
© Copyright 2012-2013 Xilinx
.

KCPSM6 Reference Design for the KC705 Evaluation Bo ard

I2C Communication
including…

PCA9548 Bus Switch and M24C08 EEPROM
Ken Chapman

18th March 2013

© Copyright 2012-2013 Xilinx
.

Page 2

Disclaimer

Copyright © 2012-2013, Xilinx, Inc.
This file contains proprietary information of Xilinx, Inc. and is protected under U.S. and international copyright and other intellectual property laws.

Notice of Disclaimer
Xilinx is disclosing this Application Note to you “AS-IS” with no warranty of any kind. This Application Note is one
possible implementation of this feature, application, or standard, and is subject to change without further notice from
Xilinx. You are responsible for obtaining any rights you may require in connection with your use or implementation of
this Application Note. XILINX MAKES NO REPRESENTATIONS OR WARRANTIES, WHETHER EXPRESS OR
IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, IMPLIED WARRANTIES OF
MERCHANTABILITY, NONINFRINGEMENT, OR FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL
XILINX BE LIABLE FOR ANY LOSS OF DATA, LOST PROFITS, OR FOR ANY SPECIAL, INCIDENTAL,
CONSEQUENTIAL, OR INDIRECT DAMAGES ARISING FROM YOUR USE OF THIS APPLICATION NOTE.

© Copyright 2012-2013 Xilinx
.

Page 3

This Document and Reference Design

The primary purpose of this document is to provide images to supplement the descriptions contained in the source VHDL and PSM code provided
with this reference design.

It is assumed that you already have a copy of the KCPSM6 variant of PicoBlaze and are familiar with using it. In particular, this reference design
builds on the UART based reference designs provided in the KCPSM6 package so this document focuses on the additions specific to I2C
communication and the ability to use this interface to control PCA9548 and M24C08 devices.

The reference design is presented on the Kintex-7 KC705 Evaluation Kit. The board employs an I2C Bus Switch (PCA9548) which must be
controlled in order to communicate with any of the other I2C devices on the board. In this design the M24C08 EEPROM is the chosen target.
Although this makes the design somewhat specific the KC705 board, the reference design itself should provide a valid starting point for any 7-Series
based design and it is hoped that the I 2C related source can be reused.

The M24C08 EEPROM provided on the KC705 Evaluation Kit is an 8kbit memory organised as 1024 bytes. The PCA9548 Bus Switch supports the
connection and selection of 8 busses. The source code provided has been written to implement the I2C transactions required by these specific
devices. Hopefully these examples will enable you to implement I2C transactions for devices you need to communicate with in the future. The code
that implements the I2C signaling can normally be reused as provided.

I do hope you find this reference design useful. Please provide any feedback related to this reference design (good or bad) to…

chapman@xilinx.com

© Copyright 2012-2013 Xilinx
.

Page 4

Overview of Reference Design

PicoBlaze
(KCPSM6)

UART I2C
I/F I2C

Bus
Switch

PA9548

USB/
UART

200MHz
Oscillator

The design provided operates at 100MHz but KCPSM6 can be used with a clock frequencies up to ~240MHz (depending on device type and speed grade).
‘Classic’ I2C communication is implemented with a data rate not exceeding 100k-bit/s. This data rate is rather slow relative to the available performance of
KCPSM6 or 7-Series devices but this is actually a good reason to use KCPSM6 which can efficiently implement delays using a few instructions. A constant
(I2C_time_reference) is defined within the ‘i2c_routines.psm’ file which can be modified when using a different system clock frequency. A full description is
provided in the PSM file.

Except for ‘PicoTerm’,
all elements shown are
on the KC707 Board.

PicoTerm

CPU RST

/2
100MHz

The design implements a bridge between the user of a terminal (PicoTerm) and the M24C08 EEPROM on the KC705 board. Whilst the primary focus of this
reference design is the implementation of I2C communication with KCPSM6 (PicoBlaze) and its ability to control and communicate two I2C devices, the
inclusion of the USB/UART link in the design makes it possible for direct user interaction including reading and writing EEPROM data.

