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Disclaimer 

Copyright © 2014, Xilinx, Inc.  

This file contains proprietary information of Xilinx, Inc. and is protected under U.S. and international copyright and other intellectual property laws. 

Notice of Disclaimer 

Xilinx is disclosing this Application Note to you “AS-IS” with no warranty of any kind. This Application Note is one 

possible implementation of this feature, application, or standard, and is subject to change without further notice from 

Xilinx. You are responsible for obtaining any rights you may require in connection with your use or implementation of 

this Application Note. XILINX MAKES NO REPRESENTATIONS OR WARRANTIES, WHETHER EXPRESS OR 

IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, IMPLIED WARRANTIES OF 

MERCHANTABILITY, NONINFRINGEMENT, OR FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT WILL 

XILINX BE LIABLE FOR ANY LOSS OF DATA, LOST PROFITS, OR FOR ANY SPECIAL, INCIDENTAL, 

CONSEQUENTIAL, OR INDIRECT DAMAGES ARISING FROM YOUR USE OF THIS APPLICATION NOTE.  
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This Document and Reference Design 

The primary purpose of this document is to provide images and examples of the design being used to supplement the descriptions contained in the 

source VHDL and PSM code. It is assumed that you already have a copy of the KCPSM6 variant of PicoBlaze and are familiar with using it (i.e. this 

probably isn’t the best design to start with if you have never seen or used PicoBlaze before). In particular, this design builds upon on the 

‘uart6_kc705.vhd’ UART based reference design provided in the KCPSM6 package so this documentation only covers the additions to that design; 

specifically communication with ICAPE2, Readback CRC monitoring and the connection of a RAM buffer. 

 

Who is this reference design for? 

 

The reference design is presented on the Kintex-7 KC705 Evaluation Kit but the reference code is suitable for reuse with virtually all of the 7-Series 

devices. It is anticipated that different parts of the design will appeal to different people for use in various applications… 

I do hope you find this reference design useful. Please provide any feedback related to this reference design (good or bad) to… 

chapman@xilinx.com 

Anyone needing to communicate with ICAPE2 – The Internal Configuration Access Port (ICAP) provides access to the configuration memory and 

the configuration state machine registers of the device. These items are described in the ‘7 Series FPGAs Configuration User Guide’ (UG470) but it 

is fair to say that actually implementing communication and transactions can be challenging! Having a known working reference with source code 

that contains comprehensive descriptions should be of value. This design may not implement the precise transactions that you require for your own 

application but the selection that are implemented cover the various types and should be an ideal starting point for your own code. You don’t have to 

use PicoBlaze to work with ICAPE2 but hopefully this design will show you that it a convenient way. 

 

Anyone interested in configuration Readback CRC error detection and ECC correction – If you are at all concerned about Single Eventt Upsets 

(SEU) to configuration memory cells and the effect that they may have on a design then your primary interest should be the SEM IP core provided in 

with the Xilinx development tools and described in the ‘LogiCORE IP Soft Error Mitigation Controller Product Guide’ (pg036). Whilst the SEM IP core 

is recommended, the fundamental Readback CRC mechanism and single bit error correction capability is built-in to the silicon of every 7-Series 

device and the SEM IP core isn’t always required (see UG470). This reference design enables you to learn more about the built-in capabilities and 

evaluate how they work and how SEU may effect a design. Knowledge gained using this design will also be useful when the SEM IP core. 

 

PicoBlaze users – In addition to the ICAP and Readback CRC focus, this design contains examples of PicoBlaze usage and code that can be of 

value for reuse in other designs. There are PSM routines that implement the entry of a line of characters with simple editing and interpretation of 

numerical values  (see ‘line_input_and_editing.psm’). The design also has a 4096 byte memory (BRAM) connected to KCPSM6 and routines to write 

and read bytes and 32-bit words to and from it (see ‘RAM_2048x8_routines.psm’). 
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Overview of Reference Design 

PicoBlaze 

(KCPSM6) 
UART ICAPE2 

USB/ 

UART 

200MHz 

Oscillator 

The design operates at 100MHz because this is the 

maximum frequency that can be applied to ICAPE2 

in most 7-Series devices. 

