
© Copyright 2012-2014 Xilinx
.

Voltage Identification (VID) For Virtex-7 Devices

 A KCPSM6 Reference Design for the VC707 Evaluation Board

Ken Chapman

18th March 2014

© Copyright 2012-2014 Xilinx
.

Page 2

Disclaimer

Copyright © 2012-2014, Xilinx, Inc.

This file contains proprietary information of Xilinx, Inc. and is protected under U.S. and international copyright and other intellectual property laws.

Notice of Disclaimer

Xilinx is disclosing this Application Note to you “AS-IS” with no warranty of any kind. This Application Note is one

possible implementation of this feature, application, or standard, and is subject to change without further notice from

Xilinx. You are responsible for obtaining any rights you may require in connection with your use or implementation of

this Application Note. XILINX MAKES NO REPRESENTATIONS OR WARRANTIES, WHETHER EXPRESS OR

IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, IMPLIED WARRANTIES OF

MERCHANTABILITY, NONINFRINGEMENT, OR FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL

XILINX BE LIABLE FOR ANY LOSS OF DATA, LOST PROFITS, OR FOR ANY SPECIAL, INCIDENTAL,

CONSEQUENTIAL, OR INDIRECT DAMAGES ARISING FROM YOUR USE OF THIS APPLICATION NOTE.

© Copyright 2012-2014 Xilinx
.

Page 3

This Document

Hopefully primary focus of this application

note will be if interest to you, but

regardless, it can be seen that the

reference design to accompany the

application note is presented on a VC707

board and includes KCPSM6 and the

UART macros. In fact the design contains

over 1,000 KCPSM6 processors and this

supplement will make it clearer why!

As shown in this overview figure taken

form XAPP555, the principle KCPSM6 is

focused on reading DEVICE_DNA,

implementing PMBus (to control and

monitor power supplies) and UART based

communication with a terminal.

This document is provided as a supplement to XAPP555 ‘Lowering Power using the Voltage Identification Bit’ which can be

obtained from the Xilinx web site…

Use the link inside XAPP555

to download the reference

design source files.

http://www.xilinx.com/support/documentation/application_notes/xapp555-Lowering-Power-Using-VID-Bit.pdf

http://www.xilinx.com/support/documentation/application_notes/xapp555-Lowering-Power-Using-VID-Bit.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp555-Lowering-Power-Using-VID-Bit.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp555-Lowering-Power-Using-VID-Bit.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp555-Lowering-Power-Using-VID-Bit.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp555-Lowering-Power-Using-VID-Bit.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp555-Lowering-Power-Using-VID-Bit.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp555-Lowering-Power-Using-VID-Bit.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp555-Lowering-Power-Using-VID-Bit.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp555-Lowering-Power-Using-VID-Bit.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp555-Lowering-Power-Using-VID-Bit.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp555-Lowering-Power-Using-VID-Bit.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp555-Lowering-Power-Using-VID-Bit.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp555-Lowering-Power-Using-VID-Bit.pdf

© Copyright 2012-2014 Xilinx
.

Page 4

This Document

As will be seen in the remainder of this document, the reference design also includes features that demonstrate the effect that the

‘VID’ technique will have on a design. This involves a set of 1,000 identical ‘PCAST’ Modules that also contain KCPSM6 and the

UART macros. In terms of reuse, these modules show how KCPSM6 could be used for the distributed control and monitoring

of functions within a large device. The main KCPSM6 also implements I2C to control the Si570 Programmable Oscillator on the

board.

One way or another, this design contains and illustrates a variety of ways in which KCPSM6 can be used. Many of the functions

implemented are not directly associated with the ‘VID’ technique or are equally suitable for other applications.

The ‘VID’ Reference Design source files contain full text descriptions of the design as a whole as well as localised descriptions

relating to each section. This document is provided mainly as a pictorial supplement to further aid your understanding of the design

and to facilitate reuse of any sections in your designs. The ‘README.txt’ file provided in the XAPP555 download introduces the

reference design, lists all the source files and the describes how to begin using the design on your VC707 board.

This design is dedicated to the memory of Jeffers Emmanuel.

Thank you for helping me to implement this design.

We all miss you.

© Copyright 2012-2014 Xilinx
.

Page 5

Expanded Overview of Reference Design

Device

DNA
VID

PicoBlaze

(KCPSM6)
UART

User

Terminal

115200

baud

PMBus

I/F

TI Power

Supply

Controller

PWM

Sense

TI Power

Supply

VCCINT

0.9v or 1.0v
UCD9248

XC7V480T

USB/

UART

DIP Switches

TI Power

Supply

Controller

UCD9248

UART

PCASTM

I2C

I/F

VID Override

VID Value

CPU RST

TI Power

Supply

Controller

UCD9248

10-945MHz

Oscillator

Si570

16×

T-flops

PicoBlaze

(KCPSM6)
UART

Rx

UART

Tx

16-bit

LFSR

16-bit

ACC

8-bit

Speed Test

Speed Test

Primer

P
C

A
S

T
M

P
C

A
S

T
M

Chain

Of

‘N’

Modules

Design can monitor

and compute power

consumption of all

supply rails as well

as adjust VCCINT.

Power

Consuming

And

Speed

Test

Modules

The majority of the circuits

operate at 100MHz but the

speed test involves

sweeping the variable

oscillator to determine the

maximum performance of

the 8-bit speed test circuits.

I2C Bus

Multiplexer

PCA9548

All items except ‘User Terminal’ are on the VC707 Board

© Copyright 2012-2014 Xilinx
.

Page 6

Design Facts and Figures: XC7VX485T Device

The BIT file provided (vc707_485t_vid_reference_design.bit) defines a design containing 1,000 PCASTM

occupying the majority of the device. Below are the key facts figures from the implementation reports.
Design Information:

Target Device : xc7vx485t

Target Package : ffg1761

Target Speed : -1

--

 Constraint | Check | Worst Case | Best Case | Timing | Timing

 | | Slack | Achievable | Errors | Score

--

* TS_fast_clk = PERIOD TIMEGRP "fast_clk" 2 | SETUP | -0.123ns| 2.123ns| 127| 6757

 ns HIGH 50% | HOLD | 0.004ns| | 0| 0

--

The speed test circuits were given a 500MHz specification which ISE v13.4 just failed to achieve using the default settings. However, for the purpose

of experimentation using this reference design, all that matters is that the tools have indicated a minimum performance of 471MHz for the ‘speed test’

circuits in a ‘-1C’ device. This is the clock frequency that should en exceeded when running the speed test at 0.9v and 1.0v depending on the ‘VID’

capability of your device.