Please be aware that the PSM code provided consists in total of 1635 instructions but the vast majority of these are related to user interaction. In fact, over
1000 instructions are directly associated with the generation of text massages. For this reason it is useful to know immediately that all the fundamental I2C
communication, Bus Switch control and EEPROM read/write operations are actually implemented by just 151 instructions. These I2C specific routines are
contained in their own ‘i2c_routines.psm’ and ‘kc705_i2c_devices.psm’ files ready to be reused in your own designs.

Use ‘PicoTerm’ supplied
with KCPSM6 (default
settings match design).

I2C Data Rate verses System Clock Frequency

GPO

CH0

CH1

CH2

CH3
CH4

CH5

CH6

CH7

M24C08

EEPROM
1024
Bytes

Address
1110100
(74 hex)

Address
10101xx

(54-57 hex)

© Copyright 2012-2013 Xilinx
.

Page 5

Reference Design Files

Hardware Definition

kc705_kcpsm6_i2c_eeprom.vhd

kc705_kcpsm6_uart_i2c_eeprom.ucf

kcpsm6.vhd

uart_tx6.vhd

m24c08_i2c_uart_bridge.vhd

uart_rx6.vhd

Software Definition

m24c08_i2c_uart_bridge.psm

soft_delays_100mhz.psm

PicoTerm_routines.psm

kc705_i2c_devices.psm

KCPSM6 Assembler

Primary definition
of I2C signalling.i2c_routines.psm

I2C Transactions for PCA9548
and M24C08 devices.

Files shown in grey are provided in the KCPSM6 package and should be copied and added to your project directory

Hint – The ‘m24c08_i2c_uart_bridge.vhd’ file is not provided. Assemble the PSM code in the normal way to generate this file.

All source files contain detailed descriptions and comments. In fact, the descriptions and comments in the source code should be considered the
main documentation for this reference design with this PDF mainly used to provide an introduction and complementary graphics.

© Copyright 2012-2013 Xilinx
.

Page 6

Confirming I2C Communication With Devices

It is generally a good idea to verify that communication with devices is possible before you attempt to use them. This reference design includes such a built-in
test as part of its initialisation sequence, and because it is a reference design, it displays information as it does so.

When an I2C bus master (KCPSM6 in this case) transmits a byte of information, the receiving slave device is expected to respond with an acknowledgement
bit (ACK). Therefore, observing this acknowledgement is a good indication that communication is possible with that slave.

At any time that KCPSM6 does not receive an ‘ACK’
when it is expecting to do so then it will display the
message shown below and stop.

Hint – There are more descriptions provided with the
related code in ‘m24c08_i2c_uart_bridge.psm’

© Copyright 2012-2013 Xilinx
.

Page 7

Reading M24C08 EEPROM Contents

The M24C08 is an 8kbit memory organised as 1024 bytes (10-bit address range 000 to 3FF hex) . The memory can be randomly accessed and the
reference design can read and display the contents of all bytes as shown in the example below.

In this image the
value 19 hex is
located as
address 042 hex.

Hint - See the ‘M24C08_read’ routine
in ‘kc705_i2c_devices.psm’.

© Copyright 2012-2013 Xilinx
.

Page 8

Writing Data to M24C08 EEPROM

Hint - See the ‘M24C08_write’ routine
in ‘kc705_i2c_devices.psm’.

Any of the 1024 bytes can be written to (modified) and reference design enables you to perform this in a simple and obvious way.

WARNING - Whilst the M24C08 is fully random access and
any location can be written with any value it should be
appreciated that there are a limited number of ‘Erase/Write’
cycles. The M24C08 data sheet indicates that over 1 million
cycles are possible; this sound like a large number but if an
application wrote one byte per second then this number
would be exceed in just 12 days.

Once the address and data has been transmitted, it does
take a few milliseconds for the M24C08 to modify the
memory contents. This design waits 20ms before reporting
‘Ok’ in order to cover the worse case delay indicated in the
data sheet.

