type
you are loading or storing. If you load or store to an address that is not aligned to its type,
then the behavior depends on the particular implementation. The core may generate a data
abort or load a rotated value. For well-written, portable code you should avoid unaligned
accesses.

C compilers assume that a pointer is aligned unless you say otherwise. If a pointer isn’t
aligned, then the program may give unexpected results. This is sometimes an issue when you
are porting code to the ARM from processors that do allow unaligned accesses. For armcc,
the packed directive tells the compiler that a data item can be positioned at any byte
alignment. This is useful for porting code, but using _packed will impact performance.

To illustrate this, look at the following simple routine, readint. It returns the integer at
the address pointed to by data. We’ve used __packed to tell the compiler that the integer
may possibly not be aligned.

int readint(_ packed int *data)

{

return *data;

}

Table 5.6

5.9 Unaligned Data and Endianness 137

This compiles to

readint
BIC r3,r0,#3 ; r3 = data & OxFFFFFFFC
AND r0,r0,#3 ; r0 = data & 0x00000003
MoV r0,r0,LSL #3 ; r0 = bit offset of data word
LDMIA r3,{r3,rl12} ; r3, r12 = 8 bytes read from r3
MOV r3,r3,LSR r0 ; These three instructions
RSB r0,r0,#0x20 ; shift the 64 bit value rl12.r3
ORR r0,r3,r12,LSL 0 ; right by r0 bits
Mov pc,rl4 ; return r0

Notice how large and complex the code is. The compiler emulates the unaligned access
using two aligned accesses and data processing operations, which is very costly and shows
why you should avoid _packed. Instead use the type char * to point to data that can
appear at any alignment. We will look at more efficient ways to read 32-bit words from
a char * later.

You are likely to meet alignment problems when reading data packets or files used to
transfer information between computers. Network packets and compressed image files are
good examples. Two- or four-byte integers may appear at arbitrary offsets in these files.
Data has been squeezed as much as possible, to the detriment of alignment.

Endianness (or byte order) is also a big issue when reading data packets or compressed
files. The ARM core can be configured to work in little-endian (least significant byte at
lowest address) or big-endian (most significant byte at lowest address) modes. Little-endian
mode is usually the default.

The endianness of an ARM is usually set at power-up and remains fixed thereafter.
Tables 5.6 and 5.7 illustrate how the ARM’s 8-bit, 16-bit, and 32-bit load and store instruc-
tions work for different endian configurations. We assume that byte address A is aligned to

Little-endian configuration.

Instruction Width (bits) b31..b24 b23.bl6 bl5.b8 b7..b0

LDRB 8 0 0 0 B(A)
LDRSB 8 S(A) S(A) S(A) B(A)
STRB 8 X X X B(A)
LDRH 16 0 0 B(A+1) B(A)
LDRSH 16 S(A+1) S(A+1) B(A+1) B(A)
STRH 16 X X B(A+1) B(A)

LDR/STR 32 B(A+3) B(A+2) B(A+1) B(A)

138 Chapter 5 Efficient C Programming

Table 5.7

EXAMPLE

5.10

Big-endian configuration.

Instruction Width (bits) b31.b24 b23..bl16 bl5.b8 b7..b0

LDRB 8 0 0 0 B(A)
LDRSB 8 S(A) S(A) S(A) B(A)
STRB 8 X X X B(A)
LDRH 16 0 0 B(A) B(A+1)
LDRSH 16 S(A) S(A) B(A) B(A+1)
STRH 16 X X B(A) B(A+1)
LDR/STR 32 B(A) B(A+1) B(A+2) B(A+3)
Notes:

B(A) : The byte at address A.
S(A) : OXFF if bit 7 of B(A) is set, otherwise 0x00.
X: These bits are ignored on a write.

the size of the memory transfer. The tables show how the byte addresses in memory map
into the 32-bit register that the instruction loads or stores.

