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Mathematical notation

R set of real numbers
N set of natural numbers
Z set of integers
Q set of rational numbers

, defined as
Σ sum∏

product
−→ map
=⇒ implication
⇐⇒ equivalence
iff if an only if
∧ and
∨ or
¬ not
∅ empty set
{ω} a singleton set
∈, /∈ set membership
∩ set intersection
∪ set union
\ set difference
⊆ subset
⊂ proper subset
× Cartesian product
Ac set complement
BA Borel σ−algebra on A
σ(A) σ−algebra generated by A
P (·) Probability measure
λ(·) Lebesgue measure
x ∼ y object x is in relation with object y
X ∼ random variable X is distributed as
detA determinant of matrix A
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Chapter 1

Introduction to probability
theory

Uncertainty - a lack of complete information about something - can be the
result of many things. In Probability and statistics courses uncertainty is often
synonymous with the randomness of the phenomena we study. However, that
need not always be the case. Incomplete information could also be due to lack
of understanding, errors in our knowledge or measurements, ignorance, or just
plain laziness. In fact, in practice, randomness is one of the less common causes
of uncertainty.

Whatever the reason might be for our uncertainty, quantitative reasoning with
uncertainty requires a complete and precise description of the studied phenom-
ena and the uncertainty. And whenever such precision is required it inevitably
leads to mathematics. In our case the area of mathematics called probability
theory.

Our view on probability theory will primarily be that it is a language for de-
scribing uncertainty. And our treatment of probability will be more abstract
than what can typically be found in undergraduate probability courses. We will
use measure theory of which probability theory is a special case. This will allow
us a more general investigation of random variables and expectations and their
limiting properties. However, we will also connect these more general results to
special cases that we are already familiar with, such as discrete and continuous
random variables.

1.1 Why do we need measure theory?

Before we can start talking about probability, we must introduce the minimal
necessary structure: the set of all possible outcomes Ω (the sample space) and

13



14 CHAPTER 1. INTRODUCTION TO PROBABILITY THEORY

a set of events F . The set of events is in essence the set of sets that we allow
ourselves to assign probabilities to. In introductory probability courses we ex-
plicitly or implicitly assume that the set of events is the power set of the set of
outcomes. It turns out, however, that this can lead to probabilistic questions
that we can’t answer. More formally, there is sometimes no way to assign prob-
ability in a meaningful and coherent way to every possible subset of the sample
space.

The following more intuitive example is due to Ross and Peköz (2007, p. 10)
(for a more formal treatment see Theorem 2.1.1):

Example 1.1.1. In this example we consider a circle of radius 1. We define
a relation between points on this circle, such that two points are related if the
distance between them (on the circle, in either direction) is a multiple of 1.

We can check that this is an equivalence relation. It partitions the points on the
circle into classes, such that any point in a class can be reached from any other
point in steps of size 1. Additionally, every class is countably infinite - because
the circumference of this circle is an irrational number, we can never return to
the same point with steps of 1.

Now suppose that every class elects one of its points as its ’leader’. If we select
a point X uniformly at random from the circle, what is the probability that X
is the ’leader’ of its family?

Define A as the event that X is the leader and define Ai and Bi as events
that the point i steps clockwise and counter-clockwise, respectively, is the leader.
Because every family certainly has a leader, we should have:

P (A) +

∞∑
i=1

(P (Ai) + P (Bi)) = 1.

But since we selected X at random, P (A), P (Ai), and P (Bi) should all have
the same probability p = P (A). Thus:

p+

∞∑
i=1

2p = 1.

However, there exists no such 0 ≤ p ≤ 1 where the above holds. That is, there
is no consistent way of computing P (A).

We will never encounter such an example in practice. However, it is very impor-
tant and somewhat surprising that not all subsets can be assigned probabilities.
That is, in general, we have to give up on the assumption that all subsets can
be assigned probabilities or we will not be able to construct even the most basic
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uniform probability distribution. We will later use a more abstract formulation
of this example to motivate the measure-theoretic construction of continuous
probability spaces.

This example also illustrates how our intuition can sometimes fail us. We will
encounter other similar examples when dealing with uncountable probability
spaces.