PC & PicoTerm 

CPU RST 

/2 

100MHz 

The design presents information and a menu of options on the PicoTerm terminal (many examples shown in this document). Please be aware that the PSM 

code provided consists in total of 2,873 instructions but the vast majority of these are related to user interaction. In fact, over 1,640 instructions are directly 

associated with the generation of text massages so any code actually implementing communication with ICAPE2 is much smaller  

 

The main focus of the design is an interface and communication with ICAPE2 for which there are some very exacting requirements in terms of both the 

hardware and subsequent transactions. The design has the ability to read, modify and write complete frames of configuration memory. Each frame is 

comprised of 101 words of 32-bits requiring 404 bytes of storage (i.e. larger than KCPSM6 scratch pad memory) so a BRAM has been connected to KCPSM6 

to be used as a data buffer.  KCPSM6 implements various ICAPE2 transactions including those that can enable and disable the Readback CRC error 

detection and frame ECC error correction capabilities of the device. KCPSM6, with the aid of a small amount of hardware, can observe outputs from the 

FRAME_ECCE2 primitive to observe behaviour and extract and present specific information concerning the Readback CRC scanning within the device.   

Use ‘PicoTerm’ supplied 

with KCPSM6 (default 

settings match design). 

2048×8

RAM 

FRAME_ECCE2 

SYNDROMEVALID 

24-bit 

Counter 

GPIO LEDS 

Scan Monitor 

INIT 
Turns red if 

there is a 

CRC Error 

Flashing LEDs visually 

Indicate when Readback 

CRC scanning is active 
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Overview of Reference Design 

This image of the PicoTerm window shows the 

opening display and menu implemented by presented 

by KCPSM6 in this reference design. 

 

The design initially checks communication with 

ICAPE2 and determines the number of configuration 

frames being scanned by the Readback CRC 

mechanism (that KCPSM6 enabled by setting one of 

the ICAPE2 registers).  

 

KCPSM6 then presents the user with a menu of 12 

commands (options) each of which are described in 

more detail later in this document. All PSM source 

code includes detailed descriptions as well. 

LOG Files 

 

At the start of each session, KCPSM6 instructs 

PicoTerm to open a LOG file which will capture 

everything that appears on the screen. This 

complete log of activity can be very useful when 

conducting experiments. LOG files are automatically 

assigned names containing the date and time similar 

to ‘PicoTerm_05Sep2014_121306.txt’ and are 

written to the same directory as ‘PicoTerm.exe’.   
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Connecting KCPSM6 to ICAPE2 

address  

instruction bram_enable 

interrupt 

sleep  

reset 

interrupt_ack 

port_id 

out_port 
in_port 

write_strobe 

read_strobe 

k_write_strobe 

kcpsm6 

clk 

Input Ports 

07 – icap_din3 

06 – icap_din2 

05 – icap_din1 

04 – icap_din0 

Output Ports 

07 – icap_dout3 

06 – icap_dout2 

05 – icap_dout1 

04 – icap_dout0 

[2:0] 

[4:0] 

For clarity this diagram only shows 

the interface and ports assigned to 

communicate with ICAPE2. 

O 

CLK 

I 

CSIB 

RDWRB 

ICAPE2 

For KCPSM6 to read from ICAPE2 it writes to a constant optimised output port which sets ‘RSWRB=1’ and generates a single clock cycle active Low 

pulse to ‘CSIB’. 3 clock cycles later, the value read is presented at the ‘O’ output of ICAPE2 and this is captured in a register as it is only remains valid for 

one clock cycle. Having allowed adequate clock cycles for the data to be captured, KCPSM6 can then read the 32-bit value via four input ports. 

CE 

As described in UG470, each 

byte of the 32-bit input and 

output of ICAPE2 is ‘twisted’. 

Suitable assignment of signals 

resolve this twisting so that the 

PSM code can work with 

straightforward recognisable 

values. 