What is the best way to deal with endian and alignment problems? If speed is not critical,
then use functions like readint_Tittle and readint_big in Example 5.10, which read
a four-byte integer from a possibly unaligned address in memory. The address alignment
is not known at compile time, only at run time. If you've loaded a file containing big-
endian data such as a JPEG image, then use readint_big. For a bytestream containing
little-endian data, use readint_Titt1e. Both routines will work correctly regardless of the
memory endianness ARM is configured for.

These functions read a 32-bit integer from a bytestream pointed to by data. The bytestream
contains little- or big-endian data, respectively. These functions are independent of the
ARM memory system byte order since they only use byte accesses.

int readint _little(char *data)
{

int a0,al,a2,a3;

a0 = *(data++);

al = *(data++);

a2 = *(data++);

a3 = *(data++);

return a0 | (al<<8) | (a2<<16) | (a3<<24);
1

int readint _big(char *data)

EXAMPLE

5.11

5.9 Unaligned Data and Endianness 139

int a0,al,a2,a3;

a0 = *(data++);
al = *(data++);
a2 = *(data++);
a3 = *(data++);
return (((((a0<<8) | al)<<8) | a2)<<8) | a3;

If speed is critical, then the fastest approach is to write several variants of the critical
routine. For each possible alignment and ARM endianness configuration, you call a separate
routine optimized for that situation.

The read_samples routine takes an array of N 16-bit sound samples at address in. The
sound samples are little-endian (for example from a.wav file) and can be at any byte
alignment. The routine copies the samples to an aligned array of short type values pointed
to by out. The samples will be stored according to the configured ARM memory endianness.

The routine handles all cases in an efficient manner, regardless of input alignment and
of ARM endianness configuration.

void read _samples(short *out, char *in, unsigned int N)
{
unsigned short *data; /* aligned input pointer */
unsigned int sample, next;

switch ((unsigned int)in & 1)
{
case 0: /* the input pointer is aligned */
data = (unsigned short *)in;
do
{
sample = *(data++);
#ifdef _ BIG_ENDIAN
sample = (sample>>8) | (sample<<8);
#endif
*(out++) = (short)sample;
} while (--N);
break;

case 1: /* the input pointer is not aligned */
data = (unsigned short *)(in-1);
sample = *(data++);

140 Chapter 5 Efficient C Programming

#ifdef _ BIG_ENDIAN

sample = sample & OxFF; /* get first byte of sample */
#else

sample = sample>>8; /* get first byte of sample */
#endif

do

{

next = *(data++);

/* complete one sample and start the next */
#ifdef _ BIG_ENDIAN

*out++ = (short) ((next & OxFF00) | sample);

sample = next & OxFF;
#else

*out++ = (short) ((next<<8) | sample);

sample = next>>8;
#endif

} while (--N);

break;

The routine works by having different code for each endianness and alignment.
Endianness is dealt with at compile time using the BIG_ENDIAN compiler flag. Alignment
must be dealt with at run time using the switch statement.

You can make the routine even more efficient by using 32-bit reads and writes rather
than 16-bit reads and writes, which leads to four elements in the switch statement, one for
each possible address alignment modulo four.

suMMARY Endianness and Alignment

® Avoid using unaligned data if you can.

m Use the type char * for data that can be at any byte alignment. Access the data by
reading bytes and combining with logical operations. Then the code won’t depend on
alignment or ARM endianness configuration.

m For fast access to unaligned structures, write different variants according to pointer
alignment and processor endianness.

5. 10 DIVISION

The ARM does not have a divide instruction in hardware. Instead the compiler implements
divisions by calling software routines in the C library. There are many different types of

5.10 Division 141

division routine that you can tailor to a specific range of numerator and denominator
values. We look at assembly division routines in detail in Chapter 7. The standard integer
division routine provided in the C library can take between 20 and 100 cycles, depending
on implementation, early termination, and the ranges of the input operands.

Division and modulus (/ and %) are such slow operations that you should avoid them
as much as possible. However, division by a constant and repeated division by the same
denominator can be handled efficiently. This section describes how to replace certain
divisions by multiplications and how to minimize the number of division calls.