1.2 Measure and probability spaces

The example from the previous section suggests that the power set might not
always be the appropriate choice for the set of events. Instead, we will use a
more general mathematical object called a sigma algebra (or σ-algebra):

Definition 1.2.1 (Sigma algebra). A collection F of subsets of Ω is a σ-algebra
on Ω if it has the following three properties:

(i) ∅ ∈ F (contains the empty set).

(ii) A ∈ F then Ac ∈ F(closed under complementation).

(iii) If {Ai} is a countable sequence of subsets of F , then
⋃∞
i=1Ai ∈ F (closed

under countable unions).

In the context of truths and probabilistic questions, the σ-algebra starts with
the following: We should always allow the question what is the probability that
nothing is true. The remaining two requirements are implicit but intuitive - if
we allow the question is A true, then we should also allow is A false (is anything
other than A true). And, if we allow is A true and is B true, we should also
allow is A or B true.

We can show that a σ-algebra is a strict generalization of the power set. That
is, that every power set is a σ-algebra but not every σ-algebra is the power set
- there exist smaller σ-algebras.

Proposition 1.2.1. The following statements are true:

(i) The power set 2Ω is a σ-algebra on Ω.

(ii) There exists a set Ω and a collection F of subsets of Ω, such that F is a
σ-algebra on Ω and F is a strict subset of 2Ω.

The proof of this proposition is left as an exercise.

Example 1.2.1. - Consider Ω = {0, 1}. Which of the following collections of
subsets of Ω are σ-algebras on Ω?

(a) F1 = {∅, {0}, {1},Ω}.

(b) F2 = {∅, {1},Ω}.
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(c) F3 = {{0}, {1},Ω}.

(d) F4 = {∅,Ω}.

F1 is the power set of Ω and thus a σ-algebra on Ω.

F2 is not a σ-algebra on Ω, because it does not contain the complement of {1}.
Neither is F3, because it does not contain the empty set (or the complement of
Ω).

F4 is a σ-algebra on Ω - it contains the empty set and it is closed for unions
and intersections! It is the smallest possible σ-algebra, not just for this Ω but
in general.

We also define a generalization of the σ-algebra - an algebra - which requires only
closure under finite unions. Algebras, while not of central interest, are useful,
because it is often easier to check properties on an algebra and extend them to
the sigma-algebra. As opposed to checking them directly on the sigma-algebra.

Definition 1.2.2 (Algebra). A collection F of subsets of Ω is an algebra on Ω
if it has the following three properties:

(i) ∅ ∈ F (contains the empty set).

(ii) A ∈ F then Ac ∈ F (closed under complementation).

(iii) If {Ai} is a finite sequence of subsets of F , then
⋃n
i=1Ai ∈ F (closed under

finite unions).

Three other properties of σ-algebras follow from the above definitions and set
theory:

Proposition 1.2.2. If F is a σ-algebra on Ω then:

(a) F is an algebra on Ω.

(b) Ω ∈ F .

(c) If {Ai} is a countable sequence of subsets of F then
⋂∞
i=1Ai ∈ F .

The proof of Proposition 1.2.2 is left as an exercise.

A set of outcomes and a σ-algebra on that set together form a measurable space:

Definition 1.2.3 (Measurable space). A measurable space is a 2-tuple (Ω,F)
that contains a non-empty set Ω and a σ-algebra F on Ω.

Now that we have precisely defined the structure to assign probabilities to, we
are ready to define probability itself. We start with the more general notion of
measure:

Definition 1.2.4 (Measure). Let (Ω,F) be a measurable space. A measure µ
on (Ω,F) is a function µ : F → [0,∞] with the following properties:
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(i) µ(∅) = 0 (null empty set).

(ii) For every countable sequence {Ai} of disjoint sets in F we have µ(
⋃∞
i=1Ai) =∑∞

i=1 µ(Ai) (countable additivity).

In this general definition of a measure we allow for infinite measure. The [0,∞]
represents the extended non-negative reals, extended by {∞}, with a+∞ =∞
and a · ∞ =∞ for all a ∈ [0,∞].