Constant Output Port 

2 – icap_trigger_port 

[0] 

Represents a suitable decode 

of the ‘port_id’ bits presented 

qualified by the ‘write_strobe’ 

CE 

[15:8] 

[23:16] 

[31:24] 

[2:0] 
CE 

[2:0] 

[7:0] 
CE 

icap_rdwrb 

[2:0] 
CE 

[1] 
icap_csib 

To write to ICAPE2, KCPSM6 prepares the 32-bit word by writing to the four 

output ports shown above and then writes to a constant optimised output port to 

set ‘RSWRB=0’ and generate a single clock cycle active Low pulse to ‘CSIB’. 

[15:8] 

[23:16] 

[31:24] 

[7:0] 

All synchronous elements are 

connected to the same 100MHz clock 

icap_o_reg_en 
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Connecting KCPSM6 to FRAME_ECCE2 

address  

instruction bram_enable 

interrupt 

sleep  

reset 

interrupt_ack 

port_id 

out_port 
in_port 

write_strobe 

read_strobe 

k_write_strobe 

kcpsm6 

clk 

Input Ports 

15 – scan_monitor_port 

13 – frame_ecc_far_port3 

12 – frame_ecc_far_port2 

11 – frame_ecc_far_port1 

10 – frame_ecc_far_port0 

08 – frame_ecc_status_port 

[4:0] 

For clarity this diagram only shows 

the interface and ports assigned to 

monitor FRAME_ECCE2 

When Readback CRC scanning is active, SYNDROMEVALID 

pulses High for 1 in every 101 clock cycles as each configuration 

frame is read and its contents are being checked. However, there 

is a gap of 140 clock cycles at the end of each complete scan of 

the device. This behaviour can be monitored to confirm that 

Readback CRC is active, to count the number of frames in a scan 

of the device and to track the progress of any particular scan as it 

is performed by the built-in mechanism of the 7-Series device. 

 

It should be recognised that KCPSM6 can not reliably observe 

single clock cycle pulses by polling an input port. For this reason, 

and to avoid highly time critical PSM code, the small counter 

based circuit shown above is used to monitor SYNDROMEVALID 

pulses and generate two signals easily observed by KCPSM6. 

 

Please longer descriptions in source code for more details. 

[15:8] 

[23:16] 

[25:24] 

[7:0] 

[3] 

[2] 

[1] 

[0] 

[4:0] 

[6:0] 

[12:8] 

[7:0] 

CRCERROR 

ECCERROR 

ECCERRORSINGLE 

FAR 

SYNBIT 

SYNDROME 

SYNDROMEVALID 

SYNWORD 

FRAME_ECCE2 

end_of_scan 

end_of_frame  [1] 

[0] 

For completeness and your own experiments, all outputs from FRAME_ECCE2 are connected 

to KCPSM6 input ports. However, the PSM code currently provided only reads the status of the 

CRCERROR signal and the 26-bit value of FAR (see pages 12-13 and the ‘L’ command). 

S 

R 

All synchronous elements are 

connected to the same 100MHz clock 

8-bit counter 
with 

saturate at FF hex  

R 

=100? [4] 

S 

R 

Pulse stretcher! 

>101 clock cycles 
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Connecting KCPSM6 to BRAM 

address  

instruction bram_enable 

interrupt 

sleep  

reset 

interrupt_ack 

port_id 

out_port 
in_port 

write_strobe 

read_strobe 

k_write_strobe 

kcpsm6 

clk 

Input Port 

14 – Read_from_RAM_port 

Output Ports 

08 – RAM_address0_port 

10 – RAM_address1_port 

20 – write_to_RAM_port 

[4:0] 

For clarity this diagram only shows the interface 

and ports assigned to communicate with a 4096-

byte memory implemented by a BRAM (36kb). 

clk 

address 

we 

data_in 

ram_4096x8.vhd 

‘ram_4096x8.vhd’ instantiates a RAMB36E1 

connected and configured to implement a 

4096×8 single port synchronous RAM. This 

requires a 12-bit address so two KCPSM6 

output ports are used to define the address. 