Circular buffers are one area where programmers often use division, but you can avoid
these divisions completely. Suppose you have a circular buffer of size buffer_size bytes
and a position indicated by a buffer of fset. To advance the offset by increment bytes you
could write

offset = (offset + increment) % buffer size;
Instead it is far more efficient to write

offset += increment;
if (offset>=buffer_size)
{

offset -= buffer size;

}

The first version may take 50 cycles; the second will take 3 cycles because it does not involve
a division. We’ve assumed that increment < buffer size; you can always arrange this
in practice.

If you can’t avoid a division, then try to arrange that the numerator and denominator
are unsigned integers. Signed division routines are slower since they take the absolute values
of the numerator and denominator and then call the unsigned division routine. They fix
the sign of the result afterwards.

Many C library division routines return the quotient and remainder from the division.
In other words a free remainder operation is available to you with each division operation
and vice versa. For example, to find the (x, y) position of a location at offset bytes into
a screen buffer, it is tempting to write

typedef struct {
int x;
int y;

} point;

point getxy vl(unsigned int offset, unsigned int bytes per line)

{
point p;

142 Chapter 5 Efficient C Programming

EXAMPLE

5.12

p.y = offset / bytes _per line;
p.x = offset - p.y * bytes per line;
return p;

}

It appears that we have saved a division by using a subtract and multiply to calculate p.Xx,
but in fact, it is often more efficient to write the function with the modulus or remainder
operation.

In getxy v2, the quotient and remainder operation only require a single call to a division
routine:

point getxy v2(unsigned int offset, unsigned int bytes per Tline)
{
point p;

p.x = offset % bytes per Tine;
p.y = offset / bytes per_ line;
return p;

}

There is only one division call here, as you can see in the following compiler output. In
fact, this version is four instructions shorter than getxy v1. Note that this may not be the
case for all compilers and C libraries.

getxy v2
STMFD r13!,{r4, r14} ; stack r4, 1r
MOV rd,r0 ; move p to r4
MOV r0,r2 ; r0 = bytes per line
BL __rt_udiv ; (r0,rl) = (r1/r0, ri%r0)
STR r0, [r4,#4] ; p.y = offset / bytes per Tine
STR rl, [r4,#0] ; p.x = offset % bytes per Tine

LDMFD r13!,{r4,pc} ; return

5.10.1 REPEATED UNSIGNED DIVISION WITH REMAINDER

Often the same denominator occurs several times in code. In the previous example,
bytes _per Tine will probably be fixed throughout the program. If we project from three
to two cartesian coordinates, then we use the denominator twice:

(x,,2) = (x/z,ylz)

5.10 Division 143

In these situations it is more efficient to cache the value of 1/z in some way and use a mul-
tiplication by 1/z instead of a division. We will show how to do this in the next subsection.
We also want to stick to integer arithmetic and avoid floating point (see Section 5.11).

The next description is rather mathematical and covers the theory behind this con-
version of repeated divisions into multiplications. If you are not interested in the theory,
then don’t worry. You can jump directly to Example 5.13, which follows.

5.10.2 CONVERTING DIVIDES INTO MULTIPLIES

We’'ll use the following notation to distinguish exact mathematical divides from integer
divides:

® n/d = the integer part of n divided by d, rounding towards zero (as in C)

® n%d = the remainder of #n divided by d which is n — d(n/d)

m = 1d! = the true mathematical divide of 1 by d

d

The obvious way to estimate d~!, while sticking to integer arithmetic, is to calculate
232/d. Then we can estimate 1/d

(n(2%/d)) 12 (5.1)
We need to perform the multiplication by # to 64-bit accuracy. There are a couple of

problems with this approach:

® To calculate 2°%/d, the compiler needs to use 64-bit Tonglong type arithmetic
because 2% does not fit into an unsigned int type. We must specify the division as
(1ull « 32)/d. This 64-bit division is much slower than the 32-bit division we wanted
to perform originally!

m If d happens to be 1, then 232/d will not fit into an unsigned int type.