Probability is a special case of a finite measure. In fact, many results that
hold for probability are just special cases of more general results for finite mea-
sures. However, most measures in areas of practical importance are infinite, for
example, measures associated with integration on Rn.

Definition 1.2.5 (Finite measure). A finite measure µ on (Ω,F) is a measure
such that µ : F → [0,∞).

Finally, the measure that will be of most interest to us - a probability measure
- is a finite measure with total measure 1:

Definition 1.2.6 (Probability measure). Let P be a finite measure on a mea-
surable space (Ω,F). P is a probability measure if P (Ω) = 1.

The set of outcomes, the set of events, and a probability measure form a com-
plete and precise expression of probability:

Definition 1.2.7 (Measure space and probability space). A measure space is
3-tuple (Ω,F , µ) that contains a measurable space and a measure µ on that
space. If µ is a probability measure, the measure space is also defined as a
probability space.

1.3 Properties of probability measures

Probability has several useful properties:

Proposition 1.3.1. Let (Ω,F , P ) be a probability space. The following state-
ments are true:

(a) ∀A ∈ F : P (A) ≤ 1.

(b) ∀A ∈ F : P (Ac) = 1− P (A).

(c) ∀A,B ∈ F : If A ⊆ B, then P (A) ≤ P (B).

(d) ∀A1, A2 ∈ F : P (A1 ∪A2) = P (A1) + P (A2)− P (A1 ∩A2).

(e) ∀A1, ..., An ∈ F : P (

n⋃
i=1

Ai) =
∑
i

P (Ai) −
∑
i<j

P (Ai ∩ Aj) +
∑
i<j<k

P (Ai ∩

Aj ∩Ak)− · · ·+ (−1)n+1P (A1 ∩ · · · ∩An) (inclusion-exclusion principle).
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(f) ∀A1, ..., An ∈ F : P (

n⋃
i=1

Ai) ≤
n∑
i=1

P (Ai) (Boole’s inequality).

Theorem 1.3.1 (Continuity of probability). Let (Ω,F , P ) be a probability
space. Let {Ai} be a countable sequence of events from F . Then

P (

∞⋃
i=1

Ai) = lim
n→∞

P (

n⋃
i=1

Ai).

Proof. We start by defining a new sequence Bi = Ai \
⋃
j<iAj . We claim that

the sequence has the following properties (proof left as an exercise):

(a) ∀i 6= j: Bi ∩Bj = ∅ (the sets are disjoint).

(b)
⋃∞
i=1Ai =

⋃∞
i=1Bi.

Therefore,

P (

∞⋃
i=1

Ai) = P (

∞⋃
i=1

Bi) (b)

=

∞∑
i=1

P (Bi) (countable additivity and a)

= lim
n→∞

n∑
i=1

P (Bi) (def. of infinite series)

= lim
n→∞

P (

n⋃
i=1

Bi)

= lim
n→∞

P (

n⋃
i=1

Ai).

�

These two corollaries follow from Theorem 1.3.1:

Corollary 1.3.1. Let (Ω,F , P ) be a probability space. If {Ai} is a countable
sequence of increasing nested events, that is, Ai ⊆ Ai+1, then

P (

∞⋃
i=1

Ai) = lim
n→∞

P (An).
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Corollary 1.3.2. Let (Ω,F , P ) be a probability space. If {Ai} is a sequence of
decreasing nested events, that is, Ai ⊇ Ai+1, then

P (

∞⋂
i=1

Ai) = lim
n→∞

P (An).

The proof of these corollaries is left as an exercise.

1.4 Discrete probability spaces

Definition 1.4.1. A discrete probability space is a probability space with a
countable set of outcomes.

For a countable set of outcomes and the power set as the set of events it is
relatively straightforward to construct a valid probability space:

Proposition 1.4.1. Let Ω be a countable and non-empty set. Let F = 2Ω. Let
P0 : Ω→ [0, 1] be a function, such that

∑
ω∈Ω P0({ω}) = 1.

Then (Ω,F , P ), where P (A) =
∑
ω∈A P0({ω}), is a probability space.

Proof. F is clearly a σ-algebra of Ω, so what remains is to show that P is a
probability measure on our measurable space (Ω,F).

