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Abstract 
 
This tutorial paper presents some 
optimisation techniques for 
programming with ARM processors, 
addressing both memory (footprint) 
and execution time optimisation. For 
purposes of illustration, the ARM7TDMI 
is chosen as a representative of the 
ARM family. The 32-bit ARM 
instruction set is chosen as the vehicle 
to convey various optimisation 
techniques while programming 
references to the 16-bit Thumb 
instruction set are minimal. 
 
The tutorial does not assume prior 
knowledge of the ARM architecture. 
Experience in programming with any 
RISC assembly language makes 
understanding easier, though. 
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Introduction 
 
From being the first commercial 
implementation of RISC architecture, 
the ARM processor family has come a 
long way over the past decade in 
becoming the primary choice for low-
power (yet powerful) embedded 
applications. 
 
ARM follows the standard load-store 
(read as ‘no memory-memory 
operations’) and fixed-length (not 

necessarily single-cycle) instruction 
architecture commonly seen in all 
RISC processors. It uses an instruction 
pipeline to improve the processor 
performance. 
 
Since pure RISC implementations are 
prone to induce program size inflation, 
the ARM designers chose to borrow a 
few CISC concepts in carefully chosen 
areas.  For instance, multiple load / 
store, stack addressing and auto-
indexing are all new to the RISC 
philosophy. At the same time, a few 
RISC concepts were left out of the 
architecture for power, die-size and 
performance considerations. For 
instance, register-files and single cycle 
execution have been dropped off the 
ARM architecture. 
 
For the footprint conscious system 
designers and developers, the ARM 
architects provided a novel solution by 
way of a restricted 16-bit instruction 
set (as against the standard 32-bit) 
known as ‘Thumb’. While a 50% 
reduction program size over ARM 
instruction set may not be feasible, the 
gains are seldom less than 30%. 
 
These novel designs in the ARM 
architecture resulted in demonstrated 
gains such as die-size reduction, low 
gate-complexity, high MIPS/watt and 
increased code density. 
 
 

The ARM architecture 
 
To write efficient programs, a 
thorough understanding of the target 
processor architecture is a 
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prerequisite. As shall be seen in the 
course of the tutorial, even the best of 
the compilers have their limitations. 
There is always scope for improvement 
in the code that they generate, for 
they are tools meant for generic use. 
They know very little (if at all) of the 
specific program instance to be 
compiled. Only the programmer1 
knows his program best – and hence 
stands the best chance of converting it 
into code that is most optimised for 
the target processor, provided its 
architecture is well understood. With 
this as the motivation, let us take a 
quick tour of the ARM architecture. 

Building blocks 
An ARM processor is made up of the 
following blocks: 

o The register bank – contains 37 
registers2 visible to the 
programmer 

o The barrel shifter – for shifting 
and rotating data 

o The ALU 
o The instruction decoder 
o The control logic – for 

generating necessary signals 
such as memory-read/write  

o The address and data registers 
- to serve as latches (these are 
not ‘programmable’) 

o The CP15 – ARM system control 
coprocessor which serves, 
among other things, as an MMU 
and cache controller 

 
Some of these blocks are of direct 
interest to the programmer and would 
be discussed in greater detail later. 

Pipelined execution 
The ARM architecture has a 3-stage3 
instruction pipeline for improving the 

                                           
1 Though referred to only as a male - purely for 
writing convenience, the author acknowledges 
many a fine female programmer, right since the 
days of Lady Ada. 
2 20 of these registers are banked and are not 
directly visible to the programmer 

processor performance and utilisation 
of its functional units. 
 

I#       
1 F D E    
       
2  F D E   
       
3   F D E  
       
4    F D E 
       
 Cycles (time) -> 

Fig.1 – steady state ARM pipeline 
 

F: Fetch D: Decode E: Execute 
In the fetch stage, the instruction is 
brought into the pipeline from memory 
(cache / ROM / RAM). 
 
In the decode stage, the instruction is 
decoded and control signals are made 
ready for activities such as fetching 
the next-but-one instruction and 
memory address calculation. 
 
In the execute stage, the instruction 
takes effect, primarily in the form 
modification to one or more of the 
registers (even in the case of a 
load/store instruction as memory 
interaction is through the invisible 
address and data latch registers). 
 
