
© Copyright 2014 Xilinx
.

KCPSM6 Reference Design for the KC705 Evaluation Board

 ICAPE2 Communication and Transactions
 including…

 ReadBack CRC Experiments and BRAM Data Buffer

Ken Chapman

5th September 2014 – Initial Release

© Copyright 2014 Xilinx
.

Page 2

Disclaimer

Copyright © 2014, Xilinx, Inc.

This file contains proprietary information of Xilinx, Inc. and is protected under U.S. and international copyright and other intellectual property laws.

Notice of Disclaimer

Xilinx is disclosing this Application Note to you “AS-IS” with no warranty of any kind. This Application Note is one

possible implementation of this feature, application, or standard, and is subject to change without further notice from

Xilinx. You are responsible for obtaining any rights you may require in connection with your use or implementation of

this Application Note. XILINX MAKES NO REPRESENTATIONS OR WARRANTIES, WHETHER EXPRESS OR

IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, IMPLIED WARRANTIES OF

MERCHANTABILITY, NONINFRINGEMENT, OR FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL

XILINX BE LIABLE FOR ANY LOSS OF DATA, LOST PROFITS, OR FOR ANY SPECIAL, INCIDENTAL,

CONSEQUENTIAL, OR INDIRECT DAMAGES ARISING FROM YOUR USE OF THIS APPLICATION NOTE.

© Copyright 2014 Xilinx
.

Page 3

This Document and Reference Design

The primary purpose of this document is to provide images and examples of the design being used to supplement the descriptions contained in the

source VHDL and PSM code. It is assumed that you already have a copy of the KCPSM6 variant of PicoBlaze and are familiar with using it (i.e. this

probably isn’t the best design to start with if you have never seen or used PicoBlaze before). In particular, this design builds upon on the

‘uart6_kc705.vhd’ UART based reference design provided in the KCPSM6 package so this documentation only covers the additions to that design;

specifically communication with ICAPE2, Readback CRC monitoring and the connection of a RAM buffer.

Who is this reference design for?

The reference design is presented on the Kintex-7 KC705 Evaluation Kit but the reference code is suitable for reuse with virtually all of the 7-Series

devices. It is anticipated that different parts of the design will appeal to different people for use in various applications…

I do hope you find this reference design useful. Please provide any feedback related to this reference design (good or bad) to…

chapman@xilinx.com

Anyone needing to communicate with ICAPE2 – The Internal Configuration Access Port (ICAP) provides access to the configuration memory and

the configuration state machine registers of the device. These items are described in the ‘7 Series FPGAs Configuration User Guide’ (UG470) but it

is fair to say that actually implementing communication and transactions can be challenging! Having a known working reference with source code

that contains comprehensive descriptions should be of value. This design may not implement the precise transactions that you require for your own

application but the selection that are implemented cover the various types and should be an ideal starting point for your own code. You don’t have to

use PicoBlaze to work with ICAPE2 but hopefully this design will show you that it a convenient way.

Anyone interested in configuration Readback CRC error detection and ECC correction – If you are at all concerned about Single Eventt Upsets

(SEU) to configuration memory cells and the effect that they may have on a design then your primary interest should be the SEM IP core provided in

with the Xilinx development tools and described in the ‘LogiCORE IP Soft Error Mitigation Controller Product Guide’ (pg036). Whilst the SEM IP core

is recommended, the fundamental Readback CRC mechanism and single bit error correction capability is built-in to the silicon of every 7-Series

device and the SEM IP core isn’t always required (see UG470). This reference design enables you to learn more about the built-in capabilities and

evaluate how they work and how SEU may effect a design. Knowledge gained using this design will also be useful when the SEM IP core.

PicoBlaze users – In addition to the ICAP and Readback CRC focus, this design contains examples of PicoBlaze usage and code that can be of

value for reuse in other designs. There are PSM routines that implement the entry of a line of characters with simple editing and interpretation of

numerical values (see ‘line_input_and_editing.psm’). The design also has a 4096 byte memory (BRAM) connected to KCPSM6 and routines to write

and read bytes and 32-bit words to and from it (see ‘RAM_2048x8_routines.psm’).