© Copyright 2012-2013 Xilinx
.

Page 9

Connecting KCPSM6 to I2C Pins

i2c_clk

address

instruction bram_enable

interrupt

sleep

reset

interrupt_ack

port_id

out_portin_port

k_write_strobe

read_strobe

write_strobe

kcpsm6

clk

[0]

[1]

Input Port
02 – I2C_input_port

Output Port
08 – I2C_output_port

[1:0]

CE

For clarity this diagram only shows the ports assigned to drive and monitor the I2C bus in the reference design.

drive_i2c_clk

[0]

i2c_data

drive_i2c_data

[1]

clk50

10

clk50

clk50

[0]

CE

clk50

Constant Output Port
2 – PCA9548_control_port

[3]

[1]
i2c_mux_reset_b

Please see ‘kc705_kcpsm6_i2c_eeprom.vhd’ for further description and the definition of this hardware.

External 4K7
pull-up resistors

The design has the ability to control the
hardware reset to the Bus Switch. This is
specific to the PCA9548 device fitted on
the KC705 board and not part of the actual
I2C interface or communication.

The I2C interface is formed of two
‘open collector’ bi-directional pins.

I2C Bus

PCA9548 Reset

© Copyright 2012-2013 Xilinx
.

Page 10

User Terminal UART Macros

address

instruction bram_enable

interrupt

sleep

reset

interrupt_ack

port_id

out_portin_port

k_write_strobe

read_strobe

write_strobe

kcpsm6

buffer_write

data_in serial_out

uart_tx6

buffer_data_present

buffer_half_full

buffer_full

buffer_reset

[3]

[4]

[5]

en_16_x_baud

data_outserial_in

uart_rx6

buffer_data_present

buffer_half_full

buffer_full

buffer_reset

[0]

[1]

[2]

en_16_x_baud

buffer_read

R

COUNTER

=53

uart_rx

uart_tx

Input Ports
00 – UART_status_port
01 – UART_RX6_input_port

Output Port
01 – UART_TX6_output_port

[0]

[3:0]

write_to_uart_tx

read_from_uart_tx

[1:0]

CE

Constant Output Port
1 – reset_UART_port

[1]

[0]

clk

For clarity this diagram only shows the ports assigned to connect to the
UART macros used to communicate with the user at 115,200 baud.

clk

clk

Input Port
01 – user_rx_port

Decode “01”

[1:0]

[0]

01

00

For more information about this part of the design please see the
documentation provided with KCPSM6 and the UART6 macros.

© Copyright 2012-2013 Xilinx
.

Page 11

I2C Transactions (‘kc705_i2c_devices.psm’)

The ‘kc705_i2c_devices.psm’ provides routines that implement the I2C transactions to read from and write to the I2C Bus Switch (PCA9548) and EEPROM
(M24C08) on the KC705 board. All I2C transactions are formed from the same fundamental elements but must be crafted to the requirements of each target.
As such the routines provided are also reference examples for when you need to implement transactions suitable for different devices.

M24C08_read: CALL I2C_initialise
CALL I2C_start
LOAD s5, M24C08_base_address
OR s5, s8
SL0 s5
CALL I2C_Tx_byte
CALL I2C_Rx_ACK
RETURN C
LOAD s5, s7
CALL I2C_Tx_byte
CALL I2C_Rx_ACK
RETURN C
CALL I2C_start
LOAD s5, M24C08_base_address
OR s5, s8
SL1 s5
CALL I2C_Tx_byte
CALL I2C_Rx_ACK
RETURN C
CALL I2C_Rx_byte
LOAD sD, s5
CALL I2C_Tx_NACK
CALL I2C_stop
RETURN

Each I2C transaction consists of the appropriate sequence of elements.
The data sheet for a slave device will illustrate the format of the
transactions that it requires. Shown to the left is the illustration of the
transaction required to read a byte of data from the M24C08 EEPROM.
Below is the illustration of the transaction required to read the control
register from the PCA9548 Bus Switch. Not only is it clear that transactions
do have different formats depending on the device and operation being
performed, but it is also clear that there is no consistency to the way in
which transactions are represented. However, it doesn’t take long to
interpret what each vendor means and everything starts to look familiar!