Fig.1 depicts an ideal case, steady 
state scenario for the ARM pipeline, 
where in each instruction takes exactly 
three cycles to complete (i.e., each 
stage of the instruction needs exactly 
one cycle). For example, consider a 
simple ‘add’ instruction: 
 
ADD r0, r0, r1 ; r0 = r0 + r1 
 
This instruction goes through the 
following stages: 
 
1. Fetch the instruction from 

memory 
2. Decode the instruction and 

identify that it is an ADD 

                                                          
3 Since ARM8, pipelining schemes other than the 
simple “fetch-decode-execute” have been 
implemented 
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instruction (of type register-
register) 

3. Pass the current values of the 
operand registers (r0 and r1) to 
the ALU, obtain their sum and 
store it in the destination register 
(r0) 

 
However, this need not always be the 
case. For example, consider the case 
of a ‘load’ instruction: 
 
LDR r0, [r1], #0 ; r0 = *r1 
 
This instruction goes through the 
following stages: 
 
1. Fetch the instruction from 

memory 
2. Decode the instruction and 

identify that it is an LDR 
instruction 

3. Compute the memory address 
which contains the data to be 
loaded, using the base register 
(r1) and offset (#0) 

4. Fetch the data word from memory 
into the data latch register 

5. Transfer the data word from the 
latch register to the destination 
register (r0) 

 
It can be seen that ‘add’ takes 1-cycle 
for its ‘execute’ stage whereas ‘load’ 
needs 3-cycles for the same (shown in 
a grey shade). See also, fig.2. 
 
The ARM instruction set designers 
have made good use of this extra 
latency by adding auto-indexing 
capability to ‘load’/‘store’ instructions. 
Since the ALU and barrel-shifter would 
otherwise be idle during the data-word 
cycle (#4) of the ‘execute’ stage, they 
can be used to add an offset (index) to 
the base register. This feature is 
frequently used in the programs 
illustrated in this paper. 
 
PC runs ahead! If instruction #1 in 
fig.1 were to refer to PC, it would find 
that the register value is not the same 
as the instruction address. This is 

understandable because #1 would 
‘see’ the value of PC in its ‘execute’ 
stage, by which time/cycle the PC has 
been incremented twice (for fetching  
#2 and #3). Thus, PC runs ahead of 
the current instruction and holds the 
address of the next but one 
instruction. Assembly language 
programmers must factor this while 
directly accessing the PC value. 
 
Pipeline stall: Instructions such as 
load/store that take multiple cycles to 
complete the ‘execute’ stage adversely 
affect the pipeline throughput. This is 
due to the fact that such instructions 
occupy the processor functional units 
for more than one cycle in the 
‘execute’ stage, thus stopping the 
progress of subsequent instructions in 
the pipeline. This condition is 
described as a stall in the pipeline. 
 
I#          
1 F D E       
          
2  F D E1 E2 E3 load  
          
3   F   D E   
          
4    F   D E  
          
5       F D E 

Fig.2 – ARM pipeline with stalls 
 
Fig.2 depicts a stall condition when a 
‘load’ (#2) is mixed with simple 
instructions such as ‘add’ and ‘sub’. 
‘En’ stands for cycle-#n in the 
execution stage of the load instruction 
described in detail earlier. 
 
The decode stage of the subsequent 
instruction (#3) cannot happen along 
with E1 since the decode logic is 
occupied for generating data-fetch 
related control signals. 
 
Instruction#3 cannot enter its decode 
stage along with E2 either, but for a 
different reason altogether. For even if 
it were allowed, the control signals 
generated cannot be used in the 
immediate next cycle because of E3 
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being in progress. Another way to view 
this is to understand that during E2, 
the control logic was busy generating 
signals for transferring data from the 
latch register to its destination in the 
register bank. 
 
For obvious reasons, instruction #4 
also experiences the effects of this 
stall. 
 
Pipeline breaks: Another throughput 
limiting condition arises when a branch 
instruction enters the pipeline. 
 
 
 
 I#         
 1 F D E1 E2 E3 branch  
          
 2  F D E     
          
 3   F D E    
          
 4    F D E   
          
 5     F D E  

Fig.3 – ARM pipeline with a branch 
 
As shown in fig.3, a branch instruction 
(#1) takes three cycles in its ‘execute’ 
stage of the pipeline. This view holds 
both for unconditional and condition-
satisfied branch instructions. 
 
In E1, the branch target address is 
computed and fed to the addressing 
logic. In E2, if a ‘branch and link’ has 
been requested, the link register is 
updated with the return address. 
During the same time, the branch 
target instruction is fetched into the 
pipeline. In E34, as the pipeline 
continues to be filled, the link register 
is adjusted to offset the PC-run-ahead 
effect. 
 
Instructions #2 and #3 (which entered 
the pipeline as #1 was still in its 

                                           
4 E3’s primary purpose is to generate control 
signals for fetching instruction #5. Then on, the 
pipeline is back to steady state. 

decode / execute stage) are discarded 
without getting executed. 
 
Thus, branch instructions impose a 
significant overhead and disrupt the 
smooth flow in the pipeline. This is not 
to say that branches should not be 
used (for it is impractical), but only to 
emphasise the fact that knowledge of 
the pipeline behaviour guides a better 
program design, which leads to lesser 
number of branches. 
 

ARM instruction set 
 
The ARM instruction set can be 
organized into the following broad 
categories5: 

1. Data transfer instructions 
2. Data processing instructions 
3. Branch instructions 
4. Coprocessor instructions 
5. Miscellaneous instructions 

 
The purpose of this tutorial is served 
better if, instead of exhaustively listing 
all the instructions, the most 
frequently used ones are explained in 
the context of common programming 
tasks. 
 
