
© Copyright 2011-2014 Xilinx
.

Ultra-Compact UART Macros for Spartan-6, Virtex-6 and 7-Series

 with PicoBlaze (KCPSM6) Reference Designs

Ken Chapman

30th September 2014

Release: 5

(Universal Asynchronous Receiver Transmitter)

© Copyright 2011-2014 Xilinx
.

Page 2

Disclaimer and Acknowledgements

Copyright © 2011-2014, Xilinx, Inc.

This file contains proprietary information of Xilinx, Inc. and is protected under U.S. and international copyright and other intellectual property laws.

Notice of Disclaimer

Xilinx is disclosing this Application Note to you “AS-IS” with no warranty of any kind. This Application Note is one

possible implementation of this feature, application, or standard, and is subject to change without further notice from

Xilinx. You are responsible for obtaining any rights you may require in connection with your use or implementation of

this Application Note. XILINX MAKES NO REPRESENTATIONS OR WARRANTIES, WHETHER EXPRESS OR

IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, IMPLIED WARRANTIES OF

MERCHANTABILITY, NONINFRINGEMENT, OR FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL

XILINX BE LIABLE FOR ANY LOSS OF DATA, LOST PROFITS, OR FOR ANY SPECIAL, INCIDENTAL,

CONSEQUENTIAL, OR INDIRECT DAMAGES ARISING FROM YOUR USE OF THIS APPLICATION NOTE.

Acknowledgments

Thank you to Nick Sawyer for the Verilog equivalents of these macros.

Thank you to all the PicoBlaze users that offered to test and verify these macros. Your experiences and feedback really helped to improve

the documentation and will make the use of these macros by all future users than much easier.

© Copyright 2011-2014 Xilinx
.

Page 3

UART_TX6 and UART_RX6 Features

Unsurprisingly, the ‘uart_tx6’ macro provides a UART transmitter whilst the ‘uart_rx6’ provides a UART receiver. More surprising is that each macro includes

a 16-byte FIFO buffer and yet each macro occupies only 5-Slices of a Spartan-6 or Virtex-6 device. Their combined size of 10-Slices equates to 1.7% of the

smallest (XC6SLX4) Spartan-6 device and a ridiculously small 0.01% of the largest (XC6VLX760) Virtex-6 device so there should never be any problem

finding space for them!

Both the transmitter and receiver have pre-defined fixed communication settings of 8-bit data, 1-stop bit and no parity all of which are the most common

settings and adequate for the vast majority of applications. The baud rate (bit rate) is defined in your design by the application of enable pulses relative to a

system clock frequency. Whilst many applications will require a standard baud rate such as 9600 or 115200 these macros can operate at any baud rate up to

your clock frequency divided by 16 which means that baud rates in excess of 10mbps can also be achieved; UART does not have to mean slow! Whilst the

macros do not immediately provide a soft or hardware handshake option the FIFO buffer signals facilitate the implementation of handshake schemes.

The UART6 macros can be used standalone in your design but they are ideally matched with the PicoBlaze processor (KCPSM6). Whilst there is nothing

particularly special about UART communication, it is highly likely that your application will transmit and receive specific information such as text strings and

data values and PicoBlaze (at only 26 Slices) will often make the implementation of your ‘protocol’ rapid and efficient.

16-Byte

FIFO

data_in(7:0)

serial_out

buffer_read buffer_write buffer_full

buffer_data_present

buffer_half_full

clk

en_16_x_baud Transmitter

8-bit, 1-Stop,

Non parity

uart_tx6

16-Byte

FIFO

data_out(7:0)

serial_in

buffer_full

buffer_data_present

buffer_half_full

clk

en_16_x_baud

Receiver

8-bit, 1-Stop,

Non parity

uart_rx6

Except for the serial input to the receiver, which by the very nature of UART communication is asynchronous, all inputs and outputs of both macros are

synchronous to the supplied clock and should be treated as such in your design. Parallel data is written to or read from the integral 16-byte FIFO buffers that

provide a selection of status flags to be used as necessary by your application. The ‘en_16_x_baud’ input is used to define the baud rate of the serial

communication relative to the clock frequency. Any data (characters) written to the transmit buffer will be automatically and continuously transmitted on

‘serial_out’ until the buffer becomes empty. Likewise, valid data (characters) received from ‘serial_in’ will be automatically written to the receiver FIFO.

buffer_reset buffer_reset

© Copyright 2011-2014 Xilinx
.

Page 4

Applications of the UART Macros

For many years UART has been synonymous with RS232 (UART with ±12v signals) and the 9-way connector on the back of a PC often used to connect a

serial mouse. Of course that serial port connector has been rapidly disappearing from machines as USB has become more dominant and popular. For a while

it looked like UART would fade into history, but whilst it may look that way on most office desk tops it is still very much alive and well in our industry.

USB-UART

The legacy of RS232 is virtually everywhere and much of that equipment will remain in the field for many years to come. Furthermore the software programs

associated with those pieces of equipment still require a ‘COM’ port to be connected. Companies such as FTDIchip (www.ftdichip.com) were quick to

recognise that very soon it would be impossible to replace an old PC and developed some apparently simple USB to UART bridging devices. Combined with

a ‘Virtual COM port’ driver these devices immediately saved a lot of people from a big problem. Not only that, these devices are so easy to use that they have

given UART a future.

Not everything has to be fast, it just needs to be easy!

Whilst USB has many advantages for modern equipment it has to be said that its complexity is not one of them. When you need high speed connectivity and

rapid plug-and-play capability then to some degree it is reasonable to accept the increased complexity in the hardware and software design. However, there

are still many applications that only require a relatively low bandwidth communication link. For example, when a terminal is used to display text based status

messages and allow commands to be entered on a keyboard for diagnostic purposes. From a hardware perspective the USB-UART devices can be thought

of as a replacement for the RS232 level shifter device in the past and the virtual COM port driver avoids the need for special software to be developed.

UART is small

As the ‘uart_tx6’ and ‘uart_rx6’ macros prove, a UART can have an extremely small footprint. In contrast, a USB core could easily be expected to be at least

70 times bigger and still require an external PHY device; fine if your application needs a high bandwidth but otherwise a significant overhead.

On board connectivity and Micro-Controllers

At a board level a UART can provide a direct connection between components using LVTTL or whatever standard is convenient. Many Micro-Controller

devices include UART peripherals (at a lower price than their USB equivalents) or implement UART purely in software (see pages 27-28 to see how this

technique can be implemented in PicoBlaze) . For PICmicro devices the low pin count (2) requirement of UART is compelling and fuels the desire for this

connection to be supported in the Spartan-6 or Virtex-6 device even though it is rich in pins itself. Again, it is unlikely that such applications have any

requirement for high bandwidth and in fact the baud rate may be very low in the case of a PICmicro software method being employed. UART really is just a

simple and convenient way to pass relatively small amounts of information between devices.

http://www.ftdichip.com/

© Copyright 2011-2014 Xilinx
.

Page 5

More Potential Applications of the UART Macros

The previous page covered the rather obvious uses of a UART for connections between units either on the same board or with a PC. On this page we can

consider how the UART macros in a Spartan-6 or Virtex-6 can be exploited further in your designs.

data[7:0]

UART_TX6

data[7:0]

UART_RX6
write

full

read

data_present

Clock Domain A Clock Domain B

Each clock domain

is presented with a

fully synchronous

FIFO interface.

Providing the baud rate is defined to be the

same ±5% at each end of the link the UART

receiver naturally resynchronises at the start

of each byte transfer for total reliability.

With only one signal bridging between the

two clock domains it often helps to eliminate

routing congestion associated with a single

parallel FIFO implementation.

Higher speed connectivity

Whenever you design a board it is an extremely good idea to provide a general purpose header allowing connection to a few pins on the FPGA. At any time

you can modify your FPGA design to bring out some signals of interest to be probed with an oscilloscope etc. Now consider how much information you

display on a terminal by inserting a PicoBlaze and a UART in a design as well as the control you could have over that design. Note that a USB-UART device

can be part of the cable you attach rather than adding unnecessary cost to your board (e.g. http://www.ftdichip.com/Products/Cables/USBTTLSerial.htm).