Read transaction from the M24C08 data sheet

Shown on the left is the implementation of the EEPOM read transaction provided in the
‘kc705_i2c_devices.psm’ file. Highlighted in red are the series of calls made to the routines provided
in the ‘i2c_routines.psm’ file to implement the M24C08 read transaction shown above it. The majority
of the task has been implemented by the standard routines and only a few instructions are required to
customise the transaction with device address, EEPROM address and data.

Read transaction from the PCA9548 data sheet

Hint - The ‘kc705_i2c_devices.psm’ file includes comprehensive descriptions and comments.

Hint – Carry flag will
be set if slave
did not respond.

© Copyright 2012-2013 Xilinx
.

Page 12

I2C Signalling (‘i2c_routines.psm’)

The fundamental signalling is implemented by KCPSM6 using the routines provided in ‘i2c_routines.psm’. In most cases it should be possible to reuse this
code in any situation that KCPSM6 acts as the only ‘master’ on a traditional I2C bus. In this case, the term ‘traditional’ implies that slave designs have 7-bit
addresses and all communication is byte aligned. As provided, the code also ensures that that data rate is less that 100k-bit/s; it would be very easy for
KCPSM6 and 7-Series devices to operate at higher speeds but it is vital to consider the specifications of the slave devices and the dynamics of the signals on
the board, i.e., Potentially long traces with high capacitance combined with ‘open collector’ drivers and pull-up resistors will never be super fast!

The ‘i2c_routines.psm’ file contains descriptions that should be treated as being the principle documentation. Below, are some points that you must
understand to use the code successfully in your own designs. The following pages contain some details about the implementation of I2C signalling which you
probably don’t need to understand in order to implement your own I2C transactions; hopefully it is still interesting and a useful design example.

CONSTANT I2C_time_reference, 24'd
;
; I2C_time_reference = (fclk - 6) / 4

Timing KCPSM6 can be provides with a system clock of any reasonable frequency and the code provided will implement software delays which will
ensure that I2C communication does not exceed 100k-bit/s. However, this does require that you set one constant in the way described in the PSM
file. In the provided design, the clock rate is 100MHz so the ‘I2C_time_reference’ has been set to 24 decimal.

Hint - You can see this constant being used in the ‘I2C_delay_1us’ sub-routine
which is then used to implement a variety of different delays .

I/O Ports As shown on page 5, KCPSM6 uses one output port to control the drive of the two I2C outputs and uses one input port to read the states of the
two I2C signals. The constants shown below must be set to define the ports allocated in your design.

CONSTANT I2C_input_port, 02 ;port address of I2C input port
CONSTANT I2C_output_port, 08 ;port address of I2C output port

Register and Routines
Whilst I2C transactions have a common look and feel, they must be constructed (typically by you) to meet the requirements
defined for the slave device you are working with. For example, the format of transactions used to communicate with the
PCA9548 and M24C08 devices in this design are different but constructed from the same elements (routines in this PSM file).

s0, s1, s5 and sF

When implementing a transaction you will call the various routines in the ‘i2c_routines.psm’ file in the sequence required. These routine will use the registers
shown above so you will need to be careful which ones you use yourself. ‘s5’ is used to transfer bytes of information to or from some routines. ‘s0’ and ‘s1’ are
temporarily used by some of the routines. However, it is vital that you do not use ‘sF’ register at any time during a transaction as it is used to control the I2C
signals from the start through to the end of a transaction.

© Copyright 2012-2013 Xilinx
.

Page 13

I2C Signalling (‘i2c_routines.psm’)

Lowest Level I2C Signalling

You would not need to invoke (CALL) the routines shown on this page; they are the very lowest level control of the I2C signals which are invoked by the next
level of routines up contained in the same file. However, they do show how KCPSM6 controls the I2C bus using the output port.