 

ARM assembly examples 

Simple arithmetic 
 
int a, b, c; 
 
Say, variables a, b and c are in 
registers r0, r1 and r2 respectively. 
 
Addition:  
a = b + c; 
ADD r0, r1, r2 ; r0 = r1 + r2 
 
a += b; 
ADD r0, r0, r1 
 

                                           
5 This categorisation is not from the instruction 
set design viewpoint but only from that of an 
assembly programmer. 
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Subtraction: 
a = b – c; 
SUB r0, r1, r2 ; r0 = r1 – r2 
 
a -= b; 
SUB r0, r0, r1 
 
a = 25 – b; 
RSB r0, r1, #25 ; r0 = 25 – r1 
; RSB = reverse subtract 
 
Multiplication: 
a = b * c; 
MUL r0, r1, r2 ; r0 = r1 * r2 
 
a *= b; 
MUL r0, r0, r1 ; illegal ! 

 
MUL cannot be used with the same 
register for the multiplicand and the 
product. In practice, this restriction 
does not pose a significant handicap as 
multiplication is commutative. The 
instruction can simply be re-written 
as: 
 
MUL r0, r1, r0 ; r0 = r1 * r0 
 
Multiply and accumulate: 
a += b * c; 
MLA r0, r1, r2, r0 
 ; r0 = r1 * r2 + r0 

 

Conditional execution – a 
digression 
 
Before going through any further 
instructions, let us take a quick look at 
conditional execution – arguably the 
most powerful feature in the ARM 
instruction set. 
 
Every single ARM instruction can be 
executed conditionally. In fact, every 
single ARM instruction is executed 
conditionally. To achieve this, the 
instruction set designers have set 
aside 4-MSbits out of the 32-bit 
instruction word for specifying a 
condition code. This condition code is 
related to the status of four flags in 
the CPSR (current program status 

register) – Negative, Zero, Carry, 
oVerflow. Some of these codes are: 
 
code description condition 
MI minus N is set 
EQ equals [to zero] Z is set 
LO unsigned lower C is clear 
VC no overflow V is clear 
 
These two letter condition codes are to 
be suffixed to an instruction mnemonic 
to affect the desired conditional 
execution. 
 
Now, if such were indeed the case, 
how is it that the arithmetic examples 
listed earlier used no such suffixes? 
The answer lies in the default condition 
code – AL (always) which implies 
execution irrespective of the condition 
flags’ status. The net effect is one of 
unconditional execution! The previous 
examples could as well have been 
written as: 
 
ADDAL r0, r1, r2 ; r0 = r1 + r2 
SUBAL r0, r1, r2 ; r0 = r1 – r2 
MULAL r0, r0, r1 ; illegal ;^) 
 
However, for the sake of readability, 
AL is better left unspecified. 
 
While the 15 condition codes6 alone 
lend a lot of utility to the ARM 
instruction set, the flexibility allowed in 
setting the CPSR flags (N, Z, C, V) 
combined with persistence of those 
flag values (until further modification) 
makes conditional execution all the 
more powerful. As a rule: 
 
An instruction can be conditionally 
executed, based on the CPSR flags set 
in a previous (already executed) 
instruction after zero or more 
intermediate instructions that have not 
modified the flags. 
 
This implies that unlike instructions of 
many other processors, most ARM 

                                           
6 Of the 16 possible values, the code ‘1111’ 
(binary) is reserved. 
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instructions have a choice of not 
disturbing the CPSR flags. By default, 
but for a few instructions such as CMP 
(compare) and TST (test), ARM 
instructions do not modify the flags. In 
order to affect such modification, the 
letter ‘S’ must be suffixed to 
instruction mnemonics. 
 
Armed with this knowledge of 
conditional execution, let us move 
ahead with further code sequences 
and programming examples. 
 

Data processing 
 
Moving data: 
a = b; 
MOV r0, r1 ; r0 = r1 
 
a = b << 5; 
MOVS r0, r1, LSL #5 
 ; r0 = r1 << 5 
 ; ‘S’ forces flags update 
 
a = ~b; 
MVN r0, r1 ; r0 = ~r1 

 
Logical operations: 
a = b | c; 
ORR r0, r1, r2 ; r0 = r1 | r2 
 
a = b & ~c; 
BIC r0, r1, r2 ; r0 = r1 &~r2 
 ; BIC = bit clear 
 
Comparators: 
(a </>/==/<=/>= b); 
CMP r0, r1 
; CMP updates CPSR flags based 
; on the result of ‘r0 – r1’ 
 
if (a > 13) 

a = b << c; 
CMP r0, #13 ; r0 - 13  
MOVGT r0, r1, LSL r2 
 ; GT: greater than 
 
(a == b); 
TEQ r0, r1 
; TEQ updates CPSR flags based 
; on the result of ‘r0 ^ r1’ 

 
if (a == 13) 
 if (b == 12) 
  c = c & 74; 
TEQ r0, #13 
TEQEQ r1, #12 
ANDEQ r2, r2, #74 

 

Memory access 
 
Let us assume the following 
definitions: 
 
int *pa = &a, *pb = &b; 
 
And also that ‘pa’ and ‘pb’ are held in 
r3 and r4 respectively. 
 