Longer distance connectivity made easy

The baud rate of these macros can be up to CLK/16 meaning that baud rates of 5mbps in Spartan-6 and 10mbps in Virtex-6 are achievable. Providing you

define the same baud rate at both ends of each link in your system then nobody is forcing you to conform to a standard rate. For example, with a 100MHz

clock the baud rate of 6.25mbps can be achieved (‘en_16_x_baud’ input is tied permanently High) supporting a transfer rate of up to 625 k-bytes/second. With

each pair of UART macros only occupying 10-Slices, running multiple UART links in parallel is also a cost effective way to increase bandwidth.

Every time information needs to cross from one clock domain to another there is the potential for unreliable operation. Failure to recognise this can result in

intermittent faults that can be very costly over time. Typically the default solution is to insert an asynchronous FIFO although this often comes with the burden

of complexity and an undesirable resource cost. So providing the data rate is adequate, the UART6 macros can be a superior alternative.

Why not consider using LVDS for longer distance communication over larger boards or twisted pair cables? The differential standard will afford you greater

protection from noise etc. Providing the data rate is adequate the naturally asynchronous nature of UART communication also avoids all those tricky

requirements for clock forwarding or clock recovery circuits. The simplicity of a UART makes communication reliable and low power.

2 Test Points = Diagnostic Port

Crossing Clock Domains and on-chip links

Note that the link

can buffer up to

32-bytes in total.

http://www.ftdichip.com/Products/Cables/USBTTLSerial.htm

© Copyright 2011-2014 Xilinx
.

Page 6

Inserting UART Macros into Your Design

Each macro is included in your design in exactly the same way as any hardware component.

component uart_tx6

 Port (data_in : in std_logic_vector(7 downto 0);

 en_16_x_baud : in std_logic;

 serial_out : out std_logic;

 buffer_write : in std_logic;

 buffer_data_present : out std_logic;

 buffer_half_full : out std_logic;

 buffer_full : out std_logic;

 buffer_reset : in std_logic;

 clk : in std_logic);

end component;

Hint – This is not supposed to be an exercise in typing so the file called ‘uart6_ml605.vhd’ can be used as a code template as well as being

 a working example for the ML605 Evaluation Board. Simply copy and paste the code into the appropriate places in your own design.

(Obviously appropriate signals will need to be defined in order that they can be assigned to the ports in the instantiation)

Component declarations....

tx: uart_tx6

 port map (data_in => uart_tx_data_in,

 en_16_x_baud => en_16_x_baud,

 serial_out => uart_tx,

 buffer_write => write_to_uart_tx,

 buffer_data_present => uart_tx_data_present,

 buffer_half_full => uart_tx_half_full,

 buffer_full => uart_tx_full,

 buffer_reset => uart_tx_reset,

 clk => clk);

component uart_rx6

 Port (serial_in : in std_logic;

 en_16_x_baud : in std_logic;

 data_out : out std_logic_vector(7 downto 0);

 buffer_read : in std_logic;

 buffer_data_present : out std_logic;

 buffer_half_full : out std_logic;

 buffer_full : out std_logic;

 buffer_reset : in std_logic;

 clk : in std_logic);

end component;

rx: uart_rx6

 port map (serial_in => uart_rx,

 en_16_x_baud => en_16_x_baud,

 data_out => uart_rx_data_out ,

 buffer_read => read_from_uart_rx,

 buffer_data_present => uart_rx_data_present,

 buffer_half_full => uart_rx_half_full,

 buffer_full => uart_rx_full,

 buffer_reset => uart_rx_reset,

 clk => clk);

uart_tx6 uart_rx6

Component instantiations....

uart_tx6 uart_rx6

buffer_half_full => open, Hint - If any of the FIFO status signals are not required then these can be left open. For example...

Please note that the Verilog equivalent of each macro is also provided.

© Copyright 2011-2014 Xilinx
.

Page 7

Defining the Baud Rate

IMPORTANT – ‘en_16_x_baud’ pulses must be synchronous to the clock (synchronous design!).

The only requirement that is specific to the serial communication is the definition of the baud rate. The baud rate is the number of bits per second at which

information is transmitted and received. It is typically one of the well known standard rates associated with a computer based applications (e.g. 9600 or

115200) but it can be any rate you like provided that it is set to the same rate at both ends of a communication link. Each byte of data (or character) is

transmitted and received using 10 bits comprising a start bit (‘0’), the 8-bit data (transmitted LSB first) and a stop bit (‘1’).

en_16_x_baud

en_16_x_baud

START START STOP 7 5 6 4 2 3 1 0

Bit Period =
Baud Rate

1
Example: 9600 baud = Bit period of 104µs

Hint – The overhead of start and stop bits means that the maximum data rate is 8/10 of the baud rate. If you have a specific requirements to transfer data then

remember to take this into account when defining the baud rate of your communication link. For example, to transfer 1M-byte/second the minimum baud rate

must be 1MHz × (8-bits of data + 2) = 10,000,000 BAUD. That’s 10MHz rather than 8MHz.

This input to the macros is used to define the desired baud rate by applying a series of enable

pulses at a rate that is 16 times greater than the serial bit rate. This in turn is derived from the

system clock which is of a known frequency.

en_16_x_baud

uart_tx6

serial_out

BAUD

Generation

clk

en_16_x_baud

uart_rx6

serial_in

clk

clk

IMPORTANT – The ‘en_16_x_baud’ signal should be a series of single clock cycle pulses used to enable the UART macros for one rising edge of the clock

at a time. Do not make the mistake of applying a square wave ‘clock’ waveform that is 16 times the frequency of the baud rate!

© Copyright 2011-2014 Xilinx
.

Page 8

Defining the Baud Rate

For the majority of applications the baud rate generation takes the form of a simple counter. This scheme is best explained by a real example in which a

Artex-7 device with a 200MHz clock is required to communicate with a PC at a baud rate of 115200 (which is the default setting of PicoTerm).

Note that the synchronous reset on the counter means that there are 109 states with values 0 through to

108. It is the total number of states that correctly defines the pulse rate so be careful how you specify the

terminal count value in your code.

Counter

RST

Q
=108 en_16_x_baud

200MHz

Hint – The maximum baud rate is CLK/16 and is achieved by tying the ‘en_16_x_baud’ input permanently High thereby avoiding any requirement for a baud

generation circuit. This is ideal for point to point links whenever the same nominal clock frequency is available at the end of each link. No need for phase

locked clocks or clock forwarding. Please also see ‘Improving Baud Accuracy’ section for high baud rate example.

Hint – See ‘Improving Baud Accuracy’ on pages 24-25 if rounding results in an undesirable deviation from the desired rate.

signal baud_count : integer range 0 to 108 := 0;

signal en_16_x_baud : std_logic := '0';

baud_rate: process(clk)

begin

 if clk'event and clk = '1' then

 if baud_count = 108 then

 baud_count <= 0;

 en_16_x_baud <= '1';

 else

 baud_count <= baud_count + 1;

 en_16_x_baud <= '0';

 end if;

 end if;

end process baud_rate;

1) The ‘en_16_x_baud’ signal must therefore have a pulse rate of 16 × 115200 = 1,843,200 pulses per second.

2) With a 200MHz clock this equates to one enable pulse every 200,000,000 / 1,843,20 = 108.507 clock cycles.

 To be practical we round this to the nearest integer of 109.

3) Check the effect of rounding on the baud rate..... (200,000,000 / 109) / 16 = 114679 baud which is 0.24% slower than target (assuming clock is perfect).

 Providing there is less than 5% difference between the baud rate of the transmitter and receiver forming a communication link then it should work.

4) Implement your baud generation counter circuit. The following example uses a signal defined as an integer to make this really easy....

Hint – “My simulation does not work”! Please be aware that many designers have allowed themselves to be confused by an attempt to simulate a design

containing the UART6 macros; they simply forget that baud rate is often significantly slower than their clock and fail to simulate for enough cycles. In the

above example the transmission of one byte (or character) will take 10 bits × 16 enable pulses × 109 clock cycles = 17,440 clock cycles; a long simulation!