© Copyright 2014 Xilinx
.

Page 4

Overview of Reference Design

PicoBlaze

(KCPSM6)
UART ICAPE2

USB/

UART

200MHz

Oscillator

The design operates at 100MHz because this is the

maximum frequency that can be applied to ICAPE2

in most 7-Series devices.

PC & PicoTerm

CPU RST

/2

100MHz

The design presents information and a menu of options on the PicoTerm terminal (many examples shown in this document). Please be aware that the PSM

code provided consists in total of 2,873 instructions but the vast majority of these are related to user interaction. In fact, over 1,640 instructions are directly

associated with the generation of text massages so any code actually implementing communication with ICAPE2 is much smaller 

The main focus of the design is an interface and communication with ICAPE2 for which there are some very exacting requirements in terms of both the

hardware and subsequent transactions. The design has the ability to read, modify and write complete frames of configuration memory. Each frame is

comprised of 101 words of 32-bits requiring 404 bytes of storage (i.e. larger than KCPSM6 scratch pad memory) so a BRAM has been connected to KCPSM6

to be used as a data buffer. KCPSM6 implements various ICAPE2 transactions including those that can enable and disable the Readback CRC error

detection and frame ECC error correction capabilities of the device. KCPSM6, with the aid of a small amount of hardware, can observe outputs from the

FRAME_ECCE2 primitive to observe behaviour and extract and present specific information concerning the Readback CRC scanning within the device.

Use ‘PicoTerm’ supplied

with KCPSM6 (default

settings match design).

2048×8

RAM

FRAME_ECCE2

SYNDROMEVALID

24-bit

Counter

GPIO LEDS

Scan Monitor

INIT
Turns red if

there is a

CRC Error

Flashing LEDs visually

Indicate when Readback

CRC scanning is active

© Copyright 2014 Xilinx
.

Page 5

Overview of Reference Design

This image of the PicoTerm window shows the

opening display and menu implemented by presented

by KCPSM6 in this reference design.

The design initially checks communication with

ICAPE2 and determines the number of configuration

frames being scanned by the Readback CRC

mechanism (that KCPSM6 enabled by setting one of

the ICAPE2 registers).

KCPSM6 then presents the user with a menu of 12

commands (options) each of which are described in

more detail later in this document. All PSM source

code includes detailed descriptions as well.

LOG Files

At the start of each session, KCPSM6 instructs

PicoTerm to open a LOG file which will capture

everything that appears on the screen. This

complete log of activity can be very useful when

conducting experiments. LOG files are automatically

assigned names containing the date and time similar

to ‘PicoTerm_05Sep2014_121306.txt’ and are

written to the same directory as ‘PicoTerm.exe’.

© Copyright 2014 Xilinx
.

Page 6

Connecting KCPSM6 to ICAPE2

address

instruction bram_enable

interrupt

sleep

reset

interrupt_ack

port_id

out_port
in_port

write_strobe

read_strobe

k_write_strobe

kcpsm6

clk

Input Ports

07 – icap_din3

06 – icap_din2

05 – icap_din1

04 – icap_din0

Output Ports

07 – icap_dout3

06 – icap_dout2

05 – icap_dout1

04 – icap_dout0

[2:0]

[4:0]

For clarity this diagram only shows

the interface and ports assigned to

communicate with ICAPE2.

O

CLK

I

CSIB

RDWRB

ICAPE2

For KCPSM6 to read from ICAPE2 it writes to a constant optimised output port which sets ‘RSWRB=1’ and generates a single clock cycle active Low

pulse to ‘CSIB’. 3 clock cycles later, the value read is presented at the ‘O’ output of ICAPE2 and this is captured in a register as it is only remains valid for

one clock cycle. Having allowed adequate clock cycles for the data to be captured, KCPSM6 can then read the 32-bit value via four input ports.