Loads: 
b = *pa; 
LDR r1, [r3] ; r1 = *r3 
 
c = *(pb + 1); 
LDR r2, [r4, #4] 
 ; r2 = *(r4 + 4) 
 ; sizeof(int) = 4 
 ; pre-indexing 
 
c = *pb++; 
LDR r2, [r4], #4; 
 ; r2 = *r4, r4 += 4 
 ; auto (post) indexing 
 
c = *++pb; 
LDR r2, [r4, #4]! 
 ; r2 = *(r4 + 4), r4 += 4 
 ; auto (pre) indexing 
 ; ‘!’ to update index r4 
 
Stores: 
*pb = a; 
STR r0, [r4] ; *r4 = r0 
 
pa[1] = c; 
STR r2, [r3, #4] 
; *(r3+4) = r2 
 
*pa++ = c; 
STR r2, [r3], #4 
 ; *r3 = r2, r3 += 4 
 
*++pa = c; 
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STR r2, [r3, #4]! 
 ; *(r3 + 4) = r2, r3 += 4 
 

Branching 
Unconditional branch: 
goto label_1; 
B label_1 
 ; |label_1 – PC| <= 32MB  

 
Function call: 
foo(); 
BL _foo 
; branch and link(L) 
; r14 = return addr, goto _foo 

 
Conditional branches: 
if (!a) 
 goto label_1; 
TEQ r0, #0 
BEQ label_1 
 
if (b & c) 
 foo(); 
TST r1, r2 
BLNE _foo 
; TST is similar to ANDS, but 
; does not modify any register 
 

Miscellaneous 
 
No Operation: 
NOP ; typically a ‘MOV r0, r0’ 
 
Load an address: 
pa = &a; 
ADR r3, a 
; ‘a’ being the label for the 
; variable’s storage 
; 
; ADR is a pseudo-instruction 
; that translates to a ADD/SUB 
; PC/register relative address 

 
Swap: 
c = *ap; *ap = b; b = c; 
/* swap ‘*ap’ and ‘b’ */ 
SWP r1, r1, [r3] 
; SWP swaps data between a  
; register and a memory location 
 

 

Optimisation techniques 
 
Here on, program fragments in C are listed alongside their equivalent ARM assembly 
code. Concepts specific to the ARM instruction set and relevant optimization 
techniques are introduced at appropriate places. 
 
Note: 
All ARM assemblers by convention use r13 as the stack pointer. The architecture 
supports r14 as the link register. 
 
A simple search example: 
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#include <stdio.h> 
 
int main(void) 
{ 
 int a[10] = {7, 6, 4, 5, 5, 1, 3, 2, 9, 8}; 
 int i; 
 int s = 4; 
  
 for (i = 0; i < 10; i++) 
  if (s == a[i]) 
   break; 
  
 if (i >= 10) 
  return 1;  /* 1 => not found */ 
 else 
  return 0;  /* 0 => found */ 
} 

 
This C-program hand-translated to assembly, without any optimisation may be 
similar to the listing given below. 
 
 

1 

 

 
 
2 

 

3 
 

4 

 .text 
; Program labels are terminated by ‘:’ for readability 
; Stack ‘grows’ downward, caller saves registers. 
 
; Make 48bytes of space for a[], i and s on the stack 
 
ADD r13, r13, #-48 ; r13 is SP 
; a[]: (sp + 12) .. (sp + 48), i: (sp + 8), s: (sp + 4) 
 
; Assume that a run-time library routine initialises a[] and s with 
; the required values 
 
MOV r0, #0  ;  
STR r0, [r13, #8] ; for (i = 0; ...) 
 
loop_start: 
; loop entry condition check 
LDR r0, [r13, #8] ; load ‘i’ 
CMP r0, #10  ; for (...; i < 10; ...) 
BGE loop_end 
 
LDR r1, [r13, #4]  ; load ‘s’ (already initialised to 4) 
 
; get a[i] 
MOV r2, #4  ; sizeof(a[i]) 
MUL r3, r0, r2  ; r3 = i * 4 (serves as an index in a[i]) 
ADD r3, r3, #12  ; adjust r3 relative to base of a[] 
LDR r4, [r13, r3] ; r4 = *(r13 + r3) i.e., a[i] 
 
TEQ r1, r4 
BEQ loop_end  ; if (s == a[i]) break; 
 
ADD r0, r0, #1  ; for (...; i++) 
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5 
 

STR r0, [r13, #8] ; update i 
 
B loop_start  ; next iteration 
 
loop_end: 
LDR r0, [r13, #8] ; load ‘i’ 
CMP r0, #10 
BGE return_1  ; if (i >= 10) 
 
MOV r0, #0  ; by convention, r0 holds the return-value 
B prog_end 
 
return_1: 
MOV r0, #1 
 
prog_end: 
ADD r13, r13, #48 ; pop the function frame off the stack 
MOV r15, r14  ; load LR into PC (r15) [causing a return] 

 
Albeit deliberately under-optimised, this assembly listing gives scope for non-trivial 
optimisations. But firstly, let us remove some glaring redundancies. 
 