Design Summary

 Number of occupied Slices: 63,728 out of 75,900 83%

Number of RAMB36E1/FIFO36E1s: 1,002 out of 1,030 97%

 Number of Slice Registers: 214,271 out of 607,200 35%

 Number of Slice LUTs: 199,173 out of 303,600 65%

214,271 flip-flops

199,173 LUTs

~83% Slices occupied

~97% BRAM occupied

Remember that the ‘VID’ process is tiny; the

1,000 PCASTM are to facilitate experiments and

to be representative of the logic of a real design

that almost completely fills the device.

‘VID’ is only applicable to the ‘-1C’ grade. The device on your board may be of a different grade but will still

facilitate experiments that will provide you with power consumption and performance results indicating the

relative effects of operating VCCINT at a lower voltage.

© Copyright 2012-2014 Xilinx
.

Page 7

The VID Process in Action

This screen capture shows the initial output from the reference design covering the actual ‘VID’ process....

Even this simple illustrates a simple

example of what PicoBlaze (KCPSM6) can

implement in less than 50 Slices of logic.

Comprehensive version tracking is built

in to the PicoBlaze solution.

Check that power supplies are accessible

ready for any change.

Read and validate DNA and extract VID bit.

Reduce VCCINT to 0.9v when VID=1.

 (PMBus control of supply)

Hint – The VID is Bit1 of the DVA value. In

this case the least significant hex digit of the

DNA is ‘A’ which is the bit pattern “1010” so

Bit1 is indeed a ‘1’.

© Copyright 2012-2014 Xilinx
.

Page 8

VID Emulation Feature

VID Override VID Value

(1)

ON

1 2 3 4 5 6 7 8

C
P

U
 R

S
T

The Device DNA in your device is unique and fixed (factory programmed) so the VID bit is also fixed in the device that you have on your board. As

a result, the correct response of the VID process will always be to set VCCINT to the same voltage. Whilst this is correct behaviour (as shown on the

previous page) it makes for a boring reference design and limits the value of conducting experiments.

The VID emulation feature allow you to override the actual value of the VID bit in your device and force the process to continue setting VCCINT

supply according to the value you have defined using the DIP switches.

VID Override VID Value

(0)

ON

1 2 3 4 5 6 7 8

C
P

U
 R

S
T

Set the DIP switches and then press the ‘CPU

RST’ button to emulate a power cycle and a

device with different VID bit value.

SW2

SW2

Real DNA and VID bit.

Override

© Copyright 2012-2014 Xilinx
.

Page 9

PCASTM Chain and Static Power

The design tells you how many Power Consuming AND Speed Test

Modules (PCASTM) are contained in the design. The supplied BIT

file contains 1,000 PCASTM in the chain.

The initial status should confirm that all the PCASTM

are in their lowest power state. Whilst there is some

activity associated with the main controller and

distribution of some clock the device is otherwise

close to being in a static state.

The ‘X’ option makes PicoBlaze read all the power supplies and

compute the power consumption of each rail as well as the total

power consumption. Of most interest is the VCCINT supply.

In this example we can see the VCCINT supply has been reduced to

0.9v and the ‘static’ power consumption is 1.171W.

Experiment – Try the device on your board (P) and see what

difference supply voltage (V) makes to static power consumption

by using the ‘VID Override’ feature.

A simple menu of options are then presented and which you can use to conduct your

experiments. PicoBlaze accepts upper or lower case characters.

© Copyright 2012-2014 Xilinx
.

Page 10

Dynamic Power

Use the ‘P’, ‘T’, ‘C’ and ‘A’ options to toggle the enable state of each of the power

consuming features in all the PCASTM as desired. The status command (‘S’) can be used

to confirm the operational state of all PCASTM in the chain.

The descriptions contained in the source

files describe at some length the ways in

which the various power consuming

features can be used to evaluate power

consumption relative to toggle rates.

In comparison with the ‘static’ power consumption of 1.171W shown on the

previous page then this figure indicates an increase of dynamic power

consumption of 0.297W (equivalent to 18.5µW per toggle flip-flop).

Experiments

Try different combinations of features understand more about

toggle rates and the impact on power consumption. For example,

what is the equivalent toggle rate of a 16-bit LFSR counter relative

to 16 toggle flip-flops?

Compare dynamic power consumption at 0.9v and1.0v.

Caution - Do not allow the device to over heat!

In this case 1000 × 16 = 16,000 flip-flops

will now be toggling with a 100MHz clock

and increase the power consumption.

© Copyright 2012-2014 Xilinx
.

Page 11

Speed Test

Experiments

How fast is the device on your board (P) ?

How does operating at 0.9v and1.0v effect the maximum performance (V) ?

How does temperature effect performance (T) ?

 (Hint – Increase dynamic power to warm the device up)

During the speed test, PicoBlaze (KCPSM6) controls the I2C bus

multiplexer (PCA9528) on the board and establishes communication

with the Si570 programmable oscillator which it then controls.

Starting at 300MHz and increasing in 1MHz

increments, PicoBlaze performs a speed test at

each clock frequency and reports the result. When

eventually the frequency is too high for one or more

of the speed testing circuits to operate correctly the

test run ends. In this example the design was good

at all frequencies up to 596MHz.

For the BIT file provided, the minimum

performance for the ‘speed test’ circuits in a ‘-

1C’ device was reported by the

implementation tools to be 471MHz (see

page 5). This result clearly shows that this

worst case figure was exceeded and in this

case the VID capable device was operating

with a VCCINT set to 0.9v.

Remember that lowering the supply voltage should

lower performance and decrease power

consumption (static and dynamic). The ‘VID’ scheme

is there to reduce performance level that exceeds

the worst case specification of a ‘-1C’ device.

© Copyright 2012-2014 Xilinx
.

Page 12

Reading Device DNA

DNA_PORT

DOUT DIN

READ

SHIFT

CLK
dna_clk

dna_shift

dna_read

dna_din dna_dout

address

instruction bram_enable

clk

interrupt

sleep

reset

interrupt_ack

port_id

out_port

in_port

k_write_strobe

read_strobe

write_strobe

kcpsm6

CE [2]
[0]

[1]

[2]

[3]

port_id

[0]

For clarity, this diagram only shows the connections directly associated with interfacing the DNA_PORT to KCPSM6.

DOUT DIN

0 1 55 56

READ=1 is used to load the shift register with the unique 57-bit

‘DNA’ value. ‘VID’ is Bit1.

 Bit1 = '0‘ - Device must be operated at VCCINT = 1.0v.