It turns out that a slightly cruder estimate works well and fixes both these problems.
Instead of 232/d, we look at (232 — 1)/d. Let

s = OXFFFFFFFFul / d; /* s = (2°32-1)/d */

We can calculate s using a single unsigned int type division. We know that
22 _1=sd+tforsome0 <t<d (5.2)

Therefore

232 1+ ¢
s=— —¢, where0<e =

y — =1 (5.3)

144 Chapter 5 Efficient C Programming

EXAMPLE

5.13

Next, calculate an estimate g to n/d:
q = (unsigned int)(((unsigned long long)n * s) >> 32);

Mathematically, the shift right by 32 introduces an error e,:

q= ns273 — ¢, for some 0 < ¢, < 1 (5.4)
Substituting the value of s:
q= g —ne2 7’ — e (5.5)
So, qis an underestimate to n/d. Now
0<ne2 2 +e<e+e<2 (5.6)
Therefore
nld —2<q<nld (5.7)

So g=mn/dor g= (n/d) — 1. We can find out which quite easily, by calculating the remainder
r=n — qd, which must be in the range 0 < r < 2d. The following code corrects the result:

r=n-q*d; /* the remainder in the range 0 <= r <2 * d */

if (r >=d) /* if correction is required */

{
r -=d; /* correct the remainder to the range 0 <= r < d */
qt++s /* correct the quotient */

/*nowg=n/dand r=n%d*/

The following routine, scale, shows how to convert divisions to multiplications in practice.
It divides an array of N elements by denominator d. We first calculate the value of s as above.
Then we replace each divide by d with a multiplication by s. The 64-bit multiply is cheap
because the ARM has an instruction UMULL, which multiplies two 32-bit values, giving
a 64-bit result.

void scale(

unsigned int *dest, /* destination for the scale data */
unsigned int *src, /* source unscaled data */

unsigned int d, /* denominator to divide by */
unsigned int N) /* data length */

unsigned int s = OxFFFFFFFFu / d;

5.10 Division 145

do

unsigned int n, q, r;

n = *(src++);
q = (unsigned int) (((unsigned long Tong)n * s) >>32);
r=n-q*d;
if (r >=d)
{
qt+;

}
*(dest++) = q;
} while (--N);
}

Here we have assumed that the numerator and denominator are 32-bit unsigned integers.
Of course, the algorithm works equally well for 16-bit unsigned integers using a 32-bit
multiply, or for 64-bit integers using a 128-bit multiply. You should choose the narrowest
width for your data. If your data is 16-bit, then set s = (2!® — 1)/d and estimate q using
a standard integer C multiply.

5.10.3 UNSIGNED DIVISION BY A CONSTANT

To divide by a constant ¢, you could use the algorithm of Example 5.13, precalculating
s = (2% — 1)/c. However, there is an even more efficient method. The ADS1.2 compiler
uses this method to synthesize divisions by a constant.

The idea is to use an approximation to d~! that is sufficiently accurate so that
multiplying by the approximation gives the exact value of n/d. We use the following
mathematical results:!

If 2Nk < gs < 2Ntk 4 ok then n/d = (ns) > (N + k) for0 < n<2N. (5.8)

If 2Nk ok < g5 < 2NHK then n/d = (ns+s)> (N + k) for0 < n< 2N, (5.9)

1. For the first result see a paper by Torbjorn Granlund and Peter L. Montgomery, “Division by
Invariant Integers Using Multiplication,” in proceedings of the SIG-PLAN PLDI’94 Conference,
June 1994.

146 Chapter 5 Efficient C Programming

EXAMPLE

5.14

Since n = (n/d)d + r for 0 < r < d — 1, the results follow from the equations

ds — oN+k poN+k

_ Ntk _ o _ P ToN+k _
ns — (n/d)2 = ns 7 2 n ¥ + 7 (5.10)
d _2N+k 1 2N+k
(n+1)s — (nld) 2N+ = (n+ DE y (r+ ; (5.11)

For both equations the right-hand side is in the range 0 < x < 2N, For a 32-bit unsigned
integer n, we take N = 32, choose k such that 2k < d < 2k andsets = (2N+k + 2k)/d.
If ds > 2Ntk then n/d = (ns) > (N + k); otherwise, n/d = (ns + s) > (N + k). As an
extra optimization, if d is a power of two, we can replace the division with a shift.