Unnecessary loads/stores: 
The variables ‘i’ and ‘s’ need not be stored on the stack. Registers can be used 
instead, to server their purpose. With this simple change, we save: 

o 8-bytes on the stack  (see grey-shaded #1) 
o 20-bytes (5-instructions) in the program space (see grey-shaded #2-5) 
o 3 of the load/store instructions off the loop, which in the worst-case scenario 

(of the element being searched for being the last one in the array) saves 
them from being executed 9 times (i.e., a minimum of 126-cycles7) 

 
The compiler is good at tasks such as register allocation. But before we look at a 
compiler generate code, let us attempt utilising the knowledge we have acquired of 
the ARM instruction set. 
 
Loop invariants: 
 
‘r2’ is initialised to ‘#4’ in the loop, but never modified. So, the initialisation can be 
moved out of the loop, say ahead of ‘loop_start’. This, in the worst-case scenario 
saves it from being executed 9 times (i.e., a minimum of 27-cycles) 
 
Conditional execution: 
 

o The ‘BEQ’ ahead of the grey-shaded region #4 can be eliminated by making 
the succeeding ‘ADD’ and ‘B’ conditional on ‘NE’ (saving of 4-bytes and a 
worst-case 45-cycles) 

o The ‘BGE’ and ‘MOV’ after the grey-shaded region #5 can be replaced with a 
single ‘MOVLT’ (saving of 4-bytes) 

o The unconditional branch to ‘prog_end’ can be removed if the succeeding 
‘MOV’ instruction is replaced with a ‘MOVGE’ (saving of 4-bytes) 

 
Let us re-visit the assembly listing after incorporating these optimisations. 

                                           
7 Four cycles per store and five per load 
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  .text 

 
; Stack ‘grows’ downward, caller saves registers. 
 
; Make 40bytes of space for a[] on the stack 
 
ADD r13, r13, #-40 
; a[]: (sp + 4) .. (sp + 40) 
 
; Assume that a run-time library routine initialises a[] with 
; the required values 
 
MOV r0, #0  ; for (i = 0; ...) 
MOV r1, #4  ; s = 4 
 
MOV r2, #4  ; sizeof(a[i]) 
 
loop_start: 
; loop entry condition check 
CMP r0, #10  ; for (...; i < 10; ...) 
BGE loop_end 
 
; get a[i] 
MUL r3, r0, r2  ; r3 = i * 4 (serves as an index in a[i]) 
ADD r3, r3, #4  ; adjust r3 relative to base of a[] 
LDR r4, [r13, r3] ; r4 = *(r13 + r3) i.e., a[i] 
 
TEQ r1, r4  ; s == a[i] ? 
 
ADDNE r0, r0, #1  ; for (...; i++) (if ‘s’ not found) 
BNE loop_start  ; next iteration (if ‘s’ not found) 
 
loop_end: 
CMP r0, #10 
 
MOVLT r0, #0  ; if (i < 10) ... 
MOVGE r0, #1  ; else 
 
prog_end: 
ADD r13, r13, #40 ; pop the function frame off the stack 
MOV r15, r14  ; load LR into PC (r15) [causing a return] 

 
This seems to be as good as it can get. Yet, there is one little trick left – eliminating 
the multiplication – to be tried out. 
 
Shift to multiply: 
 
We have already seen the second operand of ARM load/store instructions being used 
for auto-indexing. It can also be used to specify a register with an optional shift as 
follows: 
 
LDR/STR{cond} Rd, [Rn, {-}Rm{,shift}]{!} ; pre-indexing 
-OR- 
LDR/STR{cond} Rd, Rn, [{-}Rm{,shift}] ; post-indexing 
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where shift can be one of: 
ASR #n arithmetic shift right n bits; n = [1..32] 
LSL #n logical shift left n bits; n = [0..31] 
LSR #n logical shift right n bits; n = [1..32] 
ROR #n rotate right n bits; n = [1..31] 
RRX  rotate right one bit with carry (extend) 
 
The multiplication in the listing can now be replaced with a simple left shift: 
 
  .text 

 
; Stack ‘grows’ downward, caller saves registers. 
 
; Make 40bytes of space for a[] on the stack 
 
ADD r13, r13, #-40 
; a[]: (sp + 4) .. (sp + 40) 
 
; Assume that a run-time library routine initialises a[] with 
; the required values 
 
MOV r0, #0  ; for (i = 0; ...) 
MOV r1, #4  ; s = 4 
 
ADD r2, r13, #4  ; r2 = &a[0] 
 
loop_start: 
; loop entry condition check 
CMP r0, #10  ; for (...; i < 10; ...) 
BGE loop_end 
 
; get a[i] 
LDR r3, [r2, r0, LSL #2] ; r3 = *(r2 + r0*4) i.e., a[i] 
 
TEQ r1, r3  ; s == a[i] ? 
 