 Bit1 = '1' - Device can be operated at VCCINT = 0.9v or 1.0v.

READ

SHIFT=1

The DNA_PORT is a loadable 57-bit shift register.

KCPSM6 sets the controls and pulses the CLK as required.

KCPSM6 injects a 7-bit pattern

"1011001" which extends the value

read to 64-bits. The known 7-bit

pattern is then used to confirm that

the read process worked correctly

before extracting Bit1.

clk50

Input Port

05 – DNA_data_port

Constant Output Port

4 – DNA_control_port

101

clk50

[2:0]
clk50

© Copyright 2012-2014 Xilinx
.

Page 13

PMBus Control and Monitor

pmbus_clk

address

instruction bram_enable

interrupt

sleep

reset

interrupt_ack

port_id

out_port in_port

k_write_strobe

read_strobe

write_strobe

kcpsm6

clk

[0]

[1]

Input Port

04 – PMBus_input_port

Output Port

04 – PMBus_output_port

[2]
[2:0]

CE

For clarity this diagram only shows the ports assigned to drive and monitor the PMBus in the reference design. The PMBus is used to automatically set the

VCCINT supply rail to 0.9v if the VID bit is set. The user is then able to perform experiments and monitor all supply rails.

drive_pmbus_clk

[0]

pmbus_data

drive_pmbus_data

[1]

[2] pmbus_control

[2] pmbus_alert

clk50

100

clk50

clk50

© Copyright 2012-2014 Xilinx
.

Page 14

‘VID’ Override (DIP Switches and LEDs)

address

instruction bram_enable

interrupt

sleep

reset

interrupt_ack

port_id

out_port in_port

k_write_strobe

read_strobe

write_strobe

kcpsm6

clk

Input Port

07 – DIP_switch_port

Output Port

10 – LED_port

[4]
[2:0]

CE

As the name suggests, the ‘VID Override’ feature of the design enable you to override the physical value of the VID bit in the Device DNA of the device that

you have on your VC707 board. Using this feature you can conduct power and performance experiments with VCCINT supply rail set to 0.9v or 1.0v. Please

remember that results are indicative of the effects observed with real ‘-1C’ device with VID of value ‘0’ and ‘1’ and should not be interpreted as absolute

figures for real devices.

clk50

111

clk50

clk50

[0]

[1]

[2]

[3]

[4]

led6

led5

led4

led3

led2

led1

led0

led7

[5]

[6]

[7]

[0]

[1]

[2]

[3]

[4]

dip_switch4

dip_switch3

dip_switch2

dip_switch1

dip_switch8

[5]

dip_switch5

[6]

dip_switch6

[7]

dip_switch7

For clarity this diagram only shows the ports assigned to the DIP Switches and LEDs. All switches and LEDs have been connected for future use by the

author or by you in your own designs (e.g. The design has JTAG_Loader enabled so you can reprogram PicoBlaze to do anything you like).

VID Override VID Value

C
P

U
 R

S
T

kcpsm6_reset

ON

1 2 3 4 5 6 7 8

cpu_rst

rdl

(JTAG Loader)

Set DIP switches 1 and 2 as required

and then press CPU_RST to emulate

a power cycle with a different device.

© Copyright 2012-2014 Xilinx
.

Page 15

User Terminal UART Macros

address

instruction bram_enable

interrupt

sleep

reset

interrupt_ack

port_id

out_port in_port

k_write_strobe

read_strobe

write_strobe

kcpsm6

buffer_write

data_in serial_out

uart_tx6

buffer_data_present

buffer_half_full

buffer_full

buffer_reset

[3]

[4]

[5]

en_16_x_baud

data_out serial_in

uart_rx6

buffer_data_present

buffer_half_full

buffer_full

buffer_reset

[0]

[1]

[2]

en_16_x_baud

buffer_read

R

COUNTER

=26

115200 baud uart_rx

uart_tx

Input Ports

00 – user_status_port

01 – user_rx_port

Output Port

01 – user_tx_port

[0]

[3:0]

write_to_user_tx

read_from_user_tx

[2:0]

CE

Constant Output Port

1 – reset_UART_port

 (shared)

[1]

[0]

clk
clk50

For clarity this diagram only shows the ports assigned to connect to the UART macros used to communicate with the user at 115,200 baud. For more details

about the UART macros please see ‘UART6_User_Guide_8July11.pdf’ and a simple reference design called ‘uart6_ml605.vhd’ supplied with KCPSM6.

clk
clk50

clk
clk50

Input Port

01 – user_rx_port

Decode “001”

[2:0]

[0]

001

000

clk50

clk50

clk50

© Copyright 2012-2014 Xilinx
.

‘1’

Page 16

UART Connection to PCASTM Chain - Transmitter

address

instruction bram_enable

interrupt

sleep

reset

interrupt_ack

port_id

out_port in_port

k_write_strobe

read_strobe

write_strobe

kcpsm6
buffer_write

data_in serial_out

uart_tx6

buffer_data_present

buffer_half_full

buffer_full

buffer_reset

[3]

[4]

[5]

en_16_x_baud pcast_

serial[0]

Input Ports

02 – pcastm_status_port

Output Port

02 – pcastm_tx_port

[1]

[3:0]

[2:0]

CE

Constant Output Port

01 – reset_UART_port

 (shared)

[3]

clk

clk50

For clarity this diagram only shows the ports assigned to connect to the transmitter UART macro connecting to the PCASTM chain. Communication with the

PCASTM chain is at a baud rate of 6.25mbps which is the maximum rate supported by the UART6 macros when using a 100MHz clock (i.e. 100MHz/16).

clk

data_to_pcastm_tx

pcast_tx_

data_strobe
 (shared)

CE

[0]

clk100

write_to_pcastm_tx

The PCAST modules receive and operate with a 100MHz clock which makes the 6.25MHz baud rate

very convenient. However the KCPSM6 controller is operating at 50MHz and therefore some

additional measures are required to ensure reliable writes from KCPSM6 to this UART.

Although the 50MHz and

100MHz clock domains are

not phase locked (well, not

with any known phase or

attempt to control it) the

100MHz ‘sample rate’

ensures that the pulse

generated at 50MHz will be

observed.

KCPSM6 writes an 8-bit character into a simple output register so that this information remains

stable as it is presented to the UART transmitter. The output port enable (a pulse at 50MHz) is

then used to generate a single clock cycle ‘buffer_write’ pulse that is synchronous to the

100MHz clock domain.

Detect Low to High transition

Decode “001”

010

clk50

To

PCASTM

Chain

© Copyright 2012-2014 Xilinx
.

