
© Copyright 2012-2013 Xilinx
.

Post Configuration Access To SPI Flash

 A KCPSM6 Reference Design for the KC705 Evaluation Board

Ken Chapman

18th March 2013 – Initial Release

14th November 2013 – Minor corrections

© Copyright 2012-2013 Xilinx
.

Page 2

Disclaimer

Copyright © 2012-2013, Xilinx, Inc.

This file contains proprietary information of Xilinx, Inc. and is protected under U.S. and international copyright and other intellectual property laws.

Notice of Disclaimer

Xilinx is disclosing this Application Note to you “AS-IS” with no warranty of any kind. This Application Note is one

possible implementation of this feature, application, or standard, and is subject to change without further notice from

Xilinx. You are responsible for obtaining any rights you may require in connection with your use or implementation of

this Application Note. XILINX MAKES NO REPRESENTATIONS OR WARRANTIES, WHETHER EXPRESS OR

IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, IMPLIED WARRANTIES OF

MERCHANTABILITY, NONINFRINGEMENT, OR FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL

XILINX BE LIABLE FOR ANY LOSS OF DATA, LOST PROFITS, OR FOR ANY SPECIAL, INCIDENTAL,

CONSEQUENTIAL, OR INDIRECT DAMAGES ARISING FROM YOUR USE OF THIS APPLICATION NOTE.

© Copyright 2012-2013 Xilinx
.

Page 3

This Document and Reference Design

The primary purpose of this document is to provide images to supplement the descriptions contained in the source VHDL and PSM code provided

with this reference design.

It is assumed that you already have a copy of the KCPSM6 variant of PicoBlaze and are familiar with using it. In particular, this reference design

builds on the UART based reference designs provided in the KCPSM6 package so this document focuses on the additions specific to SPI Flash

memory.

The reference design is presented on the Kintex-7 KC705 Evaluation Kit. Except for the special requirements associated with the set up of the board,

the reference design itself should provide a valid starting point for any 7-Series based design and it is hoped that the SPI related source can be

reused.

The SPI Flash memory on the KC705 Evaluation Kit is a Micron/Numonyx N25Q128 device. The source code provided is therefore written to work

with this device but it would also be expected to work with similar SPI Flash memory devices from other manufacturers. Most Flash memory devices

appear to be the same with respect to general communication and read operations. The differences tend to relate to the internal organization of the

flash memory (e.g. the size and number of sectors), the write and the erase operations. Even so, the source code provided should still provide a

good starting point.

I do hope you find this reference design useful. Please provide any feedback related to this reference design (good or bad) to…

chapman@xilinx.com

© Copyright 2012-2013 Xilinx
.

Page 4

Overview of Reference Design

PicoBlaze

(KCPSM6)
UART

SPI

I/F
SPI Flash

Memory

N25Q1288

USB/

UART

200MHz

Oscillator

The design operates at 100MHz but there is nothing significant about the SPI communication that requires this frequency.

As provided, the SPI interface achieves a bit rate equal to the clock frequency divided by 24 (e.g. 3.57 Mbit/s with 100MHz clock).

Depending on device type and speed grade, KCPSM6 can be used with a clock up to ~240MHz.

Except for ‘PicoTerm’, all elements

shown are on the KC707 Board

PicoTerm

CPU RST

/2

100MHz

The design implements a bridge between the user of a terminal (PicoTerm) and the N25Q128 Flash memory on the KC705 board. Whilst the primary focus

of this reference design is the ability to communicate with and control the N25Q128 using KCPSM6 (PicoBlaze), inclusion of the USB/UART link in the

design makes it possible for direct user interaction including reading, writing and erasing operations to be invoked and observed.

Please be aware that the PSM code provided consists in total of 1604 instructions but the vast majority of these are related to user interaction. In fact, over

1150 instructions are directly associated with the generation of text massages. For this reason it is useful to know immediately that all the fundamental SPI

communication and Flash memory operations are actually implemented by just 94 instructions and this is isolated in the ‘N25Q128_SPI_routines.psm’ file to

make it easy to locate and for future reuse in your own designs.

Use ‘PicoTerm’ supplied

with KCPSM6 (default

settings match design).

© Copyright 2012-2013 Xilinx
.

Page 5

KC705 Setup & SPI Flash Connections

M[2:0] = “001”

M0 is the most

critical switch and

must be ‘1’ (up)

ON

1 2 3 4 5

The Micron/Numonyx N25Q128 device is a 128M-bit (16M-Byte) SPI Flash memory which is connected to the Kintex-7 device on the KC705 board.

Its primary purpose is to hold a configuration image that would be automatically loaded by the Kintex-7 device operating in Master SPI Mode. For

this reason the Flash memory is connected to the pins specifically required for such configuration.