ADDNE r0, r0, #1  ; for (...; i++) (if ‘s’ not found) 
BNE loop_start  ; next iteration (if ‘s’ not found) 
 
loop_end: 
CMP r0, #10 
 
MOVLT r0, #0  ; if (i < 10) ... 
MOVGE r0, #1  ; else 
 
prog_end: 
ADD r13, r13, #40 ; pop the function frame off the stack 
MOV r15, r14  ; load LR into PC (r15) [causing a return] 

 
After a string of optimisations, we achieved a program length of 15-words (as 
compared to the original size of 24-words). We have also been able to significantly 
reduce the execution time. This is better than the code generated by an optimising 
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compiler8 (even after making an allowance for ‘a[]’ initialization code). This 
improvement can primarily be attributed to our understanding of the application on 
hand. For instance, it is difficult to imagine a compiler generate the ‘TEQ, ADDNE, 
BNE’ sequence for this program! 
 
Caution! You cannot replace a compiler: 
 
It is very tempting to hand code a program in assembly as the returns are rewarding 
enough, especially in the case of small programs. But any non-trivial program should 
first be run through a respectable compiler. Further optimisation can then be 
attempted on the generated assembly code. Not only does this cut the development 
effort by an order of magnitude but also greatly reduces the chances of defects 
creeping in due to oversight and weariness that sets on the programmer (on the 
second sleepless night when the coffee maker runs out of the refill). For, modern 
compilers incorporate many advanced optimisation techniques and are good at 
applying them tirelessly, over and over, to large chunks of code. 
 
To explore ARM optmisation further, let us now move on to ‘block copy’ - an example 
no ARM programming tutorial can do without: 
 
An optimised bcopy: 
 
void bcopy(char *to, char *from, unsigned int nbytes) 
{ 
 while (nbytes--) 
  *to++ = *from++; 
} 

 
Translation: 
 
_bcopy: 
 
; by procedure call convention, the arguments to this function are  
; passed in r0, r1, r2 
 
TEQ r2, #0  ; nbytes == 0 ? 
BEQ bcopy_end 
 
bcopy_start: 
SUB r2, r2, #1  ; nbytes-- 
 
; *to++ = *from++ 
LDRB r3, [r1], #1 ; LDRB/STRB loads/stores a byte 
STRB r3, [r0], #1 ; auto indexing for post increment (++) 
 
B bcopy_start  ; next iteration 
 
bcopy_end: 
MOV r15, r14  ; PC = LR i.e., return 

 

                                           
8 I make this claim after verifying the ‘release’ mode code generated by two popular compilers for ARM 
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There seems to be hardly any scope for optimization at the outset. Yet, in a task that 
involves a condition check, we hardly seem to be using any conditional execution. 
This gives us a clue for optimisation. 
 
Optimisation-1: 
_bcopy: 
 
; rewriting ‘(nbytes--)’ as ‘(--nbytes >= 0)’, we get: 
SUBS  r2, r2, #1  ; set CPSR flags on --nbytes 
 
LDRPLB r3, [r1], #1 ; PL: condition code for ‘PLus’ 
STRPLB r3, [r0], #1 ; ‘PLus’ stands for ‘positive or zero’ 
BPL  _bcopy  ; next iteration 
 
MOV  r15, r14  ; return 

 
We were able to save 2 instructions out of 7 and bettered a compiler, again9. 
 
Now let us move our focus from size to performance, as a 30% reduction does not 
really mean much when the original footprint is only 28-bytes.  
 
bcopy’s execution profile: 
 
As obvious from the listing, bcopy spends its entire lifetime in a loop. The branch 
instruction contributes 25% to the size of the loop. More importantly, it takes up 
30% of the execution time (5-cycles out of every 17-cycles). This overhead is 
unacceptable to any non-trivial and performance sensitive application. This 
understanding drives our further attempts at optimisation. 
 
We apply the popular loop-unrolling technique to reduce the percentage of time 
taken by the branch instruction as compared to overall loop time.  
 
Optimisation-2: 
 
_bcopy: 
 
; For simplicity of illustration, assume ‘nbytes’ is a multiple of 4 
 
; Unrolling the loop, to copy four bytes per iteration, we get: 
 
SUBS  r2, r2, #4 
 
LDRPLB r3, [r1], #1 ; copy byte-1 
STRPLB r3, [r0], #1 
 
LDRPLB r3, [r1], #1 ; copy byte-2 
STRPLB r3, [r0], #1 
 
LDRPLB r3, [r1], #1 ; copy byte-3 
STRPLB r3, [r0], #1 
 

                                           
9 Yes. With O2 optimisation for space in ‘release’ mode! 
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LDRPLB r3, [r1], #1 ; copy byte-4 
STRPLB r3, [r0], #1 
 
BPL  _bcopy  ; next iteration 
 
MOV  r15, r14  ; return 

By adding 6 more instructions, we have been able to reduce the share of ‘BPL’ from 
30% to 14% (5 out of 44-cycles). Yet, this gain is highly deceptive. For we could as 
well have used a load/store-word combination in place of the four load/store-byte 
instructions, thereby increasing the effective throughput of the original loop without 
incurring a size/cycle penalty. That way we only need 17-cycles to transfer four 
bytes (in spite of ‘BPL’ usurping 30% of the cycles)! 
 