Page 17

UART Connection to PCASTM Chain - Receiver

data_out serial_in

uart_rx6

buffer_data_present

buffer_half_full

buffer_full

buffer_reset

[0]

[1]

[2]

en_16_x_baud

buffer_read

pcast_serial(pcastm_chain_length)

[2:0]

[2]

clk

‘1’

Input Ports

02 – pcastm_status_port

03 – pcastm_rx_port

clk100

read_from_pcastm_rx
Detect Low to High transition

011

010

address

instruction bram_enable

interrupt

sleep

reset

interrupt_ack

port_id

out_port in_port

k_write_strobe

read_strobe

write_strobe

kcpsm6

Constant Output Port

01 – reset_UART_port

 (shared)

clk

pcast_rx_

data_strobe

[2:0]

Decode “011”

[3:0]
CE

[0]

Input Port

03 – pcastm_rx_port

clk50

For clarity this diagram only shows the ports assigned to connect to the receiver

UART macro connecting to the PCASTM chain. Communication with the PCASTM

chain is at a baud rate of 6.25mbps.

The PCAST modules receive and operate with a 100MHz clock which makes the 6.25MHz baud rate

very convenient. However the KCPSM6 controller is operating at 50MHz and therefore some

additional measures are required to ensure reliable reads from this UART into KCPSM6.

KCPSM6 reads the next 8-bit

character that is stable on the output

from the receiver FIFO buffer. The

read is used to generate a strobe (a

pulse at 50MHz) which is then

synchronised to the 100MHz clock

domain and used to generate a single

clock cycle ‘buffer_read’ pulse.

clk50
From

PCASTM

Chain

© Copyright 2012-2014 Xilinx
.

Page 18

I2C Bus for Si570 Control

i2c_clk

address

instruction bram_enable

interrupt

sleep

reset

interrupt_ack

port_id

out_port in_port

k_write_strobe

read_strobe

write_strobe

kcpsm6

clk

[0]

[1]

Input Port

06 – I2C_input_port

Output Port

08 – I2C_output_port

[2:0]

CE

For clarity this diagram only shows the ports assigned to drive and monitor the I2C bus in the reference design. The I2C bus is used to control the 8-channel

I2C bus multiplexer on the board to select and then control the Si570 programmable oscillator.

drive_i2c_clk

[0]

i2c_data

drive_i2c_data

[1]

clk50

110

clk50

clk50

[0]

CE

clk50

fast_clk_enable

Constant Output Port

8 – fast_clk_enable_port

[3]

[3] See ‘Clocks’ page

© Copyright 2012-2014 Xilinx
.

Page 19

Clocks

clk200 clk200_p

clk200_n

IBUFGDS

clk50

2-Bit

Counter

clock_divide[1:0]

[1]
BUFG

clk100 [0]
BUFG

‘Fast Clock’– Applied to the 8-bit LFSR counters and

comparators forming the ‘speed test’ elements in all

PCAST modules.

50MHz – Used by the main KCPSM6 controller.

100MHz – Used by all the Power Consuming and

Speed Test Modules (PCASTM) to run the KCPSM6

and the 16 toggle flops, 16-bit LFSR counter and 16-bit

accumulator peripherals.

clk200 adj_clk_p

IBUFGDS

adj_clk_n
fast_clk

BUFGCTRL

I0

I1

S1

S0

CE0

CE1

IGNORE0

IGNORE1

O

‘0’

‘1’

‘1’

‘1’

‘1’

fast_clk_enable

KCPSM6 will disable the distribution of ‘Fast Clock’

to illustrate a method for limiting dynamic power

consumption of a design prior to VCCINT being set to

the appropriate level for the VID bit.

© Copyright 2012-2014 Xilinx
.

Page 20

Speed Test ‘Primer’ LFSR Counter and Control

[0]

address

instruction bram_enable

interrupt

sleep

reset

interrupt_ack

port_id

out_port in_port

k_write_strobe

read_strobe

write_strobe

kcpsm6

Constant Output Port

02 – pcastm_control_port

clk

[2:0]
CE

[1]

clk50

For clarity this diagram only shows the port assigned to the main KCPSM6 controller used to control the speed test circuits.

fast_lfsr_reset

[1] drive_speed_test_enable pcast_enable(0)

speed_test_enable

8-Bit

LFSR

Counter

CE

RST

Q[7:0]

pcast_number(0)

[7:0]

To First

PCASTM

in Chain

fast_clk

As shown in the following pages, the ‘speed test’ in each PCASTM involves the comparison of its 8-bit LFSR counter with that of the 8-bit LFSR counter in the

previous PCASTM. In order that the first PCASTM in the chain can also perform a valid speed test a ‘primer’ LFSR counter is included in the top level design.

This counter is controlled by the main KCPSM6 processor.

As each speed test is implemented by the main KCPSM6 processor, the speed test enable signal is activated for ~20ms. It is absolutely vital that the enable

signal is synchronised to the ‘fast_clk’ as it is asserted and de-asserted so synchronising flip-flops are included to ensure this happens.

8-bit LFSR

Counter

Main Controller

© Copyright 2012-2014 Xilinx
.

Page 21

The PCASTM Chain

clk100

uart_rx

enable_in

uart_tx

number_out number_in

pcastm

clk

The Power Consuming and Speed Test Modules (PCASTM) modules are connected in a chain of whatever length is desired and which can fit into the target device. For ease

of design manipulation a constant called ‘pcast_chain_length’ has been defined and is used to define the number of PCASTM in the chain without requiring any additional

changes to be needed. This illustration shows a chain formed of only 3 modules but it would be more normal to have hundreds or even thousands in a large device.

From

Controller

enable_out

fast_clk

pcast_serial(1)

pcast_enable(1)

pcast_number(1)

To

Controller

uart_rx

enable_in

uart_tx

number_out number_in

pcastm

clk

enable_out

fast_clk

pcast_serial(0)

pcast_enable(0)

pcast_number(0)

uart_rx

enable_in

uart_tx

number_out number_in

pcastm

clk

enable_out

fast_clk

pcast_serial(2)

pcast_enable(2)

pcast_number(2)

pcast_serial

 (pcastm_chain_length)

pcast_enable

 (pcastm_chain_length)

pcast_number

 (pcastm_chain_length)

fast_clk

Each PCASTM is formed of two sections; a ‘Power Consuming’ section and a ‘Speed Test’ section. Of course the speed test will also result in the consumption of additional

power but this is not its main purpose.