[11:8] 

[3] 

[7:0] 
CE 

[4] 
CE 

[5] 
ram_we 

To write to memory, KCPSM6 prepares the 12-bit address by writing to the 

two output ports shown above and then writes 8-bit data directly into the 

memory (at the address defined) using a third output port that generates a 

write strobe (‘ram_we’). 

All synchronous elements are 

connected to the same 100MHz clock 

data_out 
RAMB36E1 

To read from memory, KCPSM6 prepares the 12-bit address by writing to two output ports. The 8-bit data stored at that address is then read via an input port. 

Note that the ‘read_byte_from_RAM’ routine provided in ‘RAM_2048x8_routines.psm’ executes one additional instruction prior to the INPUT instruction which 

reads the memory contents. The additional instruction implements a delay of 2 clock cycles which allows for the synchronous nature of the BRAM. 

ram_address[11:0] 

The BRAM provides 4096-bytes of storage.  As provided, this design only uses 404 bytes but the code is provided with reuse in mind. 
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Reference Design Files 

Hardware Definition 

kc705_kcpsm6_icap.vhd 

kc705_kcpsm6_icap.xdc 

kcpsm6.vhd 

uart_tx6.vhd 

icap_control.vhd 

uart_rx6.vhd 

Software Definition 

icap_control.psm 

RAM_4096x8_routines.psm 

PicoTerm_routines.psm 

ICAPE2_routines.psm 

KCPSM6 Assembler 

Files shown in grey are provided in the KCPSM6 package and should be copied and added to your project directory 

Hint – The ‘icap_control.vhd’ file is not provided. Assemble the PSM code in the normal way to generate this file. 

All source files contain detailed descriptions and comments. In fact, the descriptions and comments in the source code should be considered the 

main documentation for this reference design with this PDF mainly used to provide an introduction, user notes and complementary graphics. 

ram_4096x8.vhd 

line_input_and_editing.psm 
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Menu Commands - ‘H’ & ‘I’ 

KCPSM6 waits for the user to enter a key and then acts on 

the character. KCPSM6 accepts upper and lower case 

letters. Use ‘H’ (‘Help’) to display the menu again. 

Menu 

The ‘I’ command reads and displays the contents of seven of the configuration registers. The code provided clearly 

demonstrates the ability of KCPSM6 to read ICAPE2 registers and it would be a straightforward task to modify the code 

and read any of the remaining registers.   

Information (Reading from ICAPE2 Registers) 

The ‘IDCODE’ and ‘COR1’ registers are of particular interest to the rest of this reference design. 

Hint – The ‘7 Series FPGAs Configuration User Guide’ (UG470) describes the purpose of each configuration register. 

Below is an example table for the ‘COR1’ register. Note how setting Bit8 enables Readback CRC scanning. 

NOTES 

COR1 = 00000100 hex sets Bit8 

GPIO LEDS 

During the initialization phase of the 

‘icap_control.psm’ program, KCPSM6 sets the 

COR1 register to the ‘00000100” value as 

shown above. This enables the Readback CRC 

scanning of the device. As such, you should 

also observe the LEDs flashing on the board. 

With ‘COR1=00000100’, the device will use the 

initial Readback CRC scans of the device to 

calibrate the frame level ECC values and the 

device level golden CRC value. This defines the 

configuration image against which any deviations 

will be detected and reported as errors. 
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Menu Commands – ‘D’, ‘C’ & ‘N’ 

The ‘D’, ‘C’ and ‘N’ commands write slightly different values to the ‘COR1’ 

configuration register. The code provided clearly demonstrates the ability of 

KCPSM6 to write to an ICAPE2 register and it would be a straightforward 

task to modify the PSM code to write values to other registers.   

The ‘I’ command allows us to read back and verify the current value of the ‘COR1’ register. 

This sequence shows the ‘N’ and ‘D’ commands being used to set ‘COR1’ to different values.  

IMPORTANT NOTE (‘Calibration’) 

GPIO LEDS 
Hint - The LEDs on the board will stop flashing when 

Readback CRC scanning of the device is disabled. 