Hint – Similar code in VHDL and Verilog is provided in the reference designs

Hint – A spread sheet called ‘BAUD_rate_counter_calculator.xlsx’ is provided in the package.

 This can be used to calculate the ‘baud_count’ value and evaluate the accuracy.

© Copyright 2011-2014 Xilinx
.

Page 9

Transmitting Data with ‘uart_tx6’

To transmit data (or characters) you simply need to write 8-bit values into the FIFO buffer; the UART will automatically transmit any characters that are

present in the buffer at the baud rate defined by ‘en_16_x_baud’ (and the clock frequency) until the FIO buffer is empty. The FIFO is fully synchronous with

the clock (clk). 8-bit data or characters presented to the ‘data_in’ port will be written into the FIFO on the rising edge of the clock when the ‘buffer_write’

control is active High (1). This obvious scheme facilitates the writing of individual characters or bursts of characters as required by the application.

16-Byte

FIFO

data_in(7:0)

serial_out

buffer_write buffer_full

buffer_data_present

buffer_half_full

clk

en_16_x_baud Transmitter

8-bit, 1-Stop,

Non parity

uart_tx6

buffer_reset

data_in(7:0)

buffer_write

clk

54H 69H 6DH 65H

‘T’ ‘i’ ‘m’ ‘e’

In this example the text string ‘Time’ is written to the

transmitter FIFO using a combination of a single character

write followed by a burst write of 3 characters.

buffer_full - Whilst it is possible to write one character into the FIFO every clock cycle the UART transmitter will always take many more clock cycles to

serially transmit each character (e.g. 8,680 clock cycles at 115,200 baud using a 100MHz clock). It is therefore extremely easy to fill the FIFO with 16 bytes of

data before the first character has been transmitted. It is vital that no attempt is made to write more data into the FIFO if the ‘buffer_full’ flag is active High (1).

The most common technique employed in an application is to first test that ‘buffer_full’ is Low (0) before writing only one character to the transmitter FIFO. If

the full flag is active then the application waits for it to return Low before writing just one more character and testing the ‘buffer_full’ flag again.

buffer_reset - An active High (1) on the ‘buffer_reset’ input will synchronously reset the FIFO buffer on the corresponding rising edge of the clock. Any data in

the buffer will be lost and all flags with be cleared. This is typically only required when rebooting a system or following a buffer overflow (which is best avoided

anyway). Note that if a reset is applied whilst data is being transmitted then the character being transmitted at that time will probably appear corrupted

although that should be insignificant compared with the buffer contents being discarded!

buffer_half_full - The ‘buffer_half_full’ flag will be active High (1) whenever the FIFO contains 8 or more characters pending transmission. This can be useful

to some applications which prefer to write to the transmitter FIFO in small bursts rather than one character at a time. By first testing that the ‘buffer_half_full’

flag is Low (0) the application will know that up to 8 bytes of information can be written in a burst without needing to check the full flag between each write.

© Copyright 2011-2014 Xilinx
.

Page 10

Transmitting Data with ‘uart_tx6’

data_in(7:0)

buffer_write

clk

buffer_data_present

buffer_data_present - The ‘buffer_data_present’ flag is active High (1) at any time that the FIFO buffer contains one or more characters. Alternatively, it can

be said that the buffer is empty when this flag is Low (0). Whilst the majority of applications ignore this flag it can be useful in two principle ways....

Hint - In some applications it is possible to predict in advance that the FIFO buffer will never become full and all flags can be ignored. This technique can

apply if the ‘packets’ of information written to the transmitter FIFO always contain less than 16 characters and those packets occur at such a rate that it is

guaranteed that the UART will have had adequate time to transmit each packet such that the FIFO will be empty before the next one. For example, an

application could transmit the time of day using a text string with the format ‘hh:mm:ss’. This is a packet containing 8 characters, which if transmitted at one

second intervals absolutely guarantees that the buffer will not become full providing the baud rate is more than 80 (which it normally is!).

Hint - The effective depth of the FIFO buffer could be increased by inserting an additional FIFO between the application and the UART Transmitter. For

example the FIFO mode of a Block Memory (BRAM) could significantly increase the depth of the buffer. The application would observe the status flags of the

additional FIFO and write information to it as appropriate. A simple state machine would then automate the process of reading data from this FIFO and writing

it into the UART transmitter FIFO providing ‘buffer_full’ was Low.

Hint – It may be undesirable in some applications for everything to ‘stall’ whilst waiting for the UART to transmit data and free space in the FIFO. However, if

the FIFO is full then it is also known that the UART transmitter already has enough information to keep it actively transmitting for another 16 character

periods. During this time (e.g. ~1.38ms at 115,200 baud) the application could be gainfully employed to perform other tasks whilst the UART macro continues

to transmit. When the application returns to the UART the buffer could, if required, be refilled to capacity and left once again whilst servicing other tasks.

START 0 1 2 3 4 5 6 7 STOP

8,680 clock cycles (115,200 baud at 100MHz)

Serial transmission not in scale with clock waveform shown above!

2) The diagram below indicates how the ‘buffer_data_present’ flag is set High when the first character is written to the buffer. Then, providing no other

characters are written, the flag returns Low once the last bit of that character has been transmitted. This can be used by the application to implement either a

hardware or soft (XON/XOFF) flow control scheme by only writing one character to the buffer providing the receiver at the other end of the serial line is

indicating ‘clear to send’ (CTS). Although this effectively wastes much of the FIFO capability it ensures that the transmission can be stopped within one

character when required to do so.

1) If it is known that the FIFO is empty then it is safe to write a burst of up to 16 characters without needing to test the ‘buffer_full’ flag between each write.

© Copyright 2011-2014 Xilinx
.

Page 11

Receiving Data with ‘uart_rx6’

Data (or characters) are received automatically at the baud rate defined by ‘en_16_x_baud’ (and the clock frequency) and then stored in the receiver FIFO

buffer. The FIFO is fully synchronous with the clock (clk). When active High (1), the ‘buffer_data_present’ flag is used to signify to the application that there

is at least one character ready to be read which will be present on the ‘data_out’ port. The application should capture this data and then provide an active

High (1) level for one rising edge of the clock to the ‘buffer_read’ control input. The receiver FIFO will then present the next character to be read on the

‘data_port’ or drive the ‘buffer_data_present’ flag Low (0) to indicate that the FIFO is now empty. This obvious scheme facilitates the reading of individual

characters or bursts of characters (if available).

data_out(7:0)

buffer_read

clk

‘T’ = 54H

In this example the character ‘T’ is received and automatically stored in the FIFO

buffer which was previously empty. After a few clock cycles the application responds

to the ‘buffer_data_present’ flag and reads the FIFO so that it is empty once again.

buffer_read
16-Byte

FIFO

data_out(7:0)

serial_in

buffer_full

buffer_data_present

buffer_half_full

clk

en_16_x_baud

Receiver

8-bit, 1-Stop,

Non parity

uart_rx6

buffer_reset

Hint – The ‘buffer_read’ control is more accurately described as being an “I have read you” control. Unlike the ‘buffer_write’ control that is an instruction to

write data into the transmitter FIFO on the corresponding rising clock edge, the data presented on the ‘data_out’ port of the receiver FIFO can be read at any

time that it is valid (e.g. ‘T’ shown in the diagram above could have been read anywhere in the green zone) and the ‘buffer_read’ is purely the indication that

the FIFO can now discard that data and move on to the next character and/or update the status flags.

buffer_data_present

Hint – The ‘buffer_read’ control should only be asserted when ‘buffer_data_present’ is High

indicating that there was valid data to be read from the buffer. The diagram on the right shows

a burst read of characters ‘i’, ‘m’ and ‘e’ resulting in the buffer becoming empty. Note how

‘buffer_data_present’ is used to drive ‘buffer_read’ Low to prevent a further illegal read.