By definition P (∅) = 0. Furthermore, P (
⋃∞
i=1Ai) =

∑
ω∈

⋃∞
i=1 Ai

P0({ω}) =∑∞
i=1

∑
ω∈Ai P0({ω}) =

∑∞
i=1 P (Ai). Therefore, P is a measure.

Finally, P (Ω) =
∑
ω∈Ω P0({ω}) = 1, therefore, P is a probability measure. �

Proposition 1.4.1 says that if we want to define a probability space on a count-
able set of outcomes, it suffices to use the power set as the set of events (our
σ-algebra) and assign a probability to each outcome. The definition of the prob-
ability measure for each event then follows via countable additivity. Of course,
our assignment of probabilities to singletons must obey the laws of probability
measures - probabilities must be between 0 and 1 and they must sum up to 1.

We illustrate discrete probability spaces with two examples:

Example 1.4.1. (Coin flip)

A coin has two possible states - heads and tails. Without loss of generality, we
can assign the number 1 to heads and number 0 to tails. Our set of outcomes is
then Ω = {0, 1}.

For the set of events, we use the power set F = {∅, {0}, {1},Ω}, although it is
not the only possible choice (see below).
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For the probability measure we must set P (∅) = 0 (definition of measure)
and P (Ω) = 1 (definition of probability measure). We have the freedom
to set P ({1}) = θ, where θ ∈ [0, 1] (property of probability measures), but
P ({0}) = 1− θ (property of probability measures). This coin-with-probability-θ
measure is also called a Bernoulli measure or, when used to define a distribution
of a random variable, a Bernoulli random variable.

Note that Ω = {0, 1}, F = {∅,Ω} with P (∅) = 0 and P (Ω) = 1 is also a
probability space (as an exercise, you can verify it has all the defining properties).
It is just a probability space where P (heads) and P (tails) do not exist, which
arguably makes it a less useful probability space.

With Proposition 1.4.1 it is straightforward to construct a probability space
over a countable set of outcomes even if the set of outcomes is infinite:

Example 1.4.2. (Measures over natural numbers)

Let Ω = N and F = 2N. Observe that the set of events is not countable.
However, as long as the set of outcomes is, things remain simple.

The following are two very common probability measures:

(a) Geometric: P ({k}) = (1− θ)kθ, θ ∈ (0, 1). Check that
∑
k∈N P ({k}) = 1.

(b) Poisson: P ({k}) = λke−λ

k! , where λ > 0. Check that
∑
k∈N P ({k}) = 1.

Exercises

Exercise 1.1. Prove Proposition 1.2.1.

Exercise 1.2. Prove statements (a-c) from Proposition 1.2.2.

Exercise 1.3. Prove Proposition ??.

Exercise 1.4. Prove statements (a-d) from Proposition 1.3.1. Which of them
generalize to finite measures?

Exercise 1.5. Prove statement (e) from Proposition 1.3.1. Does it generalize
to finite measures?

Exercise 1.6. Prove statement (f) from Proposition 1.3.1. Does it generalize
to finite measures?

Exercise 1.7. Which statements from Proposition 1.3.1 apply to measures and
not just probability measures? Provide a counter-example for those that do not.

Exercise 1.8. Prove statements (a) and (b) from proof of Theorem 1.3.1.

Exercise 1.9. Prove Corollary 1.3.1.
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Exercise 1.10. Prove Corollary 1.3.2.
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Chapter 2

Uncountable probability
spaces

In the introduction we illustrated that for uncountable sets of outcomes it is not
immediately clear how to choose the set of events and define coherent probabili-
ties. In fact, we even hinted that it might not be possible to assign probabilities
to every subset of an uncountable set. Now we formalize this notion and provide
the means for the construction of uncountable probability spaces by introducing
Borel sets and Lebesgue measure.

2.1 Existence of non-measurable sets

First, we focus on one of the most simple probabilistic statements - the uniform
distribution on the unit interval. Attempting the approach we used for countable
sets of outcomes fails immediately. Intuitively, for a uniform probability all
singletons should have the same probability, however:

� If we give each singleton a positive probability, then by countable additiv-
ity, there will be subsets with infinite probability. For example, the subset
of all rational numbers between 0 and 1 or the subset {1, 1

2 ,
1
3 ,

1
4 , . . . }.