Caution! Each nail needs a different hit10 
 
The de-optimisation seen above is due to a blind application of the ‘loop unrolling’ 
technique. And such cases are not unique to this technique alone. Each technique 
needs to be tailored to the task on hand. 
 
Optimisation-3: 
 
_bcopy: 
 
; For simplicity of illustration, assume ‘nbytes’ is a multiple of 16 
 
; Unrolling the loop, to copy four words per iteration, we get: 
 
SUBS  r2, r2, #16 
 
LDRPL r3, [r1], #4 ; copy word-1 
STRPL r3, [r0], #4 
 
LDRPL r3, [r1], #4 ; copy word-2 
STRPL r3, [r0], #4 
 
LDRPL r3, [r1], #4 ; copy word-3 
STRPL r3, [r0], #4 
 
LDRPL r3, [r1], #4 ; copy word-4 
STRPL r3, [r0], #4 
 
BPL _bcopy  ; next iteration 
 
MOV r15, r14  ; return 

 
With this, the throughput has increased to 16bytes per 44-cycle iteration (a gain of 
600% as compared to the original 1byte per 17-cycle iteration), with ‘BPL’ taking 
14% of the execution time. 

                                           
10 An old saying goes ‘When you have a hammer in the hand...’ 
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Is further optimisation possible? Ignoring unreasonable options such as unrolling the 
word-copy loop many more times, there hardly seems to be any technique left that 
can be used to achieve a significant gain in performance. Well, we will re-visit this 
example if we find one. 

Multiple-load/store instructions – a detour 
 
Consider a subroutine which needs to call other subroutines and also uses all the 
available general-purpose registers for local use. Assuming a ‘callee-saves’ protocol, 
a stack that grows from low to high address and a stack pointer that always pointing 
to the next free word available, the subroutine’s entry and exit code looks similar to 
this: 
 
_foo: 
 
; entry code start 
; save all registers 
; (r0 – r3 need not be saved 
; as are for parameter passing) 
STR r4, [r13], #4 
STR r5, [r13], #4 
STR r6, [r13], #4 
STR r7, [r13], #4 
STR r8, [r13], #4 
STR r9, [r13], #4 
STR r10, [r13], #4 
STR r11, [r13], #4 
STR r12, [r13], #4 
STR r14, [r13], #4 
; entry code ends 

; exit code start 
; restore all registers 
 
LDR r14, [r13, #-4]! 
LDR r12, [r13, #-4]! 
LDR r11, [r13, #-4]! 
LDR r10, [r13, #-4]! 
LDR r9, [r13, #-4]! 
LDR r8, [r13, #-4]! 
LDR r7, [r13, #-4]! 
LDR r6, [r13, #-4]! 
LDR r5, [r13, #-4]! 
LDR r4, [r13, #-4]! 
 
; exit code ends 
 
MOV r15, r14 ; return 
 

 
To a non-ARM RISC programmer, this listing is familiar and normal. For, each and 
every instruction is very much relevant and essential to the task on hand. Only, an 
ARM programmer would simply have written this equivalent code: 
 
_foo: 
 
STMEA  r13!, {r4 – r12, r14} ; entry code 
 
; 
; body of _foo 
; 
 
LDMEA  r13!, {r4 – r12, r15} ; exit code 

 
There is no mysterious magic here. Any non-trivial programming task, whether 
driven by structured, object oriented or functional design approach, involves 
subroutines. And most programming languages use a stack based solution for 
maintaining the activation of records of called (currently active thread) subroutines. 
Given the limited number of registers on any processor, saving and restoring 
registers across subroutine calls is inevitable. The special non-RISC-like ARM 
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instructions seen above (LDM&STM) are an explicit acknowledgement from the ARM 
architecture of the frequency and importance of such multiple-register load/store 
activity. These instructions can be used multiple ways such as: 
 
STMEA & LDMEA: push(store)/pop(load) multiple-registers to/from an ‘empty 
ascending’ stack i.e., the stack pointer points to the next free word on the stack as it 
grows from low to high address. The suffix ‘EA’ can be replaced with a more generic 
mnemonic ‘IA’ (increment after). E.g., STMEA r13!, {r3-r5, r11, LR} 
 
STMFD & LDMFD: By replacing the suffix ‘EA’ with ‘FD’ you get a ‘full descending’ 
stack which is exactly opposite in behaviour to an ‘EA’ stack. ‘FD’ has a semantically 
equivalent name ‘DB’ which stands for ‘decrement before’. E.g., LDMDB r0!, {r1-r10}  
 
Other combinations such as ‘IB’ and ‘DA’ are also possible. 
 