CE

As described in UG470, each

byte of the 32-bit input and

output of ICAPE2 is ‘twisted’.

Suitable assignment of signals

resolve this twisting so that the

PSM code can work with

straightforward recognisable

values.

Constant Output Port

2 – icap_trigger_port

[0]

Represents a suitable decode

of the ‘port_id’ bits presented

qualified by the ‘write_strobe’

CE

[15:8]

[23:16]

[31:24]

[2:0]
CE

[2:0]

[7:0]
CE

icap_rdwrb

[2:0]
CE

[1]
icap_csib

To write to ICAPE2, KCPSM6 prepares the 32-bit word by writing to the four

output ports shown above and then writes to a constant optimised output port to

set ‘RSWRB=0’ and generate a single clock cycle active Low pulse to ‘CSIB’.

[15:8]

[23:16]

[31:24]

[7:0]

All synchronous elements are

connected to the same 100MHz clock

icap_o_reg_en

© Copyright 2014 Xilinx
.

Page 7

Connecting KCPSM6 to FRAME_ECCE2

address

instruction bram_enable

interrupt

sleep

reset

interrupt_ack

port_id

out_port
in_port

write_strobe

read_strobe

k_write_strobe

kcpsm6

clk

Input Ports

15 – scan_monitor_port

13 – frame_ecc_far_port3

12 – frame_ecc_far_port2

11 – frame_ecc_far_port1

10 – frame_ecc_far_port0

08 – frame_ecc_status_port

[4:0]

For clarity this diagram only shows

the interface and ports assigned to

monitor FRAME_ECCE2

When Readback CRC scanning is active, SYNDROMEVALID

pulses High for 1 in every 101 clock cycles as each configuration

frame is read and its contents are being checked. However, there

is a gap of 140 clock cycles at the end of each complete scan of

the device. This behaviour can be monitored to confirm that

Readback CRC is active, to count the number of frames in a scan

of the device and to track the progress of any particular scan as it

is performed by the built-in mechanism of the 7-Series device.

It should be recognised that KCPSM6 can not reliably observe

single clock cycle pulses by polling an input port. For this reason,

and to avoid highly time critical PSM code, the small counter

based circuit shown above is used to monitor SYNDROMEVALID

pulses and generate two signals easily observed by KCPSM6.

Please longer descriptions in source code for more details.

[15:8]

[23:16]

[25:24]

[7:0]

[3]

[2]

[1]

[0]

[4:0]

[6:0]

[12:8]

[7:0]

CRCERROR

ECCERROR

ECCERRORSINGLE

FAR

SYNBIT

SYNDROME

SYNDROMEVALID

SYNWORD

FRAME_ECCE2

end_of_scan

end_of_frame [1]

[0]

For completeness and your own experiments, all outputs from FRAME_ECCE2 are connected

to KCPSM6 input ports. However, the PSM code currently provided only reads the status of the

CRCERROR signal and the 26-bit value of FAR (see pages 12-13 and the ‘L’ command).

S

R

All synchronous elements are

connected to the same 100MHz clock

8-bit counter
with

saturate at FF hex

R

=100? [4]

S

R

Pulse stretcher!

>101 clock cycles

© Copyright 2014 Xilinx
.

Page 8

Connecting KCPSM6 to BRAM

address

instruction bram_enable

interrupt

sleep

reset

interrupt_ack

port_id

out_port
in_port

write_strobe

read_strobe

k_write_strobe

kcpsm6

clk

Input Port

14 – Read_from_RAM_port

Output Ports

08 – RAM_address0_port

10 – RAM_address1_port

20 – write_to_RAM_port

[4:0]

For clarity this diagram only shows the interface

and ports assigned to communicate with a 4096-

byte memory implemented by a BRAM (36kb).

clk

address

we

data_in

ram_4096x8.vhd

‘ram_4096x8.vhd’ instantiates a RAMB36E1

connected and configured to implement a

4096×8 single port synchronous RAM. This

requires a 12-bit address so two KCPSM6

output ports are used to define the address.