Asserting ‘buffer_read’ when ‘buffer_data_present’ is Low does not itself result in incorrect

operation of the FIFO but it does imply that the application may have read ‘data_out’ when it

was not valid to do so. There is also a risk that that the ‘buffer_read’ occurs at exactly the

same time that a character received from the serial input is being written into the FIFO buffer

with the net effect being that the received character is missed by the application.

data_out(7:0)

buffer_read

clk

buffer_data_present

69H 6DH 65H

© Copyright 2011-2014 Xilinx
.

Page 12

Receiving Data with ‘uart_rx6’

buffer_half_full - The ‘buffer_half_full’ flag will be active High (1) whenever the receiver FIFO contains 8 or more characters waiting to be read by the

application. This can be very useful in several ways:-

buffer_reset - An active High (1) on the ‘buffer_reset” input will synchronously reset the FIFO buffer on the corresponding rising edge of the clock. Any data

in the buffer will be lost and all flags will be reset. This is typically only required when rebooting a system or following a buffer overflow (which is best avoided

anyway). Note that if a reset is applied whilst data is being received then the character being received at that time will still be written into the receiver buffer

providing the ‘buffer_reset’ is Low when the stop bit of that character is received (assuming it is a valid).

buffer_full - The receiver FIFO buffer can hold up to 16 characters. Obviously this means that up to 16 characters can be received from the serial input

before the application needs to read any of them from the buffer. The ‘buffer_full’ flag will be driven active High (1) as soon as the 16th character is received

since design start or the when the last read occurred. If this situation be allowed to develop in a application then it should be treated as a matter of some

urgency to read at least one character from the buffer before a 17th character is received and results in a buffer overflow. Remember that it can appear to take

a relatively long time (e.g. 8,680 clock cycles at 115,200 baud using a 100MHz clock) for the next character to be received so a rapid response to ‘buffer_full’

should avoid any loss of data. If however, the application is unable to determine the moment at which the ‘buffer_full’ flag was asserted then it will almost

certainly need to assume that an overflow has occurred and take suitable recovery steps.

1) If the ‘buffer_half_full’ flag is used to alert the application to the requirement to start reading from the buffer then the remaining half of the buffer

(enough to receive another 8 characters) would generally provide adequate time for the application to schedule the buffer reading task in the near future

rather than interrupting its current task. This ability to be more ‘relaxed’ is often very welcome. Using this scheme the ‘buffer_full’ flag should never be

seen to go High and therefore be assigned the status of ‘overflow’ or ‘communication error’ should it ever occur.

2) The ‘buffer_half_full’ flag is ideally suited for the implementation of either a hardware or soft (XON/XOFF) flow control scheme. When the flag is

asserted the receiving application can indicate to the transmitter at the other end of the link that it should cease transmission. By the very nature of the

UART arrangement it is almost impossible to stop the transmission immediately but since there is enough remaining space in the receiver FIFO buffer

to store another 8 characters before an overflow can occur then this provides a high margin of safety.

3) Some application have more important and compelling tasks to perform than checking to see if there is anything waiting to be read from the

receiver FIFO. Likewise, handling one character at a time when each character is received relatively slowly can be a distraction from other tasks. In

these situations the ‘buffer_half_full’ flag can be used as the trigger to tell the application that there are at least 8 characters waiting to be read. Not

only may this be considered enough information to be worthy of processing but it also means the application can burst read up to 8 characters

without needing to check the state of the ‘buffer_data_present’ flag between each read operation.

Hint – If the FIFO is full then the application can burst read up to 16 characters without needing to check the state of the ‘buffer_data_present’ flag.

© Copyright 2011-2014 Xilinx
.

Page 13

Debugging a UART Connection

If your UART communication is not working then fortunately there is nearly always a simple reason and an easy solution. As with most successful debugging,

it is often solved by breaking the design down into smaller pieces and checking what does and what does not work. So here are the steps recommended to

debug a UART connection that should solve 90% of cases. The next 9% of cases will be solved by going over them again more carefully! 

1) Read the documentation again!

 - If you are simulating a design rather than using hardware then especially read the “My simulation does not work” Hint on page 8.

2) Check your communication settings at your terminal. Do they match your baud rate? Check 8-bit, 1-stop, no parity and no handshake.

3) Check your design again.

 - The way you have connected the UART macros in your design.

 - The way you have defined the baud rate (you are generating synchronous enable pulses aren’t you?).

 - Your UCF file defines the correct pins on your FPGA; it’s easy to swap serial input and serial output pins!

 - Cables are plugged in correctly etc.

 - The FPGA is configured isn’t it?

4) If nothing seems to make it work then create a dummy design in which you define a ‘wire’ directly between your serial input and serial output.

 - This is a ‘loop-back’ connection and completely eliminates the UART macros and the rest of your design.

 - Typing on your keyboard should result in the same characters being displayed as they go down and back up the cable.

 - Likewise an embedded design should be able to see characters echo back.

 - If this doesn’t work then you have a problem with your cable or your loop-back design.

 - Check your UCF pin assignments again.

 - Are they the correct pins for your hardware and have you got them assigned the right way round?

 - Check your cable

 - Ideally disconnect it and physically short the connections at the end of the cable.

 - Note that serial cables either come as straight-through (pin3 to pin3) or swap-over (pin3 to pin4) so be sure which you need and use.

5) If the loop-back worked then focus only on the ‘uart_tx6’ macro first and continuously transmit a known ASCII character (e.g. ‘A’ = 41hex).

 - If you do not receive characters then.....

 - Check your baud rate definition again along with 8-bit, 1-stop, no parity and no handshake.

 - Check how you write to the ‘uart-tx6’ macro and check to see if the transmitter buffer flags are changing as expected.

 - If you do receive characters then....

 - Implementing a loop-back of data received from ‘uart_rx6’ to resolve your receive path.

 - Check status of flags on ‘uart_rx6’.

© Copyright 2011-2014 Xilinx
.

Page 14

PicoBlaze Reference Designs with UART6 Macros

Three simple reference designs are provided with KCPSM6 and the UART6 macros. As provided, the source files target the KC705 Kintex-7 Evaluation Kit,

the ML605 Virtex-6 Evaluation Kit and the ATLYS Spartan-6 Design Platform but all are a reference examples easily ported to other hardware. The primary

objective of all the designs is to illustrate the typical hardware arrangements and PSM assembler code required to successfully use the UART6 macros with

KCPSM6. For this reason the designs are very similar but there are also some subtle differences as well as unique features intended to provide educational

examples and more reusable code for your own designs.

Common to all designs...

uart6_ml605

uart6_atlys

- The KCPSM6 processor interfaces to the UART6 receiver and transmitter macros using the same input and output ports.

- The baud rate is set to 115200 (This is also the default baud rate for the PicoTerm terminal provided).

- PSM code (KCPSM6 programs) illustrate UART macro interaction and communication with terminal (keyboard and display) .

- Source files only; you must assemble the PSM file to generate the program definition file and then implement the design to configure the device.

- Hardware defined by..... ‘uart6_ml605.vhd’ (verilog version also provided) and ‘uart6_ml605.ucf’. Note program memory set to ‘V6’ for Virtex-6.

- ML605 provides a 200MHz differential clock which is divided by 4 using a ‘BUFR’ to form a 50MHz clock.

 Note how the baud rate is defined relative to the 50MHz clock and that software delays in PSM code also relate to 50MHz.

- KCPSM6 code defined by.... ‘uart_control.psm’ and ‘uart_interface_routines.psm’.

- Program illustrates interaction with the user of any terminal allowing keyboard entry of characters and performing ASCII, hex and decimal conversions.

- Hardware design defined by..... ‘uart6_atlys.vhd’ (verilog version also provided) and ‘uart6_atlys.ucf’. Note program memory set to ‘S6’ for Spartan-6.

- ATLYS provides a 100MHz clock which is used by all logic. Note that the baud rate and software delays in PSM code are defined relative to 100MHz.

- Additional ports interface with the 8 switches and 8 LEDs on the ATLYS board, an interrupt is generated at one second intervals and a reset button is used.