I2C_data_Low: AND sF, ~I2C_data
OUTPUT sF, I2C_output_port
RETURN

I2C_clk_Low: AND sF, ~I2C_clk
OUTPUT sF, I2C_output_port
CALL I2C_delay_5us
RETURN

CONSTANT I2C_clk, 00000001'b ;Bit to which CLK is assigned on both ports
CONSTANT I2C_data, 00000010'b ;Bit to which DATA is assigned on both ports

These two constants identify that bit0 is assigned
to CLK and bit1 is assigned to DATA (see page 5)

I2C_clk_Z: OR sF, I2C_clk
OUTPUT sF, I2C_output_port

I2C_wait_clk_High: INPUT s0, I2C_input_port
TEST s0, I2C_clk
JUMP Z, I2C_wait_clk_High
RETURN

I2C_data_Z: OR sF, I2C_data
OUTPUT sF, I2C_output_port
RETURN

When KCPSM6 sets the ‘drive_i2c_data’ signal
Low (‘0’) it enables the output buffer which in turn
drives the external I2C data signal Low (‘0’).

Hint - ~I2C_data = 11111101’b

i2c_data

drive_i2c_data
Control of ‘Data’ Signal

When KCPSM6 sets the ‘drive_i2c_data’ signal High (‘1’) it disables the output buffer so that it is high
impedance (‘Z’). The actual state of the external I2C data signal depends on the external components;
the pull-up will result in a High level (‘1’) providing none of the slaves are driving the signal Low.

Control of ‘Clk’ Signal

5µs

KCPSM6 drives the I2C clock is the same way that it drives the I2C data. Likewise, the actual logic level of the external I2C clock signal will only be High (‘1’0
when neither KCPSM6 or any slave is forcing the signal Low (‘0’). However, the following routines do a bit more that just controlling the clock pin.

Driving the I2C clock Low (‘0’) is straightforward. The subsequent
delay of 5µs ensures that the set-up time before any other
operation related with the I2C signals is consistent with a data rate
not exceeding 100k-bit/s.

Clk

Wait

KCPSM6 can only place the I2C clock output into high
impedance (‘Z’) and must then wait for the external resistor to
pull the signal High (‘1’). This routine reads and tests the
external clock signal until it observes a High level. Note that an
I2C slave may deliberately hold the clock Low as a way to slow
down communication (clock stretching).

Clk

© Copyright 2012-2013 Xilinx
.

Page 14

I2C Signalling (‘i2c_routines.psm’)

Transmitting ACK, NACK and bytes
There are three routines that you will invoke (CALL) associated with transmitting information from the KCPSM6 master to a slave. At the heart of any I2C
transaction is the requirement to transmit bytes of information (i.e. data, address, control or combinations of these). Unsurprisingly, the transmission of a byte
is simply the transmission of 8-bits with the only critical detail being that the information is transmitted most significant bit (MSB) first. When a master receives
a byte of information from slave it is expected to acknowledge receipt of that byte by transmitting an ‘ACK’ bit to the slave. This is simply the transmission of
one bit but with the fixed value of ‘0’. A master may also transmit a ‘NACK’ bit (value ‘1’). This ‘no acknowledge’ is most commonly used by the master to
inform a slave that it should stop sending information (rather than an indication that the last byte was in any way corrupted).