� If we give each singleton zero probability, that is not enough to determine
the probability of all other subsets of the unit interval, because countable
additivity alone is not sufficient to define the probability of uncountable
intervals, such as [ 1

3 ,
1
2 ].

While we might be perfectly comfortable with saying X ∼ U(0, 1) and working
with continuous probability distributions this shows that we might still lack a
complete understanding of the underlying probability spaces.

Now we attempt a more formal construction of our uniform probability:

23



24 CHAPTER 2. UNCOUNTABLE PROBABILITY SPACES

Definition 2.1.1 (Naive uniform probability measure). Let P be a probability
measure on measurable space (Ω = [0, 1],F = 2[0,1]). P is a uniform probability
measure if it satisfies the following two properties:

(i) P ((a, b)) = P ([a, b)) = P ((a, b]) = P ([a, b]) for all (a, b) ∈ F (uniformity).

(ii) P (A) = P (A⊕ ω) for all ω ∈ Ω and A ∈ F (shift invariance).

The shift operator ⊕ is defined as

A⊕ x , {a+ x|a ∈ A, a+ x ≤ 1} ∪ {a+ x− 1|a ∈ A, a+ x > 1}.

Our goal is to construct a uniform probability measure over all subsets of the
unit interval, so the choice of the outcome set and σ-algebra does not need
further justification. The above two properties are properties that every uni-
form measure should have. We are not making the statement that these two
properties are the only two properties a uniform measure should have, but they
will suffice for our argument that such a measure does not exist (adding further
requirements would make it at most more difficult to construct such a measure
and does not contradict our argument):

Theorem 2.1.1 (Vitali set - a non-measurable set). A uniform probability
measure as defined in Definition 2.1.1 does not exist.

Proof. We will prove this by contradiction. Let us assume that such a proba-
bility measure exists.

We define an equivalence relation on Ω: x ∼ y iff y − x ∈ Q. This relation
partitions Ω into equivalence classes. Let H ⊂ Ω consist of precisely one element
from each equivalence class (this requires the use of the Axiom of choice). Note
that we assume, without loss of generality, that 0 /∈ H. If we were to allow for
the case 0 ∈ H, the union below would have to handle it as a special case, in
order to be able to obtain a subset that contains 1.

Because H contains an element from each equivalence class, the union

⋃
x∈[0,1),x∈Q

H ⊕ x

contains every point in (0, 1]. Furthermore, sets H⊕x in the above union are all
disjoint. By construction, each of them contains elements that are not exactly
a rational number apart, so they can appear in another set only by looping
around. However, this cannot happen, since we don’t include 1.

Now we can use two properties of probability measures (total probability of 1
and countable additivity) and shift invariance to show that
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P ((0, 1]) = 1 =
∑

x∈[0,1),x∈Q

P (H ⊕ x) =
∑

x∈[0,1),x∈Q

P (H).

The rightmost sum is a countable sum of the same element and can only be 0
or infinite. This leads to a contradiction! �

If our goal is to have a uniform probability measure, then we cannot relax the two
properties or the defining properties of a probability measure. The only option
that remains is to restrict the σ-algebra to something less than the power set.
In other words, we must concede that certain probabilistic questions cannot be
answered consistently.

2.2 Borel sets on (0, 1]

We have shown that it is impossible to construct a uniform probability measure
on the unit interval Ω = [0, 1], if we set F = 2Ω. Therefore, we must consider a
smaller σ-algebra. Note that for convenience (some proofs are easier), we now
focus on the set Ω = (0, 1].

We will construct such a σ-algebra implicitly by starting with a relatively small
collections of sets that we definitely want to have in our set of events - the col-
lection of open intervals (why do we want at least these?) - and then extending
this collection the minimum required amount to make it a σ-algebra. Such an
approach is justified by the following proposition:

Proposition 2.2.1 (Generated σ-algebras). For every collection C of subsets
of Ω there exists a smallest σ-algebra that contains all elements of C.