[11:8]

[3]

[7:0]
CE

[4]
CE

[5]
ram_we

To write to memory, KCPSM6 prepares the 12-bit address by writing to the

two output ports shown above and then writes 8-bit data directly into the

memory (at the address defined) using a third output port that generates a

write strobe (‘ram_we’).

All synchronous elements are

connected to the same 100MHz clock

data_out
RAMB36E1

To read from memory, KCPSM6 prepares the 12-bit address by writing to two output ports. The 8-bit data stored at that address is then read via an input port.

Note that the ‘read_byte_from_RAM’ routine provided in ‘RAM_2048x8_routines.psm’ executes one additional instruction prior to the INPUT instruction which

reads the memory contents. The additional instruction implements a delay of 2 clock cycles which allows for the synchronous nature of the BRAM.

ram_address[11:0]

The BRAM provides 4096-bytes of storage. As provided, this design only uses 404 bytes but the code is provided with reuse in mind.

© Copyright 2014 Xilinx
.

Page 9

Reference Design Files

Hardware Definition

kc705_kcpsm6_icap.vhd

kc705_kcpsm6_icap.xdc

kcpsm6.vhd

uart_tx6.vhd

icap_control.vhd

uart_rx6.vhd

Software Definition

icap_control.psm

RAM_4096x8_routines.psm

PicoTerm_routines.psm

ICAPE2_routines.psm

KCPSM6 Assembler

Files shown in grey are provided in the KCPSM6 package and should be copied and added to your project directory

Hint – The ‘icap_control.vhd’ file is not provided. Assemble the PSM code in the normal way to generate this file.

All source files contain detailed descriptions and comments. In fact, the descriptions and comments in the source code should be considered the

main documentation for this reference design with this PDF mainly used to provide an introduction, user notes and complementary graphics.

ram_4096x8.vhd

line_input_and_editing.psm

© Copyright 2014 Xilinx
.

Page 10

Menu Commands - ‘H’ & ‘I’

KCPSM6 waits for the user to enter a key and then acts on

the character. KCPSM6 accepts upper and lower case

letters. Use ‘H’ (‘Help’) to display the menu again.

Menu

The ‘I’ command reads and displays the contents of seven of the configuration registers. The code provided clearly

demonstrates the ability of KCPSM6 to read ICAPE2 registers and it would be a straightforward task to modify the code

and read any of the remaining registers.

Information (Reading from ICAPE2 Registers)

The ‘IDCODE’ and ‘COR1’ registers are of particular interest to the rest of this reference design.

Hint – The ‘7 Series FPGAs Configuration User Guide’ (UG470) describes the purpose of each configuration register.

Below is an example table for the ‘COR1’ register. Note how setting Bit8 enables Readback CRC scanning.

NOTES

COR1 = 00000100 hex sets Bit8

GPIO LEDS

During the initialization phase of the

‘icap_control.psm’ program, KCPSM6 sets the

COR1 register to the ‘00000100” value as

shown above. This enables the Readback CRC

scanning of the device. As such, you should

also observe the LEDs flashing on the board.

With ‘COR1=00000100’, the device will use the

initial Readback CRC scans of the device to

calibrate the frame level ECC values and the

device level golden CRC value. This defines the

configuration image against which any deviations

will be detected and reported as errors.

© Copyright 2014 Xilinx
.

Page 11

Menu Commands – ‘D’, ‘C’ & ‘N’

The ‘D’, ‘C’ and ‘N’ commands write slightly different values to the ‘COR1’

configuration register. The code provided clearly demonstrates the ability of

KCPSM6 to write to an ICAPE2 register and it would be a straightforward

task to modify the PSM code to write values to other registers.

The ‘I’ command allows us to read back and verify the current value of the ‘COR1’ register.

This sequence shows the ‘N’ and ‘D’ commands being used to set ‘COR1’ to different values.

IMPORTANT NOTE (‘Calibration’)

GPIO LEDS
Hint - The LEDs on the board will stop flashing when

Readback CRC scanning of the device is disabled.