‘Speed Test’ – The speed test is operated at a higher clock frequency (‘fast_clk’) and is intended to verify the ability of the device to exceed the specified design performance

especially if the VCCINT supply is reduces to 0.9v. In the reference design ‘fast_clk’ is driven by the Si570 programmable oscillator and used to test the design at 1MHz intervals

starting at 300MHz. The speed test requires that logic functions within each module operate correctly at each frequency and also that the ‘enable’ and 8-bit ‘number’ signals all

have less than single clock cycle propagation times. As soon as one path is too slow for the clock frequency the incorrect operation will be detected and hence reveal the

maximum performance of the speed test circuits in the given device (P) at that voltage (V) and temperature (T).

[7:0] [7:0] [7:0]

Control and ‘Power Consuming’ Logic – The bulk of the logic resources in each module are responsible for the control and monitoring of each module in the chain and to

increase or decrease the dynamic power consumption. All this logic is operated at 100MHz which is very conservative and reliable whilst having the ability to consume

enough power for experimental purposes. The modules are controlled and monitored by passing ASCII commands through the chain using UART serial communications at a

baud rate of 6.25mbps. This scheme provides flexibility and scalability whilst only requiring one wire to link each pair of modules, which in turn, allows the links of the speed

test to dominate the connectivity between modules.

© Copyright 2012-2014 Xilinx
.

Page 22

‘Power Consuming Logic’, Control & Monitoring

This diagram represents the communication, control and power consuming (PC) circuits of each PCASTM (note the signals to and from the ‘speed test’).

Waking PicoBlaze and enabling the 16 toggle flip-flops, the 16-bit LFSR counter and the 16-bit accumulator in any combination will increase or decrease

dynamic power consumption. Please read notes in the source files to appreciate how these simple functions can be used to demystify the most elusive of

factors; toggle rate.

PicoBlaze

KCPSM6

kcpsm6_sleep

clk

output

ports

[0] permit_sleep

[1] pn_enable

[2] acc_enable

[0] toggle_enable
toggle[15:0]

accumulator[15:0]

lfsr_counter[15:0]

16-bit

LFSR

CE

SLEEP 16-bit Accumulator

CE

16 Toggle Flops

R R R

Common clock to all

elements shown

(100MHz)

PicoBlaze input ports can read each ‘peripheral’.

More significantly, these connections create

‘loads’ for the peripheral logic resulting a higher

but more typical power consumption.

Program in

BRAM

(Note that BRAM is

 powered by VCCBRAM)

[3] 10

01

UART

Tx

Port Addresses

speed_test_reset

K1

uart_tx

00

Tx_status

01

04

UART

Rx

uart_rx

Rx_status

05

08

09

06

07

K2

[1]

[0]
reset_uart_rx

Tx_status

uart_rx_data_present

02

03

KCPSM6 automatically wakes

up to service any messages

that arrive via the UART.

speed_test_fail

enable_pipe

[7]

[6]

(monitor output port 10)

reset_uart_rx

© Copyright 2012-2014 Xilinx
.

Page 23

The ‘Speed Test’

For clarity, this diagram only shows only the ‘speed test’ circuits contained in the 5th and 6th PCAST modules in the chain. Each link of the chain represents a

separate test of logic and interconnect speed. As such, it is possible for some links to fail whilst others are able to continue operating perfectly. If desired, it

would be possible to enhance the reference design to further interrogate the chain and identify which link(s) fail the speed test first.

CE

RST

Q[7:0]

pcast_number(4)

The KCPSM6 inside

each PCASTM is used

to reset the LFSR and

clear the ‘fail’ status

before the enable is

propagated

synchronously down

the chain to start and

stop the speed test.

LFSR
=

R

pcast_enable(4)

All elements shown on

this page are the speed

test circuits clocked

with the ‘fast_clk’.

speed_test_fail

match

speed_test_reset

number_pipe

CE

RST

Q[7:0]

pcast_number(5)

LFSR
=

R

pcast_enable(5)

speed_test_fail

match

speed_test_reset

number_pipe pcast_number(6)

pcast_enable(6)

pcastm pcastm

The LSFR counter value

within each PCASTM is

compared with the value

of the LFSR in the

previous PCASTM

(pipeline registers ensure

high performance).

Whilst the values match

every clock cycle the

‘speed_test_fail’ signal

remains Low. But if there

is ever a mis-match

between the values the

‘speed_test_fail’ flag is

set and remains High

until cleared by KCPSM6.

The KCPSM6 inside

each PCASTM can be

used to monitor and

report the status of the

flag .

‘fast_clk’

Module = 0005 Module = 0006

enable_pipe enable_pipe

KCPSM6 can also

asynchronously

monitor the enable

signal to confirm

that it is

propagating

throughout the

chain.

© Copyright 2012-2014 Xilinx
.

Page 24

‘Speed Test’ Waveforms

These waveforms illustrate how, if desired, the ‘enable’ to the speed test can be any waveform. As the enable passes through the chain the LFSR counters in

adjacent modules should start and stop synchronously and always remain synchronised. They will do this providing the fundamental logic and interconnect is

good and if the performance is adequate for the clock rate. In the reference design provides, then enable is active for ~20ms at each test frequency.

pcast_enable(4)

00 01 03 07 0F 1E 3D 7A pcast_number(4)

fast_clk

00 01 03 07 0F 1E 3D 7A number_pipe

00 01 03 07 0F 1E 3D 7A

pcast_enable(5)

pcast_number(5)

00 01 03 07 0F 1E 3D 7A number_pipe

00 01 03 07 0F 1E 3D 7A

pcast_enable(6)

pcast_number(6)

At all times the value of the local LFSR counter should be the same as the value of the LFSR counter in the previous PCASTM delayed by one clock cycle

(‘number_pipe’). This pipeline delay compensates for the pipeline delay in the enable signal.

MATCH 

MATCH 

Module = 0005

Module = 0006

© Copyright 2012-2014 Xilinx
.

Page 25

Communication with the PCAST Chain

Although this is going beyond the scope of the ‘VID’ Reference design, it is anticipated that the arrangement presented in the PCASTM chain could have

value in other designs. The fundamental concept of a chain of PicoBlaze linked with a UART communication thread could be applied to the control and

monitoring of virtually anything within a device and could be useful in any large design. Think in terms of it being like having a set of ultra-lite ChipScope

Analysers in your design. Rather that each module being identical as it is in this design, the hardware and program in each module could be enhanced to

perform much more intelligent tasks and tuned to the logic it is required to control and monitor. Note that a program of up to 256 instructions can be

implemented in 18 Slices avoiding the need for a BRAM and making each module a very small footprint in your designs.