The udiv_by const function tests the algorithm described above. In practice d will be
a fixed constant rather than a variable. You can precalculate s and k in advance and only
include the calculations relevant for your particular value of d.

unsigned int udiv_by const(unsigned int n, unsigned int d)

{

unsigned int s,k,q;
/* We assume d!=0 */

/* first find k such that (l<<k) <= d < (1<<(k+1)) */
for (k=0; d/2>=(lu<<k); k++);

if (d==1lu<<k)

{
/* we can implement the divide with a shift */
return n>>k;

}

/* d is in the range (1<<k) < d < (1<<(k+1)) */
s = (unsigned int) (((1ul1<<(32+k))+(1ull<<k))/d);

if ((unsigned Tong long)s*d >= (1ull<<(32+k)))

{
/* n/d = (n*s)>>(32+k) */
q = (unsigned int) (((unsigned long long)n*s)>>32);
return gq>>k;

/* n/d = (n*s+s)>>(32+k) */

5.10 Division 147

g = (unsigned int) (((unsigned Tong long)n*s + s)>>32);
return g>>k;

}

If you know that 0 < n < 231, as for a positive signed integer, then you don’t need to
bother with the different cases. You can increase k by one without having to worry about s
overflowing. Take N = 31, choose ksuch that 2k=1 « 4 < 2k andsets = (5N+k+2k— 1)/d.
Then n/d = (ns) > (N + k).

5.10.4 SIGNED DIVISION BY A CONSTANT

EXAMPLE

5.15

We can use ideas and algorithms similar to those in Section 5.10.3 to handle signed
constants as well. If d < 0, then we can divide by |d| and correct the sign later, so for now
we assume that d > 0. The first mathematical result of Section 5.10.3 extends to signed n.
Ifd>0and 2Ntk < ds < 2N+k 1 2k then

n/d = (ns) > (N + k) forall 0 < n <2V (5.12)
nld = ((ns) > (N +k)) + Lforall —2N <n<o0 (5.13)

For 32-bit signed n, we take N = 31 and choose k < 31 such that 2k=1 « g < 2k This
ensures that we can find a 32-bit unsigned s = (2N+k 4 2K)/d satisfying the preceding
relations. We need to take special care multiplying the 32-bit signed n with the 32-bit
unsigned s. We achieve this using a signed 1ong Tong type multiply with a correction if the
top bit of sis set.

The following routine, sdiv_by const, shows how to divide by a signed constant d. In
practice you will precalculate k and s at compile time. Only the operations involving # for
your particular value of d need be executed at run time.

int sdiv_by const(int n, int d)
{

int s,k,q;

unsigned int D;

/* set D to be the absolute value of d, we assume d!=0 */
if (d>0)
{
D=(unsigned int)d; /* 1 <= D <= Ox7FFFFFFF */
}

else

148 Chapter 5 Efficient C Programming

{
D=(unsigned int) - d; /* 1 <= D <= 0x80000000 */
1

/* first find k such that (l1<<k) <= D < (1<<(k+1)) */
for (k=0; D/2>=(lu<<k); k++);

if (D==lu<<k)

{
/* we can implement the divide with a shift */
q = n>>31; /* 0 if n>0, -1 if n<0 */
g = n + ((unsigned)q>>(32-k)); /* insert rounding */
q = qg>>k; /* divide */
if (d < 0)
{
q = -q; /* correct sign */
}
return q;
1

/* Next find s in the range 0<=s<=0xFFFFFFFF */
/* Note that k here is one smaller than the k in the equation */
s = (int) (((Lull<<(31+(k+1)))+(1ull<<(k+1)))/D);

if (s>=0)
{
g = (int) (((signed long long)n*s) >>32);
1
else
{
/* (unsigned)s = (signed)s + (1<<32) */
g =n+ (int)(((signed Tong long)n*s) >>32);
1
q = gq>>k;

/* if n<0 then the formula requires us to add one */
q += (unsigned)n>>31;

/* if d was negative we must correct the sign */
if (d<0)
{
q=-9;
}

5.12 Inline Functions and Inline Assembly 149

return q;

}

Section 7.3 shows how to implement divides efficiently in assembler.