The ‘D’ and ‘C’ options set ‘COR1’ to 00800100 and 00810100 hex respectively. In both cases, these values not only set 

Bit8 to enable Readback CRC, but they also set Bit23. It is vital to appreciate the significance of Bit23 in relation to the 

use of the other options in this reference design. Unfortunately, Bit23 is not described in UG470 (v1.8) so a reasonably 

comprehensive description is contained in the ‘icap_control.psm’ program provided with this design.  

 

As we will see later, the ‘R’, ‘T’ and ‘W’ commands can be used to deliberately modify the contents of the configuration 

memory with the aim of exercising and observing the error detection and correction capabilities of the device. Bit23 of 

the ‘COR1’ register must be set in order to tell the device not to recalibrate the frame level ECC values and the device 

level golden CRC value following what has been a deliberate and apparently meaningful change to the configuration of 

the device. In other words, the device needs to told to ignore the change that has been made so it will then go on to 

detect that change relative to the original ‘golden’ image and report it as being an error. In contrast, a normal application 

of partial reconfiguration would form a new valid configuration image and auto-calibration would be desired.  

Writing to an ICAPE2 Register 

Hint – If you do want the device to recalibrate the ECC and CRC values then press the CPU_RST button on the bard 

so that KCPSM6 executes the initialisation sequence that sets ‘COR1’ to 00000100 hex.  However, do be aware that in 

doing so you will be forcing the device to adopt all your deliberate corruptions as being part of a new valid image! 
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Menu Commands – ‘L’ & ‘M’ 

In order to read or write a frame of configuration data it is necessary to know the Physical Address (PA) of that frame within the device. Assuming we do know 

the Physical Address (PA) it is first written into the Frame Address Register (FAR) as part of an ICAPE2 transaction before the actual frame data is either read 

or written. The issue is that we don’t immediately know what a valid PA is for the device that we are using (except for the example shown above!). 

 

Due to different sizes of device the range of PA values will vary. Furthermore, the differences in device features and the actual physical layout of each device 

means that the address map of each device contains many ‘holes’ or ‘irregularities’. There is nothing wrong or worrying about these irregularities but they 

don’t make it any easier to guess which physical addresses (PA) are valid for a given device. 

 

In contrast, the Readback CRC mechanism automatically implements a linear scan of all the configuration frames containing static** information automatically 

skipping over the ‘holes’ and ‘irregularities’ in a perfectly seamless way. So quite simply, we say that the first frame in the Readback CRC scan has a Linear 

Address (LA)  of zero and then LA just increments for each frame in turn. For example, the 19,464th frame to be scanned would be LA 19,436 or 

LA=00004C07 which is the frame presented in the example SEM IP report shown above. 

 

In this reference design, KCPSM6 and a small amount of logic connected to the FRAME_ECCE2 primitive (see page 7) exploits the built-in Readback CRC 

mechanism in order to determine the Physical Address (PA) corresponding with any Linear Address (LA). 

SC 04 

SED OK 

PA 0044038F 

LA 00004C07 

WD 16 BT 14 

COR 

WD 16 BT 14 

END 

FC 00 

SC 08 

FC 40 

SC 02 

O>  

Configuration Frames: Linear Addresses (LA) and Physical Addresses (PA) 

If you are familiar with the Soft Error Mitigation Controller (SEM IP) documented in User Guide pg036 then you will already know 

that each configuration frame is represented by both a Linear Address (LA) and a Physical Address (PA).  

 

This example message generated by the Monitor Interface of the SEM IP core following the detection and correction of a single 

bit error shows both the Linear and Physical Addresses being reported. From this example captured whilst using the SEM IP on 

a KC705 board we know that LA=00004C07 corresponds with PA=0044038F in an XC7K325T device.  

 

If you are not familiar with the SEM IP or its documentation (pg036) then you are strongly advised to investigate it. However, an 

objective of this reference design is to expand your knowledge of error detection and correction schemes so this design should 

be of use whether you use the SEM IP or not. With that in mind, we need to start by fully understanding Linear and Physical 

frame addresses.     