- KCPSM6 code defined by.... ‘atlys_real_time_clock.psm’, ‘PicoTerm_routines.psm’ and ‘soft_delays_100mhz.psm’.

- The program exploits and illustrates several of the unique features that PicoTerm provides and therefore PicoTerm must be used.

- Although simple, the program provides examples of interrupt handing and hardware interaction in addition to multiple UART communications.

Hint – README.txt includes UART device pin constraints for other popular boards

uart6_kc705

- Hardware defined by..... ‘uart6_kc05.vhd’ and ‘uart6_kc705.ucf’. Note program memory set to ‘7S’ for 7-Series.

- KC705 provides a 200MHz differential clock which is distributed to all logic. Note how KCPSM6 reads an input port that specifies the clock frequency

 and calculates the clock division factor that it writes to an output port to define the baud rate. This scheme can make designs more portable.

- KCPSM6 code defined by.... ‘auto_baud_rate_control.psm’ and ‘uart_interface_routines.psm’.

- Program demonstrates a way in which to set the baud rate and define internal software delays that reflects the clock frequency specified. This very

 simple example displays information and a timer on any terminal which proves that the baud rate and internal delays have been defined correctly.

© Copyright 2011-2014 Xilinx
.

INPUT

Page 15

uart6_ml605

address

instruction bram_enable

interrupt

sleep

reset

interrupt_ack

port_id

out_port in_port

k_write_strobe

read_strobe

write_strobe

kcpsm6

instruction enable

uart_control

rdl

clk

address

clk

‘0’

buffer_write

data_in serial_out

uart_tx6

clk

buffer_data_present

buffer_half_full

buffer_full

buffer_reset

[0]

[1]

[2]

en_16_x_baud

data_out serial_in

uart_rx6

clk

buffer_data_present

buffer_half_full

buffer_full

buffer_reset

[3]

[4]

[5]

en_16_x_baud

buffer_read

R

COUNTER

=26

115200 baud with

50MHz clock

uart_rx

uart_tx

Input Ports

00 – UART status

01 – UART Rx data

clk200_p

[0]

[0]

[0]

[1:0]

write_to_uart_tx

read_from_uart_tx

[0]

CE

K-Output Port

1 – UART reset

read_strobe

KCPSM6 executes an

INPUT instruction that

reads ‘data_out’ from

‘uart_rx6’. ‘read_strobe’

is used to qualify the

‘port_id’ to generate a

‘buffer_read’ pulse

indicating to the receiver

buffer that the data has

been read and can now

advance to the next

character and/or update

the receiver buffer flags.

KCPSM6 executes an OUTPUT instruction that writes data directly into

‘uart_tx6’. ‘write_strobe’ qualifies the ‘port_id’ to generate the ‘buffer_write’

pulse. Note that this must be a combinatorial decode (no pipeline!).

This design only uses 1-bit of address due to low

number of ports required (adjust as necessary).

[0]

[1]

This diagram represents the circuit provided in ‘uart6_ml605.vhd’ (or ‘.v’) but the same ports are assigned to the UART macros in ‘uart6_atlys.vhd’.

‘buffer_read’

50MHz

‘buffer_write’

clk

clk200_n
Divide by 4

JTAG Loader

Output Port

 (write strobe)

01 – UART Tx data

Input Port

 (read strobe)

01 – UART Rx

1-bit

selects

2 ports

© Copyright 2011-2014 Xilinx
.

Page 16

uart6_kc705
This diagram represents the circuit provided in ‘uart6_kc705.vhd’ (or ‘.v’). Note that the actual UART interface is the same as in ‘uart6_ml605.vhd’.

address

instruction bram_enable

interrupt

sleep

reset

interrupt_ack

port_id

out_port
in_port

k_write_strobe

read_strobe

write_strobe

kcpsm6

instruction enable

auto_baud_rate_control

rdl

clk

address

clk

‘0’

buffer_write

data_in serial_out

uart_tx6

clk

buffer_data_present

buffer_half_full

buffer_full

buffer_reset

[0]

[1]

[2]

en_16_x_baud

data_out serial_in

uart_rx6

clk

buffer_data_present

buffer_half_full

buffer_full

buffer_reset

[3]

[4]

[5]

en_16_x_baud

buffer_read

R

COUNTER

= 115200 baud

uart_rx

uart_tx

clk200_p

[1]

[0]

[0]

[1:0]

write_to_uart_tx

read_from_uart_tx

K-Output Port

1 - UART reset

[0]

[1]

200MHz

clk

clk200_n

JTAG Loader

Output Port

 (write strobe)

01 - UART Tx data

Input Port

 (read strobe)

01 - UART Rx

Input Ports

00 - UART status

01 - UART Rx data

02 - Clock Frequency

clk_freq_in_mhz[7:0]
Output Port

02 - set_baud

[0]

CE

[1]

200

KCPSM6 computes the clock division

factor to define the BAUD rate.

‘port_id’ is established for two clock cycles. To

reliably achieve 200MHz in a -2 speed Kintex-7

device, port_id(0) has an additional pipeline

register to exploit both clock cycles.
CE

© Copyright 2011-2014 Xilinx
.

Page 17

uart6_atlys

address

instruction bram_enable

interrupt

sleep

reset

interrupt_ack

port_id

out_port in_port

k_write_strobe

read_strobe

write_strobe

kcpsm6

instruction enable

atlys_real_time_clock

rdl

clk

address

clk

‘0’

buffer_write

data_in serial_out

uart_tx6

clk

buffer_data_present

buffer_half_full

buffer_full

buffer_reset

[0]

[1]

[2]

en_16_x_baud

data_out serial_in

uart_rx6

clk

buffer_data_present

buffer_half_full

buffer_full

buffer_reset

[3]

[4]

[5]

en_16_x_baud

buffer_read

R

COUNTER

=53

115200 baud with

100MHz clock

uart_rx

uart_tx

Input Ports

00 – UART status

01 – UART Rx data

02 – Switches

Output Port (write strobe)

01 – UART Tx data

clk

[1]

[0]

[0]

[1:0]

write_to_uart_tx

read_from_uart_tx

[1:0]

CE

K-Output Port

1 – UART reset

Input Port (read strobe)

01 – UART Rx

[0]

[1]

This diagram represents the circuit provided in ‘uart6_atlys.vhd’ (or ‘.v’). Note that the actual UART interface is the same as in ‘uart6_ml605.vhd’.

100MHz

switch[7:0]
reset_b

rdl

CE

led[7:0]

[1]

Output Port

02 – LEDs

[0]

R

COUNTER =99,999,999

interrupt

JTAG Loader

Interrupt once per second

2-bits

selects

3 ports

(4 max)

© Copyright 2011-2014 Xilinx
.

Page 18

KCPSM6 Interface with UART6 Macros

input_ports: process(clk)

begin

 if clk'event and clk = '1' then

 case port_id(0) is

 -- Read UART status at port address 00 hex

 when '0' => in_port(0) <= uart_tx_data_present;

 in_port(1) <= uart_tx_half_full;

 in_port(2) <= uart_tx_full;

 in_port(3) <= uart_rx_data_present;

 in_port(4) <= uart_rx_half_full;

 in_port(5) <= uart_rx_full;

 -- Read UART_RX6 data at port address 01 hex

 when '1' => in_port <= uart_rx_data_out;

 when others => in_port <= "XXXXXXXX";

 end case;

 if (read_strobe = '1') and (port_id(0) = '1') then

 read_from_uart_rx <= '1';

 else

 read_from_uart_rx <= '0';

 end if;

 end if;

end process input_ports;

The extracts of VHDL shown on the left hand side (from ‘uart6_ml605.vhd’) define the three

ports forming the interface with the UART macros. Below are a set of CONSTANT

declarations in the PSM code that correspond with the hardware port allocations and enable

the PSM code routines to be more portable as well as easier to write and understand.

write_to_uart_tx <= '1' when (write_strobe = '1') and (port_id(0) = '1')

 else '0';

constant_output_ports: process(clk)

begin

 if clk'event and clk = '1' then

 if k_write_strobe = '1' then

 if port_id(0) = '1' then

 uart_tx_reset <= out_port(0);

 uart_rx_reset <= out_port(1);

 end if;

 end if;

 end if;

end process constant_output_ports;

CONSTANT UART_status_port, 00

CONSTANT UART_Tx_data_present, 00000001'b

CONSTANT UART_Tx_half_full, 00000010'b

CONSTANT UART_Tx_full, 00000100'b

CONSTANT UART_Rx_data_present, 00001000'b

CONSTANT UART_Rx_half_full, 00010000'b

CONSTANT UART_Rx_full, 00100000'b

CONSTANT UART_TX6_output_port, 01

CONSTANT UART_RX6_input_port, 01

CONSTANT reset_UART_port, 01

CONSTANT UART_tx_reset, 00000001'b

CONSTANT UART_rx_reset, 00000010'b

CONSTANT UART_reset, 00000011'b ;reset Tx and Rx

CONSTANT UART_operate, 00000000'b ; Tx and Rx free to operate

Reading ‘uart_rx6’ buffer captures the data and

generates the ‘buffer_read’ pulse from the ‘read-strobe’.