SUMMARY Division

® Avoid divisions as much as possible. Do not use them for circular buffer handling.

m Ifyou can’t avoid a division, then try to take advantage of the fact that divide routines
often generate the quotient n/d and modulus n%d together.

m To repeatedly divide by the same denominator d, calculate s = (2¥ — 1)/d in advance.
You can replace the divide of a k-bit unsigned integer by d with a 2k-bit multiply by s.

® To divide unsigned n < 2V by an unsigned constant d, you can find a 32-bit unsigned s
and shift k such that n/d is either (ns) > (N + k) or (ns + s) > (N + k). The choice
depends only on d. There is a similar result for signed divisions.

511 FLOATING POINT

The majority of ARM processor implementations do not provide hardware floating-point
support, which saves on power and area when using ARM 1in a price-sensitive, embedded
application. With the exceptions of the Floating Point Accelerator (FPA) used on the
ARM7500FE and the Vector Floating Point accelerator (VFP) hardware, the C compiler
must provide support for floating point in software.

In practice, this means that the C compiler converts every floating-point operation
into a subroutine call. The C library contains subroutines to simulate floating-point
behavior using integer arithmetic. This code is written in highly optimized assembly.
Even so, floating-point algorithms will execute far more slowly than corresponding integer
algorithms.

If you need fast execution and fractional values, you should use fixed-point or block-
floating algorithms. Fractional values are most often used when processing digital signals
such as audio and video. This is a large and important area of programming, so we have
dedicated a whole chapter, Chapter 8, to the area of digital signal processing on the ARM.
For best performance you need to code the algorithms in assembly (see the examples of
Chapter 8).

5.12 INLINE FUNCTIONS AND INLINE ASSEMBLY

Section 5.5 looked at how to call functions efficiently. You can remove the function call
overhead completely by inlining functions. Additionally many compilers allow you to

150 Chapter 5 Efficient C Programming

include inline assembly in your C source code. Using inline functions that contain assembly
you can get the compiler to support ARM instructions and optimizations that aren’t usually
available. For the examples of this section we will use the inline assembler in armcc.

Don’t confuse the inline assembler with the main assembler armasm or gas. The inline
assembler is part of the C compiler. The C compiler still performs register allocation,
function entry, and exit. The compiler also attempts to optimize the inline assembly you
write, or deoptimize it for debug mode. Although the compiler output will be functionally
equivalent to your inline assembly, it may not be identical.

The main benefit of inline functions and inline assembly is to make accessible in C
operations that are not usually available as part of the C language. It is better to use inline
functions rather than #define macros because the latter doesn’t check the types of the
function arguments and return value.

Let’s consider as an example the saturating multiply double accumulate primitive used
by many speech processing algorithms. This operation calculates a + 2xy for 16-bit signed
operands x and y and 32-bit accumulator a. Additionally, all operations saturate to the
nearest possible value if they exceed a 32-bit range. We say x and y are Q15 fixed-point
integers because they represent the values x27!'> and y2713, respectively. Similarly, a is a
Q31 fixed-point integer because it represents the value a2 3!,

We can define this new operation using an inline function gmac:

__inline int gmac(int a, int x, int y)
{

int i;

i = x*y; /* this multiplication cannot saturate */
if (i>=0)
{
/* x*y is positive */
i= 2%,
if (i<0)
{
/* the doubling saturated */
i = OX7FFFFFFF;
}
if (a+1<a)
{
/* the addition saturated */
return Ox7FFFFFFF;
}
return a + i;

}

/* x*y is negative so the doubling can't saturate */

EXAMPLE

5.16

5.12 Inline Functions and Inline Assembly 151

if (a + 2% > a)