Obviously, these instructions cannot be taking the same number of cycles as an LDR 
or an STR. The real gains are in program space, reduced chances of making coding 
mistakes and enhanced readability. 
 
Optimisation-4: 
 
As you might have guessed by now, the time has come to rejoin the main road and 
revisit the bcopy example. The previous throughput of 16bytes per iteration can now 
be achieved on a smaller footprint by replacing the four pairs of LDRPL/STRPL with a 
single LDMPL/STMPL combination such as: 
 
LDMPL r1!, {r3 – r6} ; load r3-r6 from [r1], advance r1 by 16 bytes 
STMPL r0!, {r3 – r6} ; store r3-r6 starting at [r0], advance r0 
 
The blue print for a high throughput (close to 40byte) bcopy is as follows: 
 
_bcopy: 
 
; For every iteration, attempt to transfer 40bytes. The modulus value 
; remaining (remainder of the division of ‘nbytes’ by 40) should be  
; treated as a separate lesser throughput bcopy loop. Shown here is  
; only the main 40byte throughput loop: 
 
; Unrolling the loop, to copy ten words per iteration, we get: 
SUBS  r2, r2, #40 
 
BMI  copy_rest  ; ‘MI’ stands for minus/negative 
 
LDMPL  r1!, {r3 – r12} ; load r3-r12 from [r1] 
STMPL  r0!, {r3 – r12} ; store the loaded words at [r0] 
 
BPL _bcopy  ; next iteration 
 
; copy the residual bytes 
copy_rest: 
; completed copying 
 
MOV r15, r14  ; return 
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By saving r13 and r14 on the stack before the start of the loop, the throughput can 
be pushed closer to the maximum possible 48bytes per iteration. This is an example 
of how two of ARM’s best features - conditional execution and multiple load-stores 
put together11 improve the program characteristics by an order of magnitude. 
 
 

Thumb – the final footprint solution 
 
Before calling it a day, a brief12 overview of the 16-bit Thumb instruction set would 
be appropriate. All the ARM listings seen earlier used the normal 32-bit ARM 
instructions. However, many embedded systems designers show an inclination to 
trade performance13 for footprint – provided there is an option. Not until the advent 
of ARM did a single processor offer a solution of simultaneously executing both 32-bit 
and 16-bit code with such little overhead (in terms of additional silicon, programming 
complexity and cost). 
 
The Thumb is a 16-bit instruction set architecture that is functionally complete but 
relatively restricted in variety as compared to that of the regular 32-bit ARM 
instruction set. Notable differences include 2-address format, unconditional updation 
of CPSR flags for (almost) all instructions and less flexible ‘second operand’. The 
Thumb architecture is cleanly implemented in silicon by way of including an on-the-
fly instruction de-compressor functional unit in the processor that translates 16-bit 
ARM instructions into their 32-bit equivalents that are understood by the rest of the 
processor. It must be noted though that it is only the instruction length that is 
halved and not the register sizes themselves. As a side effect, the number of usually 
visible registers is reduced by five14. 
 
The programmer is not constrained to use a single instruction set throughout his 
program. Complete freedom is given to freely intermix 32-bit and 16-bit code and 
switch between them using the BX (branch and exchange) instruction. Whenever the 
Thumb is found to be inadequate and restrictive for a particular functionality / 
module / computation, the ARM instruction set can be used as a special case (or the 
other way around, if at certain places the power of 32-bit seems an overkill15). It is 
this flexibility which makes the ARM processor a very attractive option for an 
embedded systems designer / programmer. 
 
Conclusion 
 
This paper made an attempt at introducing the ARM architecture to an embedded 
systems designer / programmer by providing an overview of its functional units and 
instruction set. ARM assembly optimisation techniques were introduced along with a 
couple of examples in a graded exercise like fashion. This being targeted at those 
who are new to the architecture, most fine grain details were left out of this paper 
for fear of losing reader interest. However, the techniques presented herein should 

                                           
11 Chess enthusiasts can liken this to an active Queen-Knight combination 
12 Brief, not because its instruction length being only half as long as its more powerful 32-bit cousin, but 
because of it requiring a completely dedicated tutorial to do justice. 
13 Even in performance critical cases such as an RTOS, the emphasis is usually on predictability and 
bounded response times rather than on searing speed.  
14 r0-r7 known as ‘low’ registers are always visible while the high ‘r8-r12’ are visible only in certain 
instructions in restricted formats. 
15 If the reader wondered why there was a switch between a 2-column and single column mode, the 
answer should now be evident ;^) 
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be sufficient enough to venture into serious software design and programming with 
the ARM processor(s). The references provided towards the end of this paper can be 
used to further hone ARM assembly programming skills. 
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