Echo Mode

The most fundamental state of each PCASTM is the echo mode. This is the mode the KCPSM6 in each PCASTM is in whenever it isn’t actively servicing a

command. Unsurprisingly the echo mode simply means that KCPSM6 will read any characters that arrive on the UART receiver and write them to the UART

transmitter. If KCPSM6 is sleeping then the arrival of a character will automatically wake KCPSM6 up so that it will do this (KCPSM6 makes sure that it

completes this simple task before permitting itself to go back to sleep).

From

Controller

To

Controller

uart_rx uart_tx

pcastm

clk

pcast_serial(0) pcast_serial(5)

uart_rx uart_tx

pcastm

clk

uart_rx uart_tx

pcastm

clk

uart_rx uart_tx

pcastm

clk

uart_rx uart_tx

pcastm

clk

The serial baud rate is 6.25mbps so the time to transmit one character is 1.6µs. As a character is being transmitted the corresponding receiver is converting it

back into a character so there is no additional delay associated with the ‘link’ itself. However, KCPSM6 in each PCASTM can only see the character once it

has been fully received, and only then, can it start to transmit onwards. KCPSM6 itself does this almost immediately but there can be up to a 1 bit delay

(160ns) before the start of the serial transmission. All this means that it takes time for a character to ripple all the way through the chain. As an approximation

the total time will be in the order of 1.7µs × the number of PCASTM in the chain. In practice, it is normal for the master controller just to wait for the expected

character or message to appear at the end of the chain however long it takes.

Providing the # character is not used then all characters will be echoed through each PCAST in the chain.

“Hello” “Hello” “Hello” “Hello” “Hello” “Hello”

Hint - This can be used to test the chain.

As shown in the previous diagrams, all PCASTM in the chain are linked by serial (UART) communications that only flows in one direction. The main controller

(shall we call it the master?) transmits messages to the start of the chain and then waist for responses to emerge from the end of the chain

© Copyright 2012-2014 Xilinx
.

Page 26

Communication with the PCAST Chain

PCASTM Commands

Although rather a precise ‘language’, the commands currently implemented by PicoBlaze inside each PCASTM are all formed of readable ASCII characters.

This is intended to make any communication humanly readable and writable which is particularly useful during system debugging.

Note – In order to keep the current PCASTM PicoBlaze program small (enough to fit in 18 Slices if required) there is no error checking or trapping.

This doesn’t normally present any issues when commands sent to the chain are generated by the program in the main controller (at least not after

the code had been debugged!) but can definitely lead to issues when manually entering commands (i.e. human error!). So just try to be careful if

you attempt any manual communication with the chain.

A command always begins with the # character. All PCASTM will remain in ‘echo mode’ until the # character is encountered.

Although a # character will also be echoed, PicoBlaze will transition into a ‘command mode’ in which the next character will define the command, and when

relevant, further characters will provide information to be used with that command.

When in the command mode PicoBlaze will remain permanently awake. Once a command has been processed, PicoBlaze will return to the ‘echo mode’ and

may go to sleep if it is set to be in the sleep mode.

#T - Transparent Command

This is the most simple (and seemingly pointless!) command. This command forces the PCASTM back into ‘echo mode’ immediately. Any subsequent

characters are then echoed until the next # character is encountered.

In the current implementation only upper case characters should be used in the definition of any commands or information.

© Copyright 2012-2014 Xilinx
.

Page 27

Communication with the PCAST Chain

#Eaaaa - Enumerate Command

In this design all PCASTM are identical and any number of them can be connected in a chain. Since they are all identical they will all react in the same way to

begin with and this would limit your ability to control them and monitor them. For this reason, each module has a 16-bit address intended to service a chain

consisting of up to 65,535 modules. However, all modules have the same initial address of zero (0000 hex) which is of no help whatsoever!

Note – PicoBlaze needs to receive all 4 characters forming ‘aaaa’ in order that it can increment the address and adopt that value. This also means

that it is only able to transmit its own ‘aaaa’ value to the next module in the chain once the new address is known. This means that whilst the whole

command propagates through the chain and is observed at the end, the ‘echo’ of ‘aaaa’ does not occur on a character by character basis. This can

be somewhat disconcerting when manually entering commands (i.e. No echo when entering each of the 4 hex digits and then all appear!).

From

Controller

To

Controller

uart_rx uart_tx

pcastm = 0001

clk

pcast_serial(0) pcast_serial(5)

uart_rx uart_tx

clk

uart_rx uart_tx

clk

uart_rx uart_tx

clk

uart_rx uart_tx

clk

pcastm = 0002 pcastm = 0003 pcastm = 0004 pcastm = 0005

From

Controller

To

Controller

uart_rx uart_tx

pcastm = 0000

clk

pcast_serial(0) pcast_serial(5)

uart_rx uart_tx

clk

uart_rx uart_tx

clk

uart_rx uart_tx

clk

uart_rx uart_tx

clk

#E0001 #E0002 #E0003 #E0004 #E0005 #E0000

pcastm = 0000 pcastm = 0000 pcastm = 0000 pcastm = 0000

Before enumerate command....

After enumerate command....

The enumerate command is the way to assign a unique address to each module. In most applications the command sent to the chain specifies an address of

zero (specified using the 4-digit hex representation ‘0000’). As this is received by the first module the address value is incremented to ‘0001’ and becomes the

address of that module. It then transmits its own address to the next module. Hence the address increments as it ripples through the chain.

Hint – The message observed at the end of the chain reveals the number of modules in the chain. This is how the master can report the number of

modules without being specifically programmed. It is also a good way to confirm the integrity of the chain and that it really does contain the number

of modules you think it should.

© Copyright 2012-2014 Xilinx
.

Page 28

Communication with the PCAST Chain

#Clllluuuubbbb - Control Command

This command enables up to 16 control bits to be set as required in one or more PCASTM in the chain. The command string passes unaltered through each

module to re-emerge at the end. As each module receives and echoes the control command it decides if the command should be applied to it and updates the

control value with the specified value if it should.

Note – Each group of 4 characters forming a 16-bit hex value ‘llll’, ‘uuuu’ or ‘bbbb’ will only be echoed by a module after all 4 characters have been

received. This can be somewhat disconcerting when manually entering commands!

From

Controller

To

Controller

uart_rx uart_tx

pcastm = 0001

clk

pcast_serial(0) pcast_serial(5)

uart_rx uart_tx

clk

uart_rx uart_tx

clk

uart_rx uart_tx

clk

uart_rx uart_tx

clk

pcastm = 0002 pcastm = 0003 pcastm = 0004 pcastm = 0005

#C000300040005

The #C command is followed by three 16-bit values (each specified using a 4-digit hex representation). The first two values ‘llll’ and ‘uuuu’ define the range of

module addresses that are to respond to the command.