We denote such a σ-algebra by σ(C) and we call it the σ-algebra generated by C.

Proof. Let {Fi} be a collection of all σ-algebras that contain C. We know that
this collection is non-empty - it contains at least 2Ω.

Now consider the intersection of all sets in our collection F =
⋂
i Fi. Because

every Fi contains C (by definition), we have C ∈ F. Furthermore, the intersection
of σ-algebras is a σ-algebra (left as an exercise). Therefore, F is a σ-algebra that
contains C.

Finally, for every Fi, we have F ⊆ Fi. So, F is at most as large as any σ-algebra
that contains C and is therefore the smallest σ-algebra that contains C. �

So, if we define C to be the collection of all open intervals (a, b) ⊂ (0, 1], we know
that there exists σ(C) that is a σ-algebra with the fewest additional elements.
If fact, such σ-algebras are so important that they have a name:
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Definition 2.2.1 (Borel σ-algebra). Let C be the collection of all open intervals
(a, b) in (0, 1]. The generated σ-algebra σ(C) is called the Borel σ-algebra and
is denoted by B(0,1]. Elements of Borel σ-algebras are called Borel sets.

Proposition 2.2.1 guarantees that B(0,1] exists, but we at this point understand
very little about this σ-algebra.

First, let us inquire about the cardinality of B(0,1]. We know that it contains
more than just the open intervals (why?; see Exercise 2.2) and we have not
excluded the possibility that the completion of the open subsets to a σ-algebra
would lead to B(0,1] = 2(0,1]. Luckily, that is not the case. In fact, it has been
proven that the cardinality of the Borel σ-algebra is equal to the cardinality of
R. However, the proof of this statement is beyond the scope of this text.

Next, let us explore which sets are Borel sets.

Proposition 2.2.2. Every singleton set {ω}, 0 < ω ≤ 1, is in B(0,1].

Proof. First, {1} is in B(0,1], because the complement (0, 1) is by definition in
B(0,1]. Also, (0, b) and (b, 1), for any b ∈ (0, 1), are in B(0,1] by definition. Then,
by the properties of σ-algebras, the set (0, b) ∪ (b, 1) ∪ {1} is also in B(0,1]. Its
complement, which is also in B(0,1], is {b}. �

The following are an immediate consequence.

Corollary 2.2.1.

(a) B(0,1] contains all half-open intervals in (0, 1]. That is, intervals of the form
(a, b] or [a, b).

(b) B(0,1] contains all closed intervals in (0, 1]. That is, intervals of the form
[a, b].

The proof of Corollary 2.2.1 is left as an exercise.

So, all intervals, singletons, countable unions, intersections, and complements
thereof are Borel sets. In fact, all sets that will be of practical interest to most
of us, are Borel sets.

While a collection of subsets generates a unique σ-algebra, multiple different
collections can generate the same σ-algebra:

Proposition 2.2.3. Show for each of the following collections that σ(C) =
B(0,1]:

(a) C is the collection of all intervals in (0, 1] of the form (a, b].

(b) C is the collection of all intervals in (0, 1] of the form [a, b].

(c) C is the collection of all intervals in (0, 1] of the form (0, a].
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Proof. We’ll prove (a) and leave (b) and (c) as an exercise.

We can prove σ(C) = B(0,1] by showing that σ(C) ⊆ B(0,1] and B(0,1] ⊆ σ(C). The
former follows immediately from Corollary 2.2.1: C ⊆ B(0,1] (any set generated
by a subset of a σ-algebra is already in the σ-algebra by definition).

To prove B(0,1] ⊆ σ(C) it suffices to show that semi-open intervals generate all
open intervals:

(a, b) =

∞⋃
i=1

(a, b− 1

i
].

Because the collection of open intervals generates B(0,1], the set of semi-open
intervals generates at least B(0,1]. �

2.3 Uniform measure on (0, 1]

Now we can return to the task of constructing a uniform measure λ on Ω = (0, 1].
Instead of using the power set, our measurable space will be ((0, 1],B(0,1]). Hope-
fully this removes the pathological sets that made it impossible (see Theorem
2.1.1).