{
/* the accumulate saturated */
return - 0x80000000;

}

return a + 2%i;

}

We can now use this new operation to calculate a saturating correlation. In other words,
we calculate a = 2xp)p + - - - 2xny—1y~N—1 With saturation.

int sat_correlate(short *x, short *y, unsigned int N)

{

int a=0;

do
{
a = gmac(a, *(x++), *(y++));
} while (--N);
return a;

}

The compiler replaces each gmac function call with inline code. In other words it inserts the
code for gmac instead of calling gmac. Our C implementation of gmac isn’t very efficient,
requiring several 1 statements. We can write it much more efficiently using assembly. The
inline assembler in the C compiler allows us to use assembly in our inline C function.

This example shows an efficient implementation of gqmac using inline assembly. The example
supports both armcc and gec inline assembly formats, which are quite different. In the gcc
format the "cc" informs the compiler that the instruction reads or writes the condition
code flags. See the armcc or gcc manuals for further information.

__inline int gmac(int a, int x, int y)
{

int i;

const int mask = 0x80000000;

=Xty
#ifdef _ ARMCC_VERSION /* check for the armcc compiler */
_asm
{
ADDS i, i, i /* double */

EORVS i, mask, i, ASR 31 /* saturate the double */

152 Chapter 5 Efficient C Programming

ADDS a, a, i /* accumulate */
EORVS a, mask, a, ASR 31 /* saturate the accumulate */
}
#endif
#ifdef _ GNUC__ /* check for the gcc compiler */
asm("ADDS %0, %1, %2 Mot=p () :"e" (i) L"r" (i):"cc")s
asm("EORVS %0, %1, %2,ASR#31":"=r" (i):"r" (mask),"r" (i):"cc");
asm("ADDS %0, %1, %2 tohept (a):'rt (a) LMt (i):'ce");
asm("EORVS %0, %1, %2,ASR#31":"=r" (a):"r" (mask),"r" (a):"cc");
#endif
return a;
}

This inlined code reduces the main loop of sat _correlate from 19 instructions to
9 instructions.

ExaMPLE Now suppose that we are using an ARMIE processor with the ARMV5E extensions. We can
5.17 rewrite gmac again so that the compiler uses the new ARMV5E instructions:

__inline int gmac(int a, int x, int y)
{

int i;

__asm

{
SMULBB i, x, y /* multiply */
QDADD a, a, i /* double + saturate + accumulate + saturate */

}

return a;

}

This time the main loop compiles to just six instructions:

sat_correlate_v3
STR rl4,[rl13,#-4]! ; stack 1r

MOV ri2,#0 ;a=0
sat_v3_loop

LDRSH r3,[r0],#2 3 r3 = *(x++)

LDRSH rl4,[r1],#2 3 rld = *(y++)

SUBS r2,r2,#1 ; N-- and set flags

5.13 Portability Issues 153

SMULBB r3,r3,rl4 ; r3 =r3 *rl4
QDADD ri2,ri2,r3 ; a = sat(a+sat(2*r3))

BNE sat v3 loop ; if (N!=0) goto loop
MOV r0,rl12 ; r0 = a
LDR pc,[r13],#4 ; return r0

Other instructions that are not usually available from C include coprocessor
instructions. Example 5.18 shows how to access these.

ExamMpPLE This example writes to coprocessor 15 to flush the instruction cache. You can use similar
5.18 code to access other coprocessor numbers.

void flush_Icache(void)
{
#ifdef _ ARMCC_VERSION /* armcc */
__asm {MCR pl5, 0, 0, c7, c5, 0}
#endif
#ifdef _ GNUC__ /* gcc */
asm ("MCR pl5, 0, r0, c7, c5, 0");
#endif
1

SuMMARY Inline Functions and Assembly

m Use inline functions to declare new operations or primitives not supported by the
C compiler.

®m Use inline assembly to access ARM instructions not supported by the C compiler.
Examples are coprocessor instructions or ARMV5E extensions.