Hint – Specifying an address range of ‘0000’ to ‘FFFF’ will mean that all modules will respond to the control word regardless of the number of

modules in the chain.

#C000300040001

Hint – To control only one module, specify the same address for both ‘llll’ and ‘uuuu’.

In this example only the modules in the address range ‘0003’ to ‘0004’ will apply the command.

The final 16-bit value ‘bbbb’ defines the state that the 16 control bits in the PCAST should become. These are used to control the features and operation of

the PCASTM and are described on the following page.

In this example the control bits in modules ‘0003’ and ‘0004’ have been set to 0005 hex = 0000 0000 0000 0101.

The control bits in the remaining modules will remain unchanged.

© Copyright 2012-2014 Xilinx
.

Page 29

Communication with the PCAST Chain

Control Bits

Whilst it is possible to define 16 control bits only 5 are actually used in the current design (i.e. Clearly room for expansion ).

bit2 - Enable the 16-bit accumulator

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Control Word

bit3 - Reset the ‘speed test’ 8-bit LFSR counter and ‘speed_test_fail’ flag

bit1 - Enable the 16-bit LFSR counter

bit4 - KCPSM6 to enter sleep state when in ‘echo mode’ (idle)

bit0 – Enable the 16-Toggle flip-flops

Default post configuration value is 0000 0000 0001 1000 = 0018 hex and is the lowest power state of the PCASTM. All power consuming peripherals are

disabled, the speed test LFSR counter is held in reset (regardless of the state of the speed test enable signal) and KCPSM6 will be sleeping except to service

any serial communications that occur.

Note – That in the current implementation all control bits are defined by the control command and therefore all bits must be specified with the

desired value. It may be desirable in the future to implement a different command or include a ‘mask’ word in the existing command that would

enable only one or a few bits to be adjusted whilst others remain the same.

© Copyright 2012-2014 Xilinx
.

Page 30

Communication with the PCAST Chain

Status Bits

There are two commands to read the status which are described on the following pages. Before looking at the status commands, below is the format of the

status word in each PCASTM.

bit2 - Enable signal to the 16-bit accumulator

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Status Word

bit3 - Reset signal to the ‘speed test’ 8-bit LFSR counter and ‘speed_test_fail’ flag

bit1 - Enable signal to the 16-bit LFSR counter

bit4 - KCPSM6 to enter sleep state when in ‘echo mode’ (idle)

bit0 – Enable signal to the 16-Toggle flip-flops

Bits 0 to 4 mirror the bits in the control word and would therefore be expected to be the same. However, it should be noted that in the case of bits 0 to 3,

KCPSM6 is truly observing the state of the physical signals via an input port and therefore proves that the control signals are actually being driven by the

corresponding KCSPM6 output port. In contrast, the sleep state indicated by bit4 has to be a report of the value held within KCPSM6 rather than a physical

signal because KCSPM6 has to be awake when servicing a status command. As such it can only ever be an indication of the fact that it will go to sleep when

it is otherwise in the idle mode.

Bits 14 and 15 allow the status of the speed test circuit to be observed. The status is a snapshot sample of the ‘enable_pipe’ and ‘speed_test_fail’ signals. The

generally static nature of these signals means that is perfectly acceptable for KCPSM6 to observe them even though it is operating with a different clock. Note

that the speed test result is for the particular PCASTM and completely independent of the other PCASTM in the chain. Hence it is possible to isolate any

point(s) of failure by individually interrogating the status of each PCAST module.

bit14 - Speed test enable signal (‘enable_pipe’)

bit15 – Speed test failure flag (‘speed_test_fail’ signal)

Hint – Bit14 can be used to confirm that the speed test enable signal is propagating all the way through the chain.

All unused bits will be ‘0’

© Copyright 2012-2014 Xilinx
.

Page 31

Communication with the PCAST Chain

#Olllluuuussss - ‘OR’ Status Command

This ‘OR’ status command allows the 16 status bits of one or more PCASTM in the chain to be observed. In other words, it is possible to use this command to

observe the status word of just one particular module or to observe the combined status of many or all modules in one go. In typical application the status of

all modules would be checked first to determine if everything is operating as expected or if a failure has occurred anywhere. Then if desired, the precise

location of the failure could be identified by reading the status of fewer or individual modules.

The #O command is followed by three 16-bit values (each specified using a 4-digit hex representation). The first two values ‘llll’ and ‘uuuu’ define the range of

module addresses that are to respond to the command. The last word is the 16-bit status. In the majority of applications the command sent to the chain will

specify and initial status of ‘0000’. The command ripples through the chain and is otherwise ignored by any modules that do not fall within the specified

address range. When a module is within the specified range then it will take a snapshot of its current status and then superimpose its own status word onto

the status word contained in the command using a bit-wise OR operation. The resulting combined status is then transmitted to the next module in the chain.

Note – Each group of 4 characters forming a 16-bit hex value ‘llll’, ‘uuuu’ or ‘ssss’ will only be echoed by a module after all 4 characters have been

received. This can be somewhat disconcerting when manually entering commands!

From

Controller

To

Controller

uart_rx uart_tx

pcastm = 0001

clk

pcast_serial(0) pcast_serial(5)

uart_rx uart_tx

clk

uart_rx uart_tx

clk

uart_rx uart_tx

clk

uart_rx uart_tx

clk

pcastm = 0002 pcastm = 0003 pcastm = 0004 pcastm = 0005

#0000300040000

Hint – ‘OR’ status is the easiest way to determine if a particular status it is set (‘1’) in one or more modules in the chain.

In this example the combined ‘OR’ status of modules 0003 and 0004 is determined. Modules 0001 and 0002 are not in the specified range so they simply

echo the command as received. Module 0003 superimposes its status word onto the command as it passes it on (0000 OR 001A = 001A). Likewise, module

0004 superimposes its status word onto the command as it passes it on (001A OR 001C = 001E). Finally, module 0005 simply echoes the command

containing the superimposed status as it is outside of the address range.

#0000300040000

status = 0018 status = 0019 status = 001A status = 001C status = 0008

#000030004001A

All off Toggle On Toggle On LFSR On PicoBlaze awake

#000030004001E

Status Bit[4:0] for reference

11000 11001 11010 11100 01000

00000 11010 00000 11110 11110

© Copyright 2012-2014 Xilinx
.

Page 32

Communication with the PCAST Chain

#Alllluuuussss - ‘AND’ Status Command

As with the ‘OR’ status command, the ‘AND’ status command allows the 16 status bits of one or more PCASTM in the chain to be observed.