An example error correction 

report generated by the SEM IP. 

IACPE2 and Frame Addresses 

** Readback CRC ignores frames associated with BRAM contents as they are typically associated 

    with variable data during operation. Each BRAM has a local ECC option for data protection.  
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Menu Commands – ‘L’ & ‘M’ 

> M 

 

  [LA]       [PA] 

 

00000000 = 00000000 

00000001 = 00000001 

00000002 = 00000002 

... 

00004C06 = 0044038E 

00004C07 = 0044038F 

00004C08 = 00440390 

... 

00005AE0 = 01C40300 

00005AE1 = 02000000 

 

>  

Due to the large number of frames in a device, the ‘M’ command will take quite some time to complete! For example, it 

takes over 9 minutes to generate the map of an XC7K325T device. Fortunately you only need to map a device once 

because everything is captured in a PicoTerm LOG file that was automatically opened by KCPSM6 and PicoTerm at the 

start of the session (see page 5). So having used the ‘M’ command once, simply open the LOG file (e.g. a file with a name 

similar to ‘PicoTerm_05Sep2014_121306.txt’) in a text editor and extract the memory map for your future reference.  

In simple terms (and it isn’t complicated!), KCPSM6 waits for the start of a new Readback CRC scan to begin and then counts the number of 

SYNDROMEVALID pulses until the LA value is reached. It then reads the PA directly from the ‘FAR’ output of the FRAME_ECCE2 primitive before the 

Readback CRC advances to the next frame. For full details please read the comprehensive descriptions contained in ‘icap_control.psm’. 

The ‘L’ command prompts the user to enter a Linear Address (LA) within the range of the device being used.  

This example confirms that KCPSM6 has been able to determine that the Physical Address corresponding with a 

Linear Address of LA=00004C07 is PA=0044038F. This matches with the SEM IP report shown on the previous page.  

The conversion relies on Readback CRC scanning the device so KCPSM6 first checks to see that scanning 

is active and will generate an error message if it is not (i.e. if you previously used the ‘N’ command). 

The ‘M’ command will automatically generate a complete Readback CRC memory map of the whole device.  

Hint - If you accidentally execute the ‘M’ command then you can press the ‘CPU_RST’ button to escape! 

Hint - KCPSM6 implements a very simple line editor allowing backspace to be used to modify the value before it is entered.  

          For more details or to reuse this code please see ‘line_input_and_editing.psm’. 
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Menu Commands – ‘F’ & ‘R’ 

Once you know a valid Physical Address (PA) it can be specified using the ‘F’ command. This command only informs KCPSM6 which frame you are 

interested in and it remembers this value in its scratch pad memory. KCPSM6 will then load this value into the Frame Address Register (FAR) as part of the 

ICAPE2 transactions used in the frame read (‘R’) and frame write (‘W’) commands.  

The ‘R’ command reads the specified frame of configuration data out of configuration memory via ICAPE2 and stores it into the RAM buffer (BRAM) 

connected to KCPSM6. Each frame consists of 101 words of 32-bits requiring 404-bytes of memory (i.e. too large to be stored in scratch pad memory). If the 

intricacies of the ICAPE2 transaction required to read a frame of configuration data is of interest to you (it’s quite involved!), then please see the detailed 

descriptions provided in ‘icap_control.psm’. 

Hint – Using the backspace key, the physical address can be modified prior to entry. KCPSM6 will 

accept upper and lower case characters and verify that they are valid hexadecimal digits. 

KCPSM6 will also accept any number of digits up to the maximum of 8 expected for a Physical 

Address value. For more details or to reuse this code please see ‘line_input_and_editing.psm’. 

KCPSM6 confirms the Physical Frame address that it read and then 

displays the frame contents that have been copied into the RAM buffer. 
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Menu Commands – ‘T’ & ‘B’ 

The ‘T’ command enables you to toggle the state of any bit of the frame data held in the RAM buffer (i.e. toggle a ‘0’ to become a ‘1’ or toggle a 1’ to become 

a ‘0’). The command prompts you to specify which one of the 32-bits in which one of the 101 words is to be toggled. Note that the change is only made to the 

contents of the RAM buffer (i.e. the actual device configuration is not changed until you use the write frame command). 