However, with the KC705 being an ‘evaluation kit’, it also provides a parallel Flash memory and the capability to use a Master BPI Mode for

configuration. Unsurprisingly there are some DIP switches that you use to select the mode. Less obvious, is that when you select the mode you

also steer a control signal on the board to either the SPI Flash or the Parallel Flash. In other words, only the intended type of Flash memory is

connected to the Kintex-7 device. Therefore, the DIP switches must be set to Master SPI Mode otherwise the reference design will not be able to

access the SPI Flash memory after configuration.

Hint – Failing to set the DIP switches to Master SPI mode is an easy mistake to make initially because you nearly always use JTAG configuration in

conjunction with iMPACT during your first experiments and design development cycles. Note that you can set the Master SPI mode permanently

because JTAG configuration will always be possible (i.e. switches do not need to be set to “101” to use JTAG).

DIP switches SW13 must

be set to Master SPI Mode.

S
W

1
3

Enable

Parallel

Flash

N25Q128

CCLK

D00/MOSI D01/MISO

FCS_B

D0 D1

S

C

1

0

M0

XC7K325T

U63

‘Classic’ 4-Wire SPI Communication

(reusing configuration pins)

© Copyright 2012-2013 Xilinx
.

Page 6

Connecting KCPSM6 to SPI Pins

address

instruction bram_enable

interrupt

sleep

reset

interrupt_ack

port_id

out_port in_port

k_write_strobe

read_strobe

write_strobe

kcpsm6

clk

[0]

Input Port

03 – SPI_data_in_port

Output Port

04 – SPI_output_port

[2]
[1:0]

CE

For clarity this diagram only shows the ports assigned to drive and monitor the SPI signals in the reference design.

[7]

11

[7] spi_miso

spi_mosi

spi_clk

spi_cs_b [1]

CFGCLK

CFGMCLK

‘0’

EOS

PREQ

CLK

GSR

GTS

KEYCLEARB

PACK

USRDONEO

USRCCLKTS

USRDONETS

STARTUPE2

USRCCLKO

‘0’

‘1’

‘1’

‘0’

‘0’

‘0’

‘0’

 PROG_USR => "FALSE"

SIM_CCLK_FREQ => 0.0

KCPSM6 drives ‘spi_clk’, ‘spi_cs_b’ and ‘spi_mosi’ with a single output port and reads ‘spi_miso’ with a single input port. The only special requirement relates

to the fact that ‘CCLK’ is a dedicated configuration pin on the device and can only be accessed after configuration by using the STARTUPE2 primitive. Note

that only the ‘USRCCLK0’ and ‘USRCCLKTS’ inputs to this primitive are used for this purpose and the other controls and signals are available for other

purposes. As provided, the remaining controls are connected to ‘0’ or ‘1’ such that they have no affect on normal operation.

The serial data signals ‘spi_mosi’ and ‘spi_miso’ are connected to the most significant bit

(MSB) of each port. This simplifies the software when implementing the MSB first protocol.

© Copyright 2012-2013 Xilinx
.

Page 7

User Terminal UART Macros

address

instruction bram_enable

interrupt

sleep

reset

interrupt_ack

port_id

out_port in_port

k_write_strobe

read_strobe

write_strobe

kcpsm6

buffer_write

data_in serial_out

uart_tx6

buffer_data_present

buffer_half_full

buffer_full

buffer_reset

[3]

[4]

[5]

en_16_x_baud

data_out serial_in

uart_rx6

buffer_data_present

buffer_half_full

buffer_full

buffer_reset

[0]

[1]

[2]

en_16_x_baud

buffer_read

R

COUNTER

=53

uart_rx

uart_tx

Input Ports

00 – UART_status_port

01 – UART_RX6_input_port

Output Port

01 – UART_TX6_output_port

[0]

[3:0]

write_to_uart_tx

read_from_uart_tx

[1:0]

CE

Constant Output Port

1 – reset_UART_port

[1]

[0]

clk

For clarity this diagram only shows the ports assigned to connect to the

UART macros used to communicate with the user at 115,200 baud.

clk

clk

Input Port

01 – user_rx_port

Decode “01”

[1:0]

[0]

01

00

For more information about this part of the design please see the

documentation provided with KCPSM6 and the UART6 macros.

© Copyright 2012-2013 Xilinx
.

Page 8

SPI Fundamentals

spi_clk

spi_mosi

spi_miso

spi_cs_b

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0
High Impedance

In this situation KCPSM6 is the SPI bus master and the N25Q128 Flash Memory is the slave. The following diagram illustrates the key points of any SPI

transaction and could actually be an ‘RDSR’ instruction reading the status byte from the Flash memory.