The ‘D’ and ‘C’ options set ‘COR1’ to 00800100 and 00810100 hex respectively. In both cases, these values not only set

Bit8 to enable Readback CRC, but they also set Bit23. It is vital to appreciate the significance of Bit23 in relation to the

use of the other options in this reference design. Unfortunately, Bit23 is not described in UG470 (v1.8) so a reasonably

comprehensive description is contained in the ‘icap_control.psm’ program provided with this design.

As we will see later, the ‘R’, ‘T’ and ‘W’ commands can be used to deliberately modify the contents of the configuration

memory with the aim of exercising and observing the error detection and correction capabilities of the device. Bit23 of

the ‘COR1’ register must be set in order to tell the device not to recalibrate the frame level ECC values and the device

level golden CRC value following what has been a deliberate and apparently meaningful change to the configuration of

the device. In other words, the device needs to told to ignore the change that has been made so it will then go on to

detect that change relative to the original ‘golden’ image and report it as being an error. In contrast, a normal application

of partial reconfiguration would form a new valid configuration image and auto-calibration would be desired.

Writing to an ICAPE2 Register

Hint – If you do want the device to recalibrate the ECC and CRC values then press the CPU_RST button on the bard

so that KCPSM6 executes the initialisation sequence that sets ‘COR1’ to 00000100 hex. However, do be aware that in

doing so you will be forcing the device to adopt all your deliberate corruptions as being part of a new valid image!

© Copyright 2014 Xilinx
.

Page 12

Menu Commands – ‘L’ & ‘M’

In order to read or write a frame of configuration data it is necessary to know the Physical Address (PA) of that frame within the device. Assuming we do know

the Physical Address (PA) it is first written into the Frame Address Register (FAR) as part of an ICAPE2 transaction before the actual frame data is either read

or written. The issue is that we don’t immediately know what a valid PA is for the device that we are using (except for the example shown above!).

Due to different sizes of device the range of PA values will vary. Furthermore, the differences in device features and the actual physical layout of each device

means that the address map of each device contains many ‘holes’ or ‘irregularities’. There is nothing wrong or worrying about these irregularities but they

don’t make it any easier to guess which physical addresses (PA) are valid for a given device.

In contrast, the Readback CRC mechanism automatically implements a linear scan of all the configuration frames containing static** information automatically

skipping over the ‘holes’ and ‘irregularities’ in a perfectly seamless way. So quite simply, we say that the first frame in the Readback CRC scan has a Linear

Address (LA) of zero and then LA just increments for each frame in turn. For example, the 19,464th frame to be scanned would be LA 19,436 or

LA=00004C07 which is the frame presented in the example SEM IP report shown above.

In this reference design, KCPSM6 and a small amount of logic connected to the FRAME_ECCE2 primitive (see page 7) exploits the built-in Readback CRC

mechanism in order to determine the Physical Address (PA) corresponding with any Linear Address (LA).

SC 04

SED OK

PA 0044038F

LA 00004C07

WD 16 BT 14

COR

WD 16 BT 14

END

FC 00

SC 08

FC 40

SC 02

O>

Configuration Frames: Linear Addresses (LA) and Physical Addresses (PA)

If you are familiar with the Soft Error Mitigation Controller (SEM IP) documented in User Guide pg036 then you will already know

that each configuration frame is represented by both a Linear Address (LA) and a Physical Address (PA).

This example message generated by the Monitor Interface of the SEM IP core following the detection and correction of a single

bit error shows both the Linear and Physical Addresses being reported. From this example captured whilst using the SEM IP on

a KC705 board we know that LA=00004C07 corresponds with PA=0044038F in an XC7K325T device.

If you are not familiar with the SEM IP or its documentation (pg036) then you are strongly advised to investigate it. However, an

objective of this reference design is to expand your knowledge of error detection and correction schemes so this design should

be of use whether you use the SEM IP or not. With that in mind, we need to start by fully understanding Linear and Physical

frame addresses.