All code shown below is provided in ‘uart6_ml605.vhd’ (or ‘.v’) and ‘uart_interface_routines.psm’ (or ‘PicoTerm_routines.psm’).

Hint - When decoding more bits of ‘port_id’ then your code would

 take the form....
and (port_id(2 downto 0) = “001")

‘uart6_atlys.vhd’ (or ‘.v’) is slightly different due to having additional ports to read switches and drive LEDs but the UART port assignments remain the same.

© Copyright 2011-2014 Xilinx
.

Page 19

KCPSM6 Interface with UART6 Macros

 UART_RX: LOAD s1, 167'd ;Timeout = 167 x (6 instructions x 2 clock cycles)

rx_timeout: INPUT s0, UART_status_port

 TEST s0, UART_Rx_data_present ;Z=0 when data present

 JUMP NZ, read_Rx

 SUB s1, 1'd

 RETURN Z ;Timeout returns with Z=1

 JUMP rx_timeout

 ;

 read_Rx: INPUT s5, UART_RX6_input_port ;read character from buffer

 RETURN

These simple PSM subroutines enable

characters to be transmitted and received

using the UART macros.

Transmit

It is vital that no characters are written to the

transmitter FIFO buffer if it is full. This routine

tests the ‘buffer_full’ flag and unless it is Low

(0) it will wait until it is before executing the

OUTPUT instruction to write data to the

transmitter FIFO.

Receive

The key requirement is that a read only occurs

when there is a character waiting to be read

from the receiver FIFO buffer. So this routine

tests the ‘buffer_data_present’ flag to ensure

that it is High (1) before executing the INPUT

instruction to read a character.

This routine also includes a timeout to prevent

KCPSM6 waiting indefinitely for ‘uart_rx6’ to

receive a valid character. This could be used

to detect a break in communications or allow

KCPSM6 to perform some other tasks.

reset_UART_macros: OUTPUTK UART_reset, reset_UART_port

 OUTPUTK UART_operate, reset_UART_port

Reset – Generates active High reset pulses with a duration

 of 2 clock cycles to both ‘uart_tx6’ and ‘uart_rx6’.

Hint – The ‘timeout’ feature can be removed

 for many applications.

 ;--

 ; Routine to attempt to receive one character from the UART Receiver (UART_RX6)

 ;--

 ;

 ; This routine will attempt to receive one character from the 'UART_RX6' macro, and if

 ; successful, will return that character in register 's5' and the Zero flag will be

 ; reset (Z=0).

 ;

 UART_TX: INPUT s0, UART_status_port ;Check if buffer is full

 TEST s0, UART_Tx_full

 JUMP NZ, UART_TX

 OUTPUT s5, UART_TX6_output_port ;write character to buffer

 RETURN

 ;--

 ; Routine to send one character to the UART Transmitter (UART_TX6)

 ;--

 ;

 ; This routine will transmit the character provided in register 's5'.

 ;

All code shown below is provided in ‘uart_interface_routines.psm’.

 ;---

 ; Routine to reset UART Buffers inside 'UART_TX6' and 'UART_RX6'

 ;---

‘PicoTerm_routines.psm’ has the same ‘UART_TX’ code but contains an enhanced ‘UART_RX’ routine (plus additional routines) to exploit PicoTerm features.

© Copyright 2011-2014 Xilinx
.

Page 20

Example Program: uart_control.psm

The ‘uart_control.psm’ program includes several routines that demonstrate typical uses of the UART macros when communicating with a simple terminal such

as PicoTerm (provided with PicoBlaze and the UART macros) or HyperTerminal. The screen capture below shows PicoTerm when connected to the ML605

Evaluation Board running the reference design. Note that the ML605 has a USB-UART bridge with a corresponding virtual COM port on the PC.

Printing or displaying text strings is a very common

application. The STRING directive combined with the

LOAD&RETURN instruction makes sending text

strings to ‘uart_tx6’ straightforward.

This reference code implements a hexadecimal to

decimal converter. In so doing it receives characters

entered by the user on their keyboard via the ‘uart_rx6’

and performs the following...

These text strings pick up on the version information

provided by the KCPSM6 assembler and the ‘hwbuild’

generic in the VHDL design. A very simple way to

track the build state and date/time stamp any design.

The display is cleared by KCPSM6 sending ANSI

Escape Sequences using ‘uart_tx6’.

- Accepts upper or lower case characters.

 Converts lower to upper case.

- ASCII Hex to binary conversion

 Including trap for non-hex characters.

- Display of binary value in ASCII Hex.

- 16-bit binary to 5-digit BCD

 (Binary Coded Decimal)

- Display of BCD with leading zero blanking.
PicoTerm is pre-configured to suit the PicoBlaze UART6 macros with a default 115200 baud rate.

If you use a different terminal then it will need to be configured follows to work with this design....

 115200 Baud, 1 Stop Bit, No parity and No Handshake.

 ASCII setup to perform a line feed when receiving a carriage return.

Error checking and reporting.

© Copyright 2011-2014 Xilinx
.

Page 21

Example Program: auto_baud_rate_control.psm

The ‘auto_baud_rate_control.psm’ program ultimately implements a simple

minutes and seconds timer. However, this timer is really just a way to

demonstrate the more significant code which is described in detail within the

PSM file.

Information will only be displayed on the terminal when the BAUD rate

has been correctly defined so this is calculated at the start of the PSM file.

Once communication has been established the BAUD rate calculation is

repeated so that you can see the values. The PSM code also presents

you with (see the source code) the opportunity to override the

‘clk_freq_in_mhz’ value and test the calculation for other frequencies.

The timer is a simple example of UART

communication and can be used to verify that the

software delays have been tuned correctly.

Looking at the schematic representation of the ‘uart6_kc705.vhd’ design

shown on page 16 you can see that the KCPSM6 has the ability to read an

input port which is supplied with a constant value called ‘clk_freq_in_mhz’.

This constant is defined in the HDL design and specifies the clock frequency

being used (which is 200MHz in the source code supplied to work with the

KC705 board). KCPSM6 reads this value and calculates three other values

which set the UART BAUD rate to 115200 and tune 1µs and 1ms software

delay loops. This scheme would enable this PSM code to work unmodified

with different clock frequencies.

Every KCPSM6 instruction takes 2 clock cycles to execute so the

execution of a known number of instructions at a known frequency will

result in a predictable delay. KCPSM6 again reads the ‘clk_freq_in_mhz’

value and calculates how many clock cycles represent delays of 1µs and

1ms and then calculates how many iterations of small program loops are

required to execute the appropriate number of clock cycles. This scheme

also shows how PSM can be made ‘frequency aware’ and portable.

Simple example of PSM

code implementing

minutes and seconds

© Copyright 2011-2014 Xilinx
.

Page 22

Example Program: auto_baud_rate_control.psm

This Vivado simulation waveform shows that KCPSM6 has taken 18.6425µs to compute the ‘set_baud’rate’ value. Once output to the BAUD rate counter

circuit the ‘en_16_x_baud’ pulses start to be generated at the correct rate for 115200 BAUD communication.