The master drives enable Low

before and during the transaction.

All transactions end when the enable is driven

High. Some instructions such as ‘sector erase’

will actually be invoked by the Low to High

enable transition.

Pull-up on board ensures a valid logic

level is applied to the Kintex-7 but the

master will discard ‘miso’ unless actual

information is expected.

Slave receives ‘mosi’ on

rising edges of ‘spi_clk’

Slave changes ‘miso’ in response

to falling edges of ‘spi_clk’

The slave presents ‘miso’ in response to the falling edge of ‘spi_clk’ and the master

would typically read ‘miso’ on the rising edge of ‘spi_clk’. This ½ clock cycle period can

be a challenge in a free running clocked system but the KCPSM6 implementation is

more relaxed and not intended to be high performance.

All communication is byte aligned

(Most Significant Bit first)
SPI is a full duplex bus and therefore some transactions

may make use of this ability to send and receive data

simultaneously (normally only ‘mosi’ or ‘miso’ is active).

‘spi_clk’ does not need

to be continuous and

KCPSM6 actually

generates pulses as

required.

MOSI – Master Out, Slave In

MISO – Master In, Slave Out

© Copyright 2012-2013 Xilinx
.

Page 9

SPI Communication Code

The ‘N25Q128_SPI_routines.psm’ file provides a set of routines that implement the fundamental SPI communication as well as complete N25Q128

transactions. In most cases you should be able to reuse this code as provided or only need to enhance the N25Q128 transactions. Shown below is the routine

that implements the SPI communication to transmit and receive each byte. Whilst it is unlikely that you would need to adjust this low level code it is a nice

example of ‘bit banging’ code, defines the SPI timing relative to the system clock and completes the description of the SPI signaling in this document.

 SPI_FLASH_tx_rx: LOAD s1, 08 ;8-bits to transmit and receive

next_SPI_FLASH_bit: LOAD s0, s2 ;prepare next bit to transmit

 AND s0, spi_mosi ;isolates data bit and spi_cs_b = 0

 OUTPUT s0, SPI_output_port ;output data bit ready to be used on rising clock edge

 INPUT s3, SPI_data_in_port ;read input bit

 TEST s3, spi_miso ;carry flag becomes value of received bit

 SLA s2 ;shift new data into result and move to next transmit bit

 CALL SPI_clock_pulse ;pulse spi_clk High

 SUB s1, 01 ;count bits

 JUMP NZ, next_SPI_FLASH_bit ;repeat until last bit

 RETURN

 SPI_clock_pulse: OR s0, spi_clk ;clock High (bit0)

 OUTPUT s0, SPI_output_port ;drive clock High

 AND s0, ~spi_clk ;clock Low (bit0)

 OUTPUT s0, SPI_output_port ;drive clock Low

 RETURN

LOAD AND OUTPUT INPUT TEST SLA CALL OR RETURN SUB JUMP OUTPUT OUTPUT AND

read_strobe

write_strobe

clk

spi_miso

spi_mosi

spi_clk

instruction LOAD AND OUTPUT INPUT TEST SLA CALL OR OUTPUT

Each iteration of the loop executes 14 instructions to receive one bit

from MISO, write one bit to MOSI and generate a clock pulse.

14 instructions = 28 clock cycles (therefore SPI data rate = system clock/ 28) ‘ spi_miso’ pin is sampled here KCPSM6 reads ‘miso’ here

(Input port multiplexer has a pipeline register)

Hint - This page is provided mainly for educational purposes because SPI provides a good example of ‘bit banging’ of signals to implement an interface.

© Copyright 2012-2013 Xilinx
.

Page 10

SPI Transaction

The oscilloscope waveforms shown below were captured from the ‘J7’ header (SPI EXT) on the KC705 board and show an ‘RDID’ transaction (execution of

the ‘read_spi_flash_ID’ routine in ‘N25Q128_SPI_routines.psm’).

spi_miso

spi_mosi

spi_clk

spi_cs_b

RDID instruction

9F = 10011111
Manufacturer

20 = 00100000

Type

BA = 10111010

Capacity

18 = 00011000

This 4-bytes transaction (‘RDID’

instruction and 3-byte response)

consisted of 32 clock pulses and bits

of information and completed in ~9µs

which is approximately 3.56Mbps as

expected from the PSM code.

Whilst the N25Q128 is responding

with information on ‘spi_miso’ the

‘spi_mosi’ is ignored. Due to being

full-duplex, KCPSM6 has to transmit

something on ‘spi_mosi’ but anything

can be present in these ‘dummy bytes’

(as they are commonly called). In this

case the dummy bytes happen to be a

delayed copy of data received.

© Copyright 2012-2013 Xilinx
.