An example error correction

report generated by the SEM IP.

IACPE2 and Frame Addresses

** Readback CRC ignores frames associated with BRAM contents as they are typically associated

 with variable data during operation. Each BRAM has a local ECC option for data protection.

© Copyright 2014 Xilinx
.

Page 13

Menu Commands – ‘L’ & ‘M’

> M

 [LA] [PA]

00000000 = 00000000

00000001 = 00000001

00000002 = 00000002

...

00004C06 = 0044038E

00004C07 = 0044038F

00004C08 = 00440390

...

00005AE0 = 01C40300

00005AE1 = 02000000

>

Due to the large number of frames in a device, the ‘M’ command will take quite some time to complete! For example, it

takes over 9 minutes to generate the map of an XC7K325T device. Fortunately you only need to map a device once

because everything is captured in a PicoTerm LOG file that was automatically opened by KCPSM6 and PicoTerm at the

start of the session (see page 5). So having used the ‘M’ command once, simply open the LOG file (e.g. a file with a name

similar to ‘PicoTerm_05Sep2014_121306.txt’) in a text editor and extract the memory map for your future reference.

In simple terms (and it isn’t complicated!), KCPSM6 waits for the start of a new Readback CRC scan to begin and then counts the number of

SYNDROMEVALID pulses until the LA value is reached. It then reads the PA directly from the ‘FAR’ output of the FRAME_ECCE2 primitive before the

Readback CRC advances to the next frame. For full details please read the comprehensive descriptions contained in ‘icap_control.psm’.

The ‘L’ command prompts the user to enter a Linear Address (LA) within the range of the device being used.

This example confirms that KCPSM6 has been able to determine that the Physical Address corresponding with a

Linear Address of LA=00004C07 is PA=0044038F. This matches with the SEM IP report shown on the previous page.

The conversion relies on Readback CRC scanning the device so KCPSM6 first checks to see that scanning

is active and will generate an error message if it is not (i.e. if you previously used the ‘N’ command).

The ‘M’ command will automatically generate a complete Readback CRC memory map of the whole device.

Hint - If you accidentally execute the ‘M’ command then you can press the ‘CPU_RST’ button to escape!

Hint - KCPSM6 implements a very simple line editor allowing backspace to be used to modify the value before it is entered.

 For more details or to reuse this code please see ‘line_input_and_editing.psm’.

© Copyright 2014 Xilinx
.

Page 14

Menu Commands – ‘F’ & ‘R’

Once you know a valid Physical Address (PA) it can be specified using the ‘F’ command. This command only informs KCPSM6 which frame you are

interested in and it remembers this value in its scratch pad memory. KCPSM6 will then load this value into the Frame Address Register (FAR) as part of the

ICAPE2 transactions used in the frame read (‘R’) and frame write (‘W’) commands.

The ‘R’ command reads the specified frame of configuration data out of configuration memory via ICAPE2 and stores it into the RAM buffer (BRAM)

connected to KCPSM6. Each frame consists of 101 words of 32-bits requiring 404-bytes of memory (i.e. too large to be stored in scratch pad memory). If the

intricacies of the ICAPE2 transaction required to read a frame of configuration data is of interest to you (it’s quite involved!), then please see the detailed

descriptions provided in ‘icap_control.psm’.

Hint – Using the backspace key, the physical address can be modified prior to entry. KCPSM6 will

accept upper and lower case characters and verify that they are valid hexadecimal digits.

KCPSM6 will also accept any number of digits up to the maximum of 8 expected for a Physical

Address value. For more details or to reuse this code please see ‘line_input_and_editing.psm’.

KCPSM6 confirms the Physical Frame address that it read and then

displays the frame contents that have been copied into the RAM buffer.

© Copyright 2014 Xilinx
.

Page 15

Menu Commands – ‘T’ & ‘B’

The ‘T’ command enables you to toggle the state of any bit of the frame data held in the RAM buffer (i.e. toggle a ‘0’ to become a ‘1’ or toggle a 1’ to become

a ‘0’). The command prompts you to specify which one of the 32-bits in which one of the 101 words is to be toggled. Note that the change is only made to the

contents of the RAM buffer (i.e. the actual device configuration is not changed until you use the write frame command).