© Copyright 2011-2014 Xilinx
.

Page 23

Example Program: atlys_real_time_clock.psm

The ‘atlys_real_time_clock.psm’ program also displays text and interacts with user keyboard entries in a similar way to the ‘uart6_ml605.psm’ program (see

page 20). However, this program specifically exploits and demonstrates some of the special features of PicoTerm so PicoTerm must be used. The hardware

design includes additional ports which interface with 8 switches and 8 LEDs on the ATLYS board. The program reads the real switches on the ATLYS board

and sets the virtual LEDs within PicoTerm and reads the virtual switches within PicoTerm and drives the real LEDs on the ATLYS board . The program also

has an interrupt service routine (ISR) that responds to the interrupts generated at one second intervals to maintain a real time clock.

PSM code uses the STRING directive combined with the LOAD&RETURN instruction to print

text strings. Text colour can be set in the PicoTerm Main terminal window.

Hint - ‘PicoTerm_README.txt’ includes descriptions of the PicoTerm features as well as basic usage.

 ‘PicoTerm_routines.psm’ contains routines to work with each of the features with full descriptions.

Characters received from the keyboard are echoed

 back to the main screen. The ASCII code is also

 displayed on the amber virtual LEDs by

 transmitting a Device Control String (DCS)

The physical switches are read and a DCS

transmitted to set the Red/Green virtual LEDs

Interrupts trigger an ISR which implements a

real time clock (hours, minutes and seconds).

The time is displayed on the PicoTerm virtual

7-Segment Display window via the

transmission of Device Control Strings (DCS).

The program will also transmit a DCS to

confirm that PicoTerm is connected and

another DCS to request the time from your

PC.

KCPSM6 transmits a DCS requesting the status

of the virtual switches and then receives a DCS

response with which it drives the physical LEDs.

© Copyright 2011-2014 Xilinx
.

Page 24

Improving BAUD Accuracy

As described on pages 7 and 8 the baud rate is defined by the rate at which enable pulses are applied to the ‘en_16_x_baud’ input of each macro. In the vast

majority of cases the desired baud rate will be achieved by a simple division of the system clock. Generally speaking an accuracy of ±5% is adequate but it

should be remembered that this figure must account for the total potential difference between the baud rate of the transmitter and the baud rate of the receiver

forming the link. As such, it would be unwise to consume all of the ±5% budget for your end of a link with the assumption that the other end is perfect.

Except in situations where the desired baud rate is an exact integer division of the system clock frequency then the potential for greater baud rate inaccuracy

increases the higher the desired baud rate is relative to the clock. This is best covered by an example....

Desired baud rate = 115,200 Hence the target ‘en_16_x_baud’ pulse rate = 1,843,200 Hz

Reference clock = 25MHz

This implies that the ‘en_16_x_baud’ pulses should be derived by dividing the 25MHz clock by 13.56 which does not appear to be possible so

we select the nearest integer value of 14 and see what happens.....

Counter

RST

Q
=13 en_16_x_baud

25MHz

0 1 2 13

The result is obviously that the ‘en_16_x_baud’ signal pulses High for one cycle every 14 clock

cycles and this corresponds with a pulse rate of 1,785,714Hz. Consequently the UART baud

rate will be 111,607 which is 3,592 slower than target and at 3.1% lower than desired it is

certainly encroaching on the margins for reliable operation.

One solution is to lower the baud rate or increase the clock rate but in most cases we have been ‘dealt the playing cards’ and rarely have the luxury to change

either. In situations where you really want to exploit a higher baud rate it is also undesirable to lower the baud rate and a higher frequency clock may be

impossible to work with. So we need to achieve the equivalent of a non-integer division and fortunately that is easier to implement than you may first think it to

be....

0

25MHz

en_16_x_baud

Q

© Copyright 2011-2014 Xilinx
.

Page 25

Improving BAUD Accuracy

The period of each serial bit is defined by the application of 16 pulses to the ‘en_16_x_baud’ input. To be more correct, a bit period is defined by 16 rising

edges of the clock enabled by ‘en_16_x_baud’ because in some situations the enable input may be permanently High or driven with a less obvious waveform

as we will go on to consider on the next page.

The key observations that each bit period defined by 16 enable pulses and that a complete character is defined by 160 enable pulses. Therefore the focus for

improved baud accuracy is to consider a scheme in which it is the time taken to generate 16 enable pulses that is important rather than the regular precise

timing of every individual pulse.

START START STOP 7 5 6 4 2 3 1 0 Perfect baud rate

START STOP 7 5 6 4 2 3 1 0 Transmitter slightly

too slow

Receiver slightly

too fast The receiver attempts to sample the mid-point of each bit but the regular sample intervals are slightly too fast so the error accumulates over the

character. Notice how the character would still have been received correctly if the transmitter had been perfect but the difference between the slow

transmitter and the fast receiver timing is too great resulting in more than a half bit difference over the 10-bit period of a character (i.e. >5%)

The ‘uart_tx6’ transmitter macro uses each 16 enable pulses to generate the serial waveform with the desired baud rate timing. Whilst a 5% deviation from

the ideal timing of a bit period may seem trivial the problem is that the error accumulates over the transmission of a complete character formed of 10-bit

periods (start bit, 8-data bits and a stop bit). This means that the receiver at the other end of the line may have difficulty correctly receiving the stop bit or even

the MSB’s of the data byte. Of course if the receiver timing deviates from the ideal baud rate in the same direction as the transmitter then they cancel each

other out and can be considered a ‘matching pair’. However, unless you have full control over both ends of a communication link then the opposite could be

true and failure would be almost certain.

In a similar way the ‘uart_tx6’ receiver macro also uses each 16 enable pulses to determine the bit period of the serial waveform but uses this reference in a

particular way. Initially the receiver only looks at the serial line waiting for the High to Low transition associated with the beginning of a start bit. The point at

which this occurs is the reference point in time for the character that follows over 10 bit periods (start bit, 8-data bits and a stop bit). The robust

communications qualities of the UART can be attributed to this resynchronisation at the beginning of each character combined with each bit of the character

being sampled clear of any switching transitions. In other words, the receiver will attempt to sample each bit in the middle where it is stable and ‘uart_tx6’

achieves this by counting the enable pulses following the beginning of the start bit. After 8 enable pulses it should be the middle of the start bit which it checks

is still Low to help reject glitches. Then every 16 enable pulses should correspond with the middle of the next bit. As with the transmitter, a 5% deviation from

the ideal timing of a bit period may seem trivial but the error accumulates. The sampling of the stop bit is defined by the (8+(9×16))=152 enable pulses that

are applied to the macro since the beginning of the start bit and for reliable operation the stop bit really needs to be sampled whilst the stop bit is stable.

Sample too early and the MSB data may still be present or the serial line may still be switching. Sample too late and the serial line could be switching, or have

switched, to the start bit of the next character.

© Copyright 2011-2014 Xilinx
.

Page 26

Improving BAUD Accuracy

Returning to the example in which we desire a 115,200 baud rate but only have a 25MHz reference we know that in an ideal world we would need to generate

an ‘en_16_x_baud’ pulse every 13.56 clock cycles. However we also know that we only need to average this rate and therefore we don’t have to settle for a

fixed integer division. In this example an average of 13.5 clock cycles per enable pulse can be achieved by alternating clock division between 13 and 14 clock

cycles. That’s two pulses every 27 clock cycles resulting in an almost perfect average both within a bit period and across a whole character.

Counter

RST

Q

=26

en_16_x_baud

25MHz

0 1 2 12

The UART baud rate will be (25MHz × 2 / 27)/16 = 115,741 which is only 541 faster

than target. With less than 0.5% deviation from the ideal it is acceptable.