This example continues to shadow the SEM IP report shown on page 12. The bit to 

be toggled is contained in Word (WD) 16 hex and is Bit (BT) 14  hex. As before, 

KCPSM6 allows you to edit the values before you enter them and it will check that 

that they are both valid hexadecimal values in the required ranges before allowing 

you to continue. 

The ‘B’ command allows you to see the current contents of the RAM buffer and confirm the 

changes that you have made. 

Hint – The frame display (see below) identifies each word (WD) in blue next to   

           the hexadecimal value of each 32-bit word displayed in black. 

This example shows that Word 16 is now value 00100000 hex = 0000 0000 0001 0000 0000 0000 0000 0000 in binary. 

Hence Bit20 (14 hex) has been toggled from a ‘0’ (see previous page) to a ‘1’. 

Note that this image shows what appears to be an ‘empty’ frame; other frames can look busy; toggling can change a ‘1’ to ‘0’ too!  
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Menu Commands – ‘W’ 

      Experiments – Error Detection 

The ‘W’ command will write the frame of information currently contained in the RAM buffer into the configuration memory of the device at the Physical 

Address (PA) previously defined using the ‘F’ command. If the intricacies of the ICAPE2 transaction required to write a frame of configuration data is of 

interest to you (it’s even more involved than a read transaction!), then please see the detailed descriptions provided in ‘icap_control.psm’. 

Hopefully it is now clear how you can use the ‘F’, ‘R’, ‘T, and ‘W’ commands to flip the state of a single bit in a configuration frame. Doing so emulates the 

most common, but still very rare, type of single event upset (SEU). This processes is generally referred to as ‘error injection’ and is one of the important 

features provided by the SEM IP core as facilitated by this design.  

Firstly use the ‘D’ command to enable Readback CRC detection only. If you haven’t already done so, read the 

important note on page 11 regarding ‘calibration’. In order to deliberately inject an error you must use the ‘D’ or ‘C’ 

commands that appropriately set the ‘COR1’ register to disable the automatic calibration of the ECC and CRC values. 

KCPSM6 confirms the Physical Frame address that it has written the contents of the RAM buffer to. 

Experiment - Error Detection 

WARNING! – This design provides you with the ability to write any information to any frame. Hence, it also provides you with the potential to configure the 

device with illegal patterns that could ultimately stress the device. It is highly unlikely that you would ever want to do this intentionally. In practice, single event 

upsets (SEU) rarely flip more than one bit at a time and therefore most of your experiments would be expected to emulate similar events (i.e. only toggle one 

bit in a frame and then allow the device to correct it before toggling another one). However, this warning should remind you that you need to be thoughtful and 

logical when conducting any experiments especially if you modify the PSM code and/or create a PC based application to automate the injection of errors. In 

general, you should avoid creating situations in which large numbers of erroneous bits are present in the device at the same time; it just isn’t a situation that 

would occur in reality! Hint - Be careful not to copy the contents of one frame to another (i.e. using the ‘F’ command to change the Physical Address before 

using the ‘W’ command) as this has the potential to change a large number (theoretically all) of the bits in the frame in one go. 

INIT 

Then use the ‘F’, ‘R’, ‘T, ‘B’ and ‘W’ commands in the ways shown previously to flip one bit of a frame and write it back into the 

device. As you invoke the ‘W’ command you should expect to see the INIT LED on the KC705 board change from green to red as 

the error is detected by the Readback CRC circuit. The ‘I’ command will additionally display ‘CRCERROR’ reflecting the status of 

the internal signal KCPSM6 reads from the FRAME_ECCE2 primitive. If the INIT LED remains green, first check that you used the 

‘D’ command prior to your frame write (see LOG file or try again). Secondly, not all bits of every frame can be flipped so use ‘R’ to 

read back the frame contents and see if you actually managed to change the state of that bit in configuration memory.  