This example continues to shadow the SEM IP report shown on page 12. The bit to

be toggled is contained in Word (WD) 16 hex and is Bit (BT) 14 hex. As before,

KCPSM6 allows you to edit the values before you enter them and it will check that

that they are both valid hexadecimal values in the required ranges before allowing

you to continue.

The ‘B’ command allows you to see the current contents of the RAM buffer and confirm the

changes that you have made.

Hint – The frame display (see below) identifies each word (WD) in blue next to

 the hexadecimal value of each 32-bit word displayed in black.

This example shows that Word 16 is now value 00100000 hex = 0000 0000 0001 0000 0000 0000 0000 0000 in binary.

Hence Bit20 (14 hex) has been toggled from a ‘0’ (see previous page) to a ‘1’.

Note that this image shows what appears to be an ‘empty’ frame; other frames can look busy; toggling can change a ‘1’ to ‘0’ too!

© Copyright 2014 Xilinx
.

Page 16

Menu Commands – ‘W’

 Experiments – Error Detection

The ‘W’ command will write the frame of information currently contained in the RAM buffer into the configuration memory of the device at the Physical

Address (PA) previously defined using the ‘F’ command. If the intricacies of the ICAPE2 transaction required to write a frame of configuration data is of

interest to you (it’s even more involved than a read transaction!), then please see the detailed descriptions provided in ‘icap_control.psm’.

Hopefully it is now clear how you can use the ‘F’, ‘R’, ‘T, and ‘W’ commands to flip the state of a single bit in a configuration frame. Doing so emulates the

most common, but still very rare, type of single event upset (SEU). This processes is generally referred to as ‘error injection’ and is one of the important

features provided by the SEM IP core as facilitated by this design.

Firstly use the ‘D’ command to enable Readback CRC detection only. If you haven’t already done so, read the

important note on page 11 regarding ‘calibration’. In order to deliberately inject an error you must use the ‘D’ or ‘C’

commands that appropriately set the ‘COR1’ register to disable the automatic calibration of the ECC and CRC values.

KCPSM6 confirms the Physical Frame address that it has written the contents of the RAM buffer to.

Experiment - Error Detection

WARNING! – This design provides you with the ability to write any information to any frame. Hence, it also provides you with the potential to configure the

device with illegal patterns that could ultimately stress the device. It is highly unlikely that you would ever want to do this intentionally. In practice, single event

upsets (SEU) rarely flip more than one bit at a time and therefore most of your experiments would be expected to emulate similar events (i.e. only toggle one

bit in a frame and then allow the device to correct it before toggling another one). However, this warning should remind you that you need to be thoughtful and

logical when conducting any experiments especially if you modify the PSM code and/or create a PC based application to automate the injection of errors. In

general, you should avoid creating situations in which large numbers of erroneous bits are present in the device at the same time; it just isn’t a situation that

would occur in reality! Hint - Be careful not to copy the contents of one frame to another (i.e. using the ‘F’ command to change the Physical Address before

using the ‘W’ command) as this has the potential to change a large number (theoretically all) of the bits in the frame in one go.

INIT

Then use the ‘F’, ‘R’, ‘T, ‘B’ and ‘W’ commands in the ways shown previously to flip one bit of a frame and write it back into the

device. As you invoke the ‘W’ command you should expect to see the INIT LED on the KC705 board change from green to red as

the error is detected by the Readback CRC circuit. The ‘I’ command will additionally display ‘CRCERROR’ reflecting the status of

the internal signal KCPSM6 reads from the FRAME_ECCE2 primitive. If the INIT LED remains green, first check that you used the

‘D’ command prior to your frame write (see LOG file or try again). Secondly, not all bits of every frame can be flipped so use ‘R’ to

read back the frame contents and see if you actually managed to change the state of that bit in configuration memory.