The combination of target baud rate and clock frequency used in the example above example may look as if it was chosen to be convenient but it is actually a

real case study. Remember that the initial inaccuracy of 3.1% was due to the inconvenience of the ideal division factor of 13.56 falling almost mid-way

between two integer values (13 and 14). This means that using a scheme similar to above is the solution to the worst case error associated with simple

rounding with ideal division factors now only being rounded by up to a maximum of 0.25 (e.g. 12.5 is the rounding of values 12.26 through to 12.74).

=12

0 26

2 Pulses every 27 clock cycles

Accuracy at Higher Baud Rates

Obtaining relatively high baud rates with accuracy can be the greatest challenge but whilst the general appearance of the ‘en_16_x_baud’ waveform is

different the same principles apply.

The required ‘en_16_x_baud’ pulse rate is 16×5MHz = 80MHz implying a clock division factor of 1.2. In other words the input needs to High most of the

time but can not be permanently High as that would equate to 6.25MHz (25% too fast). The solution is to drive the enable with a waveform that is High

for 4 clock cycles and Low for 1 clock cycle. In this way the macro is enabled for 4/5 of the clock cycles which means that the baud rate is perfect

(100MHz × 4 / 5)/16 = 5mbs. Transmission is perfect and the receiver will sample each bit close to the mid-point (average 20 clock cycles per bit period).

Desired baud rate = 5mbps

Reference clock = 100MHz

Example

Each bit period is 20 clock cycles (enable active for 4 out of every 5)

en_16_x_baud

100MHz

25MHz

Q

5MHz bit rate = 200ns per bit

© Copyright 2011-2014 Xilinx
.

Page 27

An Alternative: 100% Soft PicoBlaze UART

The ‘uart_tx6’ and ‘uart_rx6’ are each only 5 Slices, and combined with their integrated FIFO buffers, do represent a compelling and easy way to implement

reliable UART communication schemes. However, many applications could implement a UART purely in KCPSM6 PSM code as these examples show.

 ; Software implemented UART Transmitter

 ;

 ; Transmits one character provided in 's5' at 115200 baud with 1 start bit, 1 stop bit

 ; and no parity. All timing is based on a 50MHz clock where each bit period is equivalent

 ; to 217 instructions.

 ;

 ; Registers used s0, s1, s2 (and s5 for the data which is preserved)

 ;

 UART_TX: LOAD s0, 00 ;start bit (Low)

 CALL UART_TX_bit

 LOAD s2, 8'd ;8 bits to transmit

 TX_loop: RR s5 ;transmit LSB first

 SLA s0 ;move each data bit into bit0 of s0 (via C flag)

 CALL UART_TX_bit ;transmit data bit

 SUB s2, 1'd ;count bits transmitted

 JUMP NZ, TX_loop ;After 8 bits 's5' is back to original value

 LOAD s0, 01 ;stop bit

 CALL UART_TX_bit

 RETURN

 ;

 ; Each bit (contained in bit0 of 's0') is transmitted for a period of approximately 217

 ; instructions. The delay implemented below is slightly less to account for the

 ; 5 instructions taken to prepare each bit to be transmitted in the code above.

 ;

UART_TX_bit: OUTPUT s0, UART_output_port

 LOAD s1, 106'd ;106 x 2 = 212

 TX_bit_loop: SUB s1, 1'd

 JUMP NZ, TX_bit_loop

 RETURN

 CONSTANT UART_input_port, 04 ; Receive serial data

 CONSTANT UART_output_port, 10 ; Transmit serial data

 CONSTANT serial_data, 00000001'b ; bit0 - serial data

 LOAD s0, serial_data

 OUTPUT s0, UART_output_port ;initialise serial output

Simple I/O ports are assigned enabling the serial output to be

driven directly and the serial input to be monitored. The serial

output needs to be High (1) in the idle state.

The transmitter is the most practical to

implement in software because your

PicoBlaze program knows when it

wants to transmit information.

When it transmits, KCPSM6 is totally

dedicated to the task and therefore it

will be unavailable to perform other

tasks. This could be a relatively long

time at lower baud rates (e.g. ~1ms

per character at 9600 baud) but if that

is all the application needs to do then

putting KCPSM6 to good use during

this time saves 5 Slices. If there are

other tasks to perform then it is far

better to use the ‘uart_tx6’ macro.

When KCPSM6 has no information to

transmit the serial output is left parked

in the High (1) state and KCPSM6 is

totally free to perform other tasks.

Transmitter – Every KCPSM6 instruction executes in 2 clock cycles so it is possible to generate the correct UART waveform with reasonable accuracy for

 most typical baud rates (baud rate is slow relative to the clock frequency).

This example if for 115200 baud using a 50MHz clock

© Copyright 2011-2014 Xilinx
.

Page 28

An Alternative: 100% Soft PicoBlaze UART
 ; Software implemented UART Receiver

 ;

 ; Receives one character into 's5' at 115200 baud with 1 start bit, 1 stop bit and no

 ; parity. All timing is based on a 50MHz clock where each bit period is equivalent to 217

 ; instructions. A valid character is signified by Z=0 and C=0. A timeout (~51us with no

 ; serial activity) is signified by Z=1 and C=0. When serial activity is detected but

 ; character is invalid then Z=0 and C=1.

 ;

 ; Registers used s0, s1, s2 and s5.

 ;

 UART_RX: LOAD s1, 255'd ;Detect beginning of start bit (0) or timeout

 rx_timeout: INPUT s0, UART_input_port ; 255 x 5 = 1275 instructions or ~51us.

 TEST s0, serial_data ;test serial input for change to '0'

 JUMP Z, start_bit

 SUB s1, 1'd

 JUMP NZ, rx_timeout

 RETURN ;Timeout returns with Z=1 and C=0

 ;

 start_bit: LOAD s1, 51'd ;Wait until middle of start bit

mid_start_delay: SUB s1, 1'd ;51 x 2 = 102 instruction delay

 JUMP NZ, mid_start_delay

 INPUT s0, UART_input_port ;test for start bit = '0'

 SR1 s0 ;shift start bit into carry flag and force Z=0

 RETURN C ;Will abort with C=1 and Z=0 if start bit was High

 ;

 LOAD s2, 08 ;8 bits to receive

 RX_loop: LOAD s1, 105'd ;Loop delay is (105 x 2) + 6 = 216 instructions

 rx_bit_delay: SUB s1, 1'd

 JUMP NZ, rx_bit_delay

 INPUT s0, UART_input_port ;sample data bit at mid-point

 SR0 s0 ;move data bit into carry flag

 SRA s5 ;Shift data bit into 's5' LSB first

 SUB s2, 1'd ;count 8 bits

 JUMP NZ, RX_loop

 ;

 ; Finally wait one more bit period and sample the stop bit which should be High.

 ; If it is Low then set carry flag to indicate error. But if it is High the

 ; character is good and the return must be made with Z=0.

 ;

 stop_bit: LOAD s1, 106'd ;Wait until middle of stop bit

 stop_bit_delay: SUB s1, 1'd ;(106 x 2) + 5 = 217 instructions

 JUMP NZ, stop_bit_delay

 INPUT s0, UART_input_port ;test for stop bit = '1'

 XOR s0, serial_data ;invert bit so that correct value for carry flag

 SR1 s0 ;shift inverted bit into carry flag force Z=0

 RETURN ;For good character return with Z=0 and C=0

The single biggest issue with

adopting a software UART receiver

is that KCPSM6 must detect the

beginning of the start bit otherwise a

character will appear corrupted or

missed altogether. This means that

your program really needs to be able

to anticipate when a character is

about to be received and then

dedicate itself to the task of

receiving. This is practical in some

applications; for example; when

there is nothing else to do except

wait for a user input in response to a

prompt just issued.

However, the naturally

asynchronous nature of UART really

does make the ‘uart_rx6’ macro the

more natural choice especially with

its internal FIFO buffer.

Receiver – Every KCPSM6

instruction executes in 2 clock cycles

so it is possible to analyse the

activity on the serial input with

reasonable accuracy for most typical

baud rates (baud rate is slow relative

to the clock frequency). However, it

is immediately obvious from this

example that receiving is more of a

challenge than transmitting!

This example if for 115200 baud using a 50MHz clock