The #A command is followed by three 16-bit values (each specified using a 4-digit hex representation). The first two values ‘llll’ and ‘uuuu’ define the range of

module addresses that are to respond to the command. The last word is the 16-bit status. In the majority of applications the command sent to the chain will

specify and initial status of ‘FFFF’. The command ripples through the chain and is otherwise ignored by any modules that do not fall within the specified

address range. When a module is within the specified range then it will take a snapshot of its current status and then superimpose its own status word onto

the status word contained in the command using a bit-wise AND operation. The resulting combined status is then transmitted to the next module in the chain.

Note – Each group of 4 characters forming a 16-bit hex value ‘llll’, ‘uuuu’ or ‘ssss’ will only be echoed by a module after all 4 characters have been

received. This can be somewhat disconcerting when manually entering commands!

From

Controller

To

Controller

uart_rx uart_tx

pcastm = 0001

clk

pcast_serial(0) pcast_serial(5)

uart_rx uart_tx

clk

uart_rx uart_tx

clk

uart_rx uart_tx

clk

uart_rx uart_tx

clk

pcastm = 0002 pcastm = 0003 pcastm = 0004 pcastm = 0005

#A00030004FFFF

Hint – ‘AND’ status is the easiest way to determine if a particular status it is reset (‘0’) in one or more modules in the chain.

In this example the combined ‘AND’ status of modules 0003 and 0004 is determined. Modules 0001 and 0002 are not in the specified range so they simply

echo the command as received. Module 0003 superimposes its status word onto the command as it passes it on (FFFF AND 001A = 001A). Likewise, module

0004 superimposes its status word onto the command as it passes it on (001A AND 001C = 0018). Finally, module 0005 simply echoes the command

containing the superimposed status as it is outside of the address range.

#A00030004FFFF

status = 0018 status = 0019 status = 001A status = 001C status = 0008

#A00030004001A

All off Toggle On Toggle On LFSR On PicoBlaze awake

#A000300040018

Status Bit[4:0] for reference

11000 11001 11010 11100 01000

11111 11010 11111 11000 11000

© Copyright 2012-2014 Xilinx
.

Page 33

Communication with the PCAST Chain

#I - Initialise Command

This command will ripple all the way through the chain and cause all modules to revert to the initial default state. This is the lowest power state in which all

power consuming peripherals are disabled, the speed test LFSR counter is held in reset and KCPSM6 will be sleeping. All modules will also revert to their

default address of ‘0000’ so the enumerate command would normally be used again afterwards.

Hint – This could be very useful in an emergency such as a device overheating situation. It is very easy to type manually 

Note – When PicoBlaze in the PCASTM receives the #I command it will almost immediately disable the power consuming peripherals and hold the

speed test circuit in reset. However there will be a delay of ~100ms before PicoBlaze enters its sleep state. This ensures that the #I command is

definitely passed on to the next module before the buffers in the UART macros are also cleared.

#Vaaaa - Version Command

This command will cause the particular PCASTM being addressed to return a version test string indicating the hardware version of the PCASTM design and

the date and time that the KCPSM6 program was assembled. Note that this command will return many more characters than the original command. It is also

worth noting that the response is a string of 31 characters so the master must ensure that it reads the message before the 16-character buffer in the UART

receiver becomes full (not normally an issue providing the master does not then become occupied doing or waiting for something else).

From

Controller

To

Controller

uart_rx uart_tx

pcastm = 0001

clk

pcast_serial(0) pcast_serial(5)

uart_rx uart_tx

clk

uart_rx uart_tx

clk

uart_rx uart_tx

clk

uart_rx uart_tx

clk

pcastm = 0002 pcastm = 0003 pcastm = 0004 pcastm = 0005

#V0003

#T hw:B sw:27 Sep 2011 17:10:46

#V0003 #V0003

As the #V command ripples through the chain only the module with the specified address will respond. So prior to the target module the command is simply

echoed and otherwise ignored. The responding module transmits a transparent command (you see, it wasn’t pointless after all ) so that all following

modules will simply echo the text string through to the end of the chain where it can be captured by the master.

© Copyright 2012-2014 Xilinx
.

Page 34

Communication with the PCAST Chain

#Raaaa - Read Information Command

This command will cause the particular PCASTM being addressed to return a string containing a snapshot of the 16-bit values of the ‘power consuming’

peripherals in that PCASTM. The first value is that of the 16 toggle flip-flops, the second is the 16-bit LFSR counter value and the last is the 16-bit value of the

accumulator. This illustrates how a module can be used to monitor virtually any circuit.

From

Controller

To

Controller

uart_rx uart_tx

pcastm = 0001

clk

pcast_serial(0) pcast_serial(5)

uart_rx uart_tx

clk

uart_rx uart_tx

clk

uart_rx uart_tx

clk

uart_rx uart_tx

clk

pcastm = 0002 pcastm = 0003 pcastm = 0004 pcastm = 0005

#R0003

#T AAAA 18FB 5E79

#R0003 #R0003

As the #A command ripples through the chain only the module with the specified address will respond. So prior to the target module the command is simply

echoed and otherwise ignored. The responding module transmits a transparent command (again you see it wasn’t pointless ) so that all following modules

will simply echo the string through to the end of the chain where it can be captured by the master.

Hint – The only real purpose of this command is to prove that the PCASTM peripherals are operating when enabled and static when disabled.

There is no accurate control over the enables to these peripherals so it is not possible to enable the peripherals for a precise number of clock

cycles and hence stop them at a known value. However, it is possible to use multiple read commands to see if the values are static or changing.

Note – Each 16-bit value is read by KCPSM6 requires the read of two input ports. This means that the lower byte is read two clock cycle before the

upper byte so the ‘snapshot’ will not actually be a true ’16-bit snapshot’ value if the peripheral is enabled. However, this is somewhat irrelevant in

terms of the PCASTM given the basic purpose is only to observe any activity at all but worthy of consideration if migrated to a real design.

Note – The 16-bit toggle flip-flops are held in reset when not enabled and therefore the static value should always be zero (‘0000’). When toggling,

the bit pattern will rapidly settle on alternating ‘5555’ and ‘AAAA’ values. However, because every operation in a KCPSM6 takes 2 clock cycles it is

an interesting quirk of fate that only the ‘AAAA’ value is ever captured (although it is just possible it could get our of phase due to KCPSM6 going in

an out of sleep mode). So generally speaking interpret ‘0000’ as toggle not enabled and ‘AAAA’ as enabled. Power consumption should also

increase and decrease accordingly anyway.