INIT 
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Experiments – Error Correction 

Having successful injected a single bit error in one of the frames (see previous page) 

whilst operating in detection only mode the INIT LED on the KC705 will be red and the 

‘I’ command will report ‘CRCERROR’ as well as displaying register values. 

Now use the ‘C’ command to enable Readback CRC detection with ECC correction. 

Experiment - Error Correction 

INIT 

You should expect to see the INIT LED on the KC705 board return to green as the built in error correction mechanism 

of the device detects the erroneous frame and automatically uses the ECC syndrome to restore the corrupted bit to its 

original value.  

 

The ‘I’ command confirms that the internal CRC signal is also cleared and you can further convince yourself of the 

correction using ‘R’ to read back and manually verify the frame contents following its correction by the device.  

INIT 

INIT 

Note - If you inject an error whilst error correction is enabled, the error will be detected and corrected almost immediately and you will left with the 

impression that error injection is not working! In fact, any errors that you are injecting are being detected and corrected so quickly (i.e. in less than one 

Readback CRC period) and you just don’t see anything. In fact, you are actually experiencing how quickly the device would detect and correct real SEUs . 
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Experiments – Multiple Bit Errors 

Simulating Correctable Multiple Bit Errors 

As described in the ‘7 Series FPGAs Configuration User Guide’ (UG470), the frame ECC is able to facilitate the correction of a single bit error. Very 

occasionally an SEU may lead to a double bit upset in which the contents of two adjacent configuration memory cells are flipped at the same time. 

Xilinx have designed for this rare situation by physically interleaving the cells of pairs of frames such that a typical double bit upset will take on the 

appearance of two single bit errors which can each be detected and corrected in turn.   

Due to the physical interleaving of memory cells from different frames, the probability of a double bit error occurring within the same frame is low but 

it can occur. The SEM IP has an ‘enhanced repair’ option that augments the standard frame ECC to address these rare cases but the standard ECC-

based scheme built in to the devices does not have this feature and any multiple bit (i.e. 2 or more) error in the same frame can not be corrected. 

Simulating Non-Correctable Multiple Bit Errors 

Experiment – Using the ‘T’ command again, manually correct the errors that you created in the RAM buffer and then write this valid frame back into    

                       the device. The INIT LED returns to green indicating that the error has been removed. This illustrates how the SEM IP ‘repair by 

                       replace’ strategy can correct virtually any upset simply by taking a copy of the original frame definition and writing it into the device.  

Experiment – Use the ‘T’ command twice to toggle two bits in a frame held in the RAM buffer before writing it back into the device. This will  

                       quickly show that the device is unable to correct this type of error and the INIT LED will turn red even when correction is enabled. 

E.g. = 0000 0000 0011 0000 0000 0000 0000 0000 in binary 

Experiment – 1) Use the ‘D’ command to place the device into detection only mode. 

                               We need to be in this mode whilst we inject two errors. 

                       2) Use the ‘F’, ‘R’, ‘T, and ‘W’ commands to flip one bit in a frame and write it back into the device.  

                               E.g. FAR=0044038F, WD=16 and BT=14 as shown in the examples on the previous pages. 

                               Note that the INIT LED turns red as this error is detected by the device level CRC mechanism. 

                      3) Use the ‘F’, ‘R’, ‘T, and ‘W’ commands to flip one bit in a different frame and write it back into the device. To most accurately 

                           simulate a real double bit error, flip the same bit of the adjacent frame (i.e. the next Linear Address converted to Physical Address).  

                               E.g. FAR=00440390, WD=16 and BT=14. 

                               Note that writing has no obvious effect because the INIT LED is already red so you may wish to use ‘R’ to read back the frame  

                               and convince yourself that you really did inject a second error in the second frame. 

                      4) Then use the ‘C’ command to place the device into detection and correction mode. 

                               The INIT LED will return to green indicating the correction of both bits (one after the other very quickly). 

                               Use the ‘F’ and ‘R’ commands to read back both frames and convince yourself that both errors were indeed corrected. 