INIT

© Copyright 2014 Xilinx
.

Page 17

Experiments – Error Correction

Having successful injected a single bit error in one of the frames (see previous page)

whilst operating in detection only mode the INIT LED on the KC705 will be red and the

‘I’ command will report ‘CRCERROR’ as well as displaying register values.

Now use the ‘C’ command to enable Readback CRC detection with ECC correction.

Experiment - Error Correction

INIT

You should expect to see the INIT LED on the KC705 board return to green as the built in error correction mechanism

of the device detects the erroneous frame and automatically uses the ECC syndrome to restore the corrupted bit to its

original value.

The ‘I’ command confirms that the internal CRC signal is also cleared and you can further convince yourself of the

correction using ‘R’ to read back and manually verify the frame contents following its correction by the device.

INIT

INIT

Note - If you inject an error whilst error correction is enabled, the error will be detected and corrected almost immediately and you will left with the

impression that error injection is not working! In fact, any errors that you are injecting are being detected and corrected so quickly (i.e. in less than one

Readback CRC period) and you just don’t see anything. In fact, you are actually experiencing how quickly the device would detect and correct real SEUs .

© Copyright 2014 Xilinx
.

Page 18

Experiments – Multiple Bit Errors

Simulating Correctable Multiple Bit Errors

As described in the ‘7 Series FPGAs Configuration User Guide’ (UG470), the frame ECC is able to facilitate the correction of a single bit error. Very

occasionally an SEU may lead to a double bit upset in which the contents of two adjacent configuration memory cells are flipped at the same time.

Xilinx have designed for this rare situation by physically interleaving the cells of pairs of frames such that a typical double bit upset will take on the

appearance of two single bit errors which can each be detected and corrected in turn.

Due to the physical interleaving of memory cells from different frames, the probability of a double bit error occurring within the same frame is low but

it can occur. The SEM IP has an ‘enhanced repair’ option that augments the standard frame ECC to address these rare cases but the standard ECC-

based scheme built in to the devices does not have this feature and any multiple bit (i.e. 2 or more) error in the same frame can not be corrected.

Simulating Non-Correctable Multiple Bit Errors

Experiment – Using the ‘T’ command again, manually correct the errors that you created in the RAM buffer and then write this valid frame back into

 the device. The INIT LED returns to green indicating that the error has been removed. This illustrates how the SEM IP ‘repair by

 replace’ strategy can correct virtually any upset simply by taking a copy of the original frame definition and writing it into the device.

Experiment – Use the ‘T’ command twice to toggle two bits in a frame held in the RAM buffer before writing it back into the device. This will

 quickly show that the device is unable to correct this type of error and the INIT LED will turn red even when correction is enabled.

E.g. = 0000 0000 0011 0000 0000 0000 0000 0000 in binary

Experiment – 1) Use the ‘D’ command to place the device into detection only mode.

 We need to be in this mode whilst we inject two errors.

 2) Use the ‘F’, ‘R’, ‘T, and ‘W’ commands to flip one bit in a frame and write it back into the device.

 E.g. FAR=0044038F, WD=16 and BT=14 as shown in the examples on the previous pages.

 Note that the INIT LED turns red as this error is detected by the device level CRC mechanism.

 3) Use the ‘F’, ‘R’, ‘T, and ‘W’ commands to flip one bit in a different frame and write it back into the device. To most accurately

 simulate a real double bit error, flip the same bit of the adjacent frame (i.e. the next Linear Address converted to Physical Address).

 E.g. FAR=00440390, WD=16 and BT=14.

 Note that writing has no obvious effect because the INIT LED is already red so you may wish to use ‘R’ to read back the frame

 and convince yourself that you really did inject a second error in the second frame.

 4) Then use the ‘C’ command to place the device into detection and correction mode.

 The INIT LED will return to green indicating the correction of both bits (one after the other very quickly).

 Use the ‘F’ and ‘R’ commands to read back both frames and convince yourself that both errors were indeed corrected.