5. 13 PORTABILITY ISSUES

Here is a summary of the issues you may encounter when porting C code to the ARM.

m The char type. On the ARM, char is unsigned rather than signed as for many other
processors. A common problem concerns loops that use a char loop counter i and
the continuation condition i > 0, they become infinite loops. In this situation, armcc

154 Chapter 5 Efficient C Programming

produces a warning of unsigned comparison with zero. You should either use a compiler
option to make char signed or change loop counters to type int.

m The int type. Some older architectures use a 16-bit int, which may cause problems
when moving to ARM’s 32-bit int type although this is rare nowadays. Note that
expressions are promoted to an int type before evaluation. Thereforeif i = -0x1000,
the expression i == 0xF000 is true on a 16-bit machine but false on a 32- bit machine.

® Unaligned data pointers. Some processors support the loading of short and int typed
values from unaligned addresses. A C program may manipulate pointers directly so
that they become unaligned, for example, by casting a char * to an int *. ARM
architectures up to ARMV5TE do not support unaligned pointers. To detect them,
run the program on an ARM with an alignment checking trap. For example, you can
configure the ARM720T to data abort on an unaligned access.

® Endian assumptions. C code may make assumptions about the endianness of a memory
system, for example, by casting a char * to an int *. If you configure the ARM for
the same endianness the code is expecting, then there is no issue. Otherwise, you must
remove endian-dependent code sequences and replace them by endian-independent
ones. See Section 5.9 for more details.

m Function prototyping. The armcc compiler passes arguments narrow, that is, reduced
to the range of the argument type. If functions are not prototyped correctly, then the
function may return the wrong answer. Other compilers that pass arguments wide may
give the correct answer even if the function prototype is incorrect. Always use ANSI
prototypes.

m Use of bit-fields. The layout of bits within a bit-field is implementation and endian
dependent. If C code assumes that bits are laid out in a certain order, then the code is
not portable.

m Use of enumerations. Although enum is portable, different compilers allocate different
numbers of bytes to an enum. The gcc compiler will always allocate four bytes to an enum
type. The armcc compiler will only allocate one byte if the enum takes only eight-bit
values. Therefore you can’t cross-link code and libraries between different compilers if
you use enums in an API structure.

m [nline assembly. Using inline assembly in C code reduces portability between
architectures. You should separate any inline assembly into small inlined functions
that can easily be replaced. It is also useful to supply reference, plain C implementations
of these functions that can be used on other architectures, where this is possible.

m Thevolatile keyword. Use the volatile keyword on the type definitions of ARM
memory-mapped peripheral locations. This keyword prevents the compiler from opti-
mizing away the memory access. It also ensures that the compiler generates a data access
of the correct type. For example, if you define a memory location asavolatile short
type, then the compiler will access it using 16-bit load and store instructions LDRSH
and STRH.

5.14 Summary 155

5.14 SUMMARY

By writing C routines in a certain style, you can help the C compiler to generate faster
ARM code. Performance-critical applications often contain a few routines that dominate
the performance profile; concentrate on rewriting these routines using the guidelines of
this chapter.

Here are the key performance points we covered:

m Use the signed and unsigned int types for local variables, function arguments, and
return values. This avoids casts and uses the ARM’s native 32-bit data processing
instructions efficiently.

®m The most efficient form of loop is a do-whi Te loop that counts down to zero.
m Unroll important loops to reduce the loop overhead.

® Do not rely on the compiler to optimize away repeated memory accesses. Pointer
aliasing often prevents this.

m Try to limit functions to four arguments. Functions are faster to call if their arguments
are held in registers.

m Lay structures out in increasing order of element size, especially when compiling for
Thumb.

®m Don’t use bit-fields. Use masks and logical operations instead.
® Avoid divisions. Use multiplications by reciprocals instead.
B Avoid unaligned data. Use the char * pointer type if the data could be unaligned.

m Use the inline assembler in the C compiler to access instructions or optimizations that
the C compiler does not support.

I
s
f SRR B

e T,