I2C_Tx_byte: LOAD s1, 10000000 'b
I2C_Tx_next_bit: TEST s5, s1

JUMP NZ, I2C_Tx1
CALL I2C_data_Low
JUMP I2C_Tx_tsu

I2C_Tx1: CALL I2C_data_Z
I2C_Tx_tsu: CALL I2C_clk_pulse

SR0 s1
RETURN C
JUMP I2C_Tx_next_bit

I2C_Tx_ ACK: CALL I2C_data_Low
JUMP I2C_clk_pulse

I2C_Tx_ NACK: CALL I2C_data_Z
JUMP I2C_clk_pulse

I2C_clk_pulse: CALL I2C_delay_5us
CALL I2C_clk_Z
CALL I2C_delay_4us
CALL I2C_clk_Low
RETURN

Whether a bit to be transmitted from a master to a slave represents ACK, NACK or data, the requirement is for the master to present the bit on the ‘data’
signal and then, after allowing an adequate set-up time, to generate a Low to High transition on the ‘clk’ signal (the slave captures the data on the rising edge
of the clock). The ACK and NACK routines shown below illustrate in detail how the data is presented 5µs before the rising edge of the clock (remembering
that the slave has the ability to stretch the clock and the master must wait). Also, after meeting minimum timing requirements, the clock is returned Low in
readiness for the next operation.

5µs

Clk

Wait 5µs 4µs

Data

Transmission of a byte is simply a case of transmitting each bit (‘0’ or ‘1’) MSB first.

Clk

Data 5 4 3 2 1 067

Note that each clock pulse effectively defines the timing (which may be stretched by the slave)

The ‘I2C_Tx_byte’ routine transmits the byte value provided in register ‘s5’.

© Copyright 2012-2013 Xilinx
.

Page 15

I2C Signalling (‘i2c_routines.psm’)

Receiving bits
There are two routines that you will invoke (CALL) associated with receiving information from a slave device (see next page). Bytes of information (e.g. Data
or control register values) consist of 8-bits that are read most significant bit (MSB) first. Each time the master transmits a byte of information to a slave then
the slave is expected to respond with an ‘ACK’ (value of ‘0’) which the master must receive. In this case the received ‘ACK’ bit normally has a logical meaning
in that the reception of a ‘NACK’ (‘no acknowledge’ with value of ‘1’) would typically indicate that the slave is not responding for some reason. Hence, it is
common practice to test the state of the ‘ACK’ bit (or bits) during a transaction to confirm that the slave devices is responding.

To receive any bit of information from a slave device the KCPSM6 master must ensure that the ‘data’ output is placed into the high impedance state so that
the logic level of the ‘data’ signal can be defined by the slave device and then read by the master. In a classic I2C arrangement the slave device would be
expected to present a bit of information to the ‘data’ signal (i.e. a data bit or ACK) in response to a High to Low transition on the ‘clk’ signal generated by the
master, and the master would be expected to read that bit at the next rising edge of the ‘clk’. However, there are some slave devices that present data in
response to the rising edge so always check data product sheets carefully.

Clk

Data

5µs 2µsWait 5µs

Valid

‘Clk’ High for a minimum of 4µs. ‘Data’ is sampled
after 2µs when it should be stable even if the slave
used the rising edge of a stretched clock.

2µs

Most Slaves present ‘data’ in response
the previous falling edge of ‘clk’.

Some Slaves may respond to the rising edge of
‘clk’ and therefore present ‘data’ later.

Receiving a Bit (lower level routine)

The ‘I2C_Rx_bit’ routine shown below will receive one bit of data and is intended to be compatible with all slave devices regardless of which clock edge they
respond to. The key observation being that the ‘data’ signal is sampled a suitable time after both a previous falling edge and rising edge of the ‘clk’ but
definitely before the next falling edge is generated. However, it should be noted that this does increase the overall delays resulting a in a lower communication
rate (i.e. this routine could be optimised for higher speed).

I2C_Rx_bit: CALL I2C_data_Z
CALL I2C_delay_5us
CALL I2C_clk_Z
CALL I2C_delay_2us
INPUT s0, I2C_input_port
TEST s0, I2C_data
SLA s5
CALL I2C_delay_2us
CALL I2C_clk_Low
RETURN

‘Data’ output of master is placed in a
high impedance state (‘Z’) so that the
slave can define the logic level.

© Copyright 2012-2013 Xilinx
.