Page 11

Reference Design Files

Hardware Definition

kc705_kcpsm6_spi_flash.vhd

kc705_kcpsm6_uart_spi_flash.ucf

kcpsm6.vhd

uart_tx6.vhd

n25q128_spi_uart_bridge.vhd

uart_rx6.vhd

Software Definition

n25q128_spi_uart_bridge.psm

soft_delays_100mhz.psm

PicoTerm_routines.psm

N25Q128_SPI_routines.psm

KCPSM6 Assembler

Primary definition

and description of

SPI operations.

Files shown in grey are provided in the KCPSM6 package and should be copied and added to your project directory

Hint – The ‘n25q128_spi_uart_bridge.vhd’ file is not provided. Assemble the PSM code in the normal way to generate this file.

All source files contain detailed descriptions and comments. In fact, the descriptions and comments in the source code should be considered the

main documentation for this reference design with this PDF mainly used to provide an introduction and complementary graphics.

© Copyright 2012-2013 Xilinx
.

Page 12

N25Q128 Device ID

Probably the best thing to do first when communicating with any device is to attempt to read a known value. The N25Q128 Flash Memory can a

identification code that can be read using the ‘RDID’ instruction. The reference design does attempt to read this value as part of its initialisation

procedure and for the purposes of this reference design it even displays the values read.

If KCPSM6 does not read the expected known

value then it will display a message and stop.

Hint - See the ‘read_spi_flash_ID’ routine

 in ‘N25Q128_SPI_routines.psm’.

© Copyright 2012-2013 Xilinx
.

Page 13

Read Memory Contents

Data can be read sequentially from the N25Q128 starting at any location. The reference design actually reads one byte at a time and this effectively

represents totally random access.

Hint - See the ‘read_spi_byte’ routine

 in ‘N25Q128_SPI_routines.psm’.

The N25Q128 memory is 128Mbits accessed as 16M-Bytes.

Internally the memory is divided into 256 Sectors of 64K-Bytes.

Each Sector is formed of 256 Pages of 256 Bytes.

Hence the 24-bit address can be considered in three parts as

follows…

 address[23:16] = Sector

 address[15:9] = Page

 address[7:0] = Byte

The reference design allows you to specify any 24-bit address. The design with then read the Page (see

box below) in which that location is a part. In this case the design actually makes 256 separate reads

from the N25Q128 device but such sequential reading could be optimised if required.

Hint – 2751D7 hex appears to be the last location occupied by a

 configuration image for the 7K325T device on the KC705 board.

 Note that means that the first 28 hex (40) Sectors are used.

Address of first byte displayed on each line.

© Copyright 2012-2013 Xilinx
.

Page 14

Writing Data

Data can be written to any location but it must be remembered that during a write operation bits can only be changed from ‘1’ to ‘0’. Therefore in most

situations the memory will have been previously erased (all bytes in a sector to FF hex).

Hint - See the ‘write_spi_byte’ routine

 in ‘N25Q128_SPI_routines.psm’.

The N25Q128 memory is 128Mbits accessed as 16M-Bytes.

Internally the memory is divided into 256 Sectors of 64K-Bytes.

Each Sector is formed of 256 Pages of 256 Bytes.

Hence the 24-bit address can be considered in three parts as

follows…

 address[23:16] = Sector

 address[15:9] = Page

 address[7:0] = Byte

The reference design allows you to specify any 24-bit address and any 8-bit data value and it will then write that information into the N25Q128 device. In a

similar way to reading data, it is also possible to write to the memory sequentially. However, writing is absolutely related to Page boundaries (see box below)

so some additional consideration would be required.

© Copyright 2012-2013 Xilinx
.

Page 15

Erasing a Sector

In most cases (see N25Q128 data sheet for exceptions) the smallest range of memory that can be erased is a Sector (see box below). This means that

64K-Bytes within the specified sector will be erased (all bytes set to FF hex).

Hint - See the ‘erase_spi_sector’ routine

 in ‘N25Q128_SPI_routines.psm’.

The N25Q128 memory is 128Mbits accessed as 16M-Bytes.

Internally the memory is divided into 256 Sectors of 64K-Bytes.

Each Sector is formed of 256 Pages of 256 Bytes.

Hence the 24-bit address can be considered in three parts as

follows…

 address[23:16] = Sector

 address[15:9] = Page

 address[7:0] = Byte

The reference design allows you to specify any 24-bit address. Then the Sector in which that address is located will be erased. Note that a typical sector

erase time is ~0.7 seconds so you should be able to see the small delay between entering the last digit of the address and the ‘Ok’ being displayed.

YOU HAVE BEEN WARNED!

FF0000 and FF3412 both fall within the FFxxxx Sector so the

previously written data has been erased as have all 65,536 bytes.