Page 16

I2C Signalling (‘i2c_routines.psm’)

Receiving ACK, NACK and bytes

You will probably need to invoke (CALL) the ‘I2C_Rx_ACK’ routine shown below in every I2C transaction that you implement. The ‘I2C_Rx_byte’ routine will
be required in any transaction that involves reading information from a slave.

I2C_Rx_ACK: CALL I2C_Rx_bit
TEST s5, 00000001 'b
RETURN

Your KCPSM6 master must read the ‘ACK’ bits produced by a slave as these bits are part of the
fundamental I2C transaction format. Whilst you could choose to otherwise ignore these bits it is good
practice to verify that the slave device is responding as expected (i.e. ‘ACK’ bits are ‘0’ indicating a positive
acknowledgement). For this reason the ‘I2C_Rx_ACK’ routine includes a ‘TEST’ instruction so that the carry
flag is ready to use in a ‘JUMP’ instruction at the higher level.

I2C_Rx_byte: LOAD s1, 8'd
I2C_Rx_next_bit: CALL I2C_Rx_bit

SUB s1, 1'd
JUMP NZ, I2C_Rx_next_bit
RETURN

Received bit Meaning Carry Flag
‘0’ ACK NC
‘1’ NACK C

Hint – It is common practice to only check the first ‘ACK’ bit received in a transaction. If this confirms that
communication with a slave has been established it is generally reasonable to assume that the
remainder of the transaction to complete successfully.

Hint – When developing your code to implement transactions required for your slave devices then do initially
include checks all ACK bits as this will help reveal any mistakes. Once your code is stable and working
you may choose to streamline your code.

Receiving a byte is simply a case of receiving 8-bits MSB first.

The ‘I2C_Rx_byte’ routine returns the byte value in register ‘s5’.

Clk

Data 5 4 3 2 1 067

© Copyright 2012-2013 Xilinx
.

Page 17

I2C Signalling (‘i2c_routines.psm’)

Initialise, Start or Repeated Start (S or Sr) and Stop (P) All of these routines will be used in every transaction.

I2C_initialise: LOAD sF, I2C_clk
OR sF, I2C_data
OUTPUT sF, I2C_output_port
RETURN

I2C_start: CALL I2C_data_Z
CALL I2C_clk_Z
CALL I2C_delay_5us
CALL I2C_data_Low
CALL I2C_delay_4us
CALL I2C_clk_Low
RETURN

I2C_stop: CALL I2C_data_Low
CALL I2C_delay_5us
CALL I2C_clk_Z
CALL I2C_delay_4us
CALL I2C_data_Z
RETURN

5µs 5µs4µs

S or Sr

5µs 4µs

(P)

Setup

Data

Clk

Data

Start (S) or Repeated Start (Sr)

Stop (P)

The master will complete a transaction with a ‘Stop’ (P) which will be recognised by all slaves; not just the one that has been communicating with the master.
In this way, all slaves are aware that the bus is returning to the idle state and should be prepared for the start of a new transaction.

Prior to starting any I2C transaction it is vital that the states of both the ‘clk’ and ‘data’ signals are
known state. Of equal importance, the contents of ‘sF’ must also be defined as this register is used
to remember and define the drive states of the outputs states throughout a transaction.

IMPORTANT - Do not use ‘sF’ in your own code whilst a transaction is in progress.

The master will initiate a bus transaction with a ‘Start’ (S) which will be recognised by all slaves connected to the bus. All slaves will then observe the device
address and (all being well and correct) only the specified slave will be selected for communication with the remainder effectively going to sleep. Some
transactions require the ‘start’ to be issued again and is known as a ‘Repeated Start’ (Sr). The routine provided and shown below can be used for both cases.

Initialise KCPSM6 register and the I2C Bus Signals

Clk

Wait

‘Start’ (S) or Repeated Start (Sr) is a
unique situation in which the ‘Data’
line is made to perform a High to Low
transition whilst the ‘Clk’ is High.

‘Stop’ (P) which is another unique
situation in which the ‘Data’ line is
made to perform a Low to High
transition whilst the ‘Clk’ is High.

Wait