Let us recall our notion of a uniform measure, as we defined it in Definition
2.1.1. We required such a method to have the following two properties:

(i) P ((a, b)) = P ([a, b)) = P ((a, b]) = P ([a, b]) for all (a, b) ∈ F (uniformity).

(ii) P (A) = P (A⊕ ω) for all ω ∈ Ω and A ∈ F (shift invariance).

Property (i) states that the measure needs to be proportional to the length of
the interval. So, for intervals of the form (a, b) (and for their half-open and
closed counterparts), we could, without loss of generality, define our measure λ
with the length of the interval: λ((a, b)) , b−a. As an exercise, verify that this
measure is shift invariant as well.

The problem we face now is how to extend this measure to all Borel sets in
B(0,1], some of which can be very complicated. We will tackle this problem by
starting with a more manageable collection of sets and then invoking this pow-
erful theorem from measure theory that will allow us to extend the probability
measure to all Borel sets:

Theorem 2.3.1 (Caratheodory’s extension theorem). Let F0 be an algebra of
subsets of Ω. Let µ0 : F0 → [0,∞), such that for every countable sequence {Ai}
of disjoint sets in F0 we have µ0(

⋃∞
i=1Ai) =

∑∞
i=1 µ0(Ai) for any

⋃∞
i=1Ai ∈ F0.

Then there exists a unique measure µ on (Ω, σ(F0)), such that µ(A) = µ0(A)
for all A ∈ F0.

The proof of Caratheodory’s theorem is beyond the scope of this text. Note
that the theorem holds in the more general case of σ-finite measures, which is
a condition weaker than finite. The Lebesgue measure on R is an example of a
measure that is not finite but is σ-finite.
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The theorem states that in order to uniquely define a measure over some mea-
surable space (Ω,F), it suffices to define a measure that is consistent on an
algebra that generates F . This is a very useful statement, because the required
properties can be much easier to verify on an algebra. Note that measures de-
fined only on an algebra are not really measures according to our definition, so
we call them pre-measures.

In our case we have already determined that our uniform measure of an interval
should be the length of an interval. However, the collection of intervals is not
an algebra on (0, 1]. For example, the complement of an interval or the union of
two disjoint intervals is not always an interval. Instead, we start with half-open
intervals and add all that is required to make this collection an algebra.

Proposition 2.3.1. Let F0 be the collection of ∅ and all subsets of (0, 1] which
are finite unions of disjoint intervals of the form (a, b]. We have

(a) σ(F0) = B(0,1],

(b) F0 is an algebra, and

(c) F0 is not a σ-algebra.

Proof. The proof of (a) is straightforward. We have F0 ⊆ B(0,1], so σ(F0) ⊆
B(0,1]. We also know from before that the collection of all half-open intervals
generates B(0,1], so B(0,1] ⊂ σ(F0).

In order for F0 to be an algebra, it must contain the empty set (it does, by
definition) and must be closed under complementation and under finite unions.
A union of two half-open intervals of the form (a, b] is either another interval
of the form (a, b] of a union of two such intervals. Both cases are by definition
in F0. Similarly, the complement of any finite union of such intervals is again a
finite union of such intervals.

We can show (c) by observing the countable union ∪∞i=1(0, i
i+1 ]. All of the terms

in the union are intervals of the form (a, b] and are therefore in F0. However,
their union is (0, 1), which is not in F0. �

So far, we have introduced the Borel σ-algebra, which is the smallest σ−algebra
that contains the sets we are interested in in practice. We have now introduced
an algebra F0 that generates the Borel σ-algebra. Before we can invoke Carathe-
orory’s theorem to show that our uniform probability can indeed be uniquely
extended to the Borel σ-algebra, we must complete our uniform measure so that
it is indeed a pre-measure on F0.

We have already determined how we are going to measure the intervals of the
form (a, b]: λ((a, b]) = b − a. Because our measure will be finite, we have
λ(∅) = 0. All other sets in F0 are finite unions of disjoints half-open intervals,
for example ( 1

3 ,
1
2 ]∪( 4

5 ,
5
6 ], for which our measure λ is not yet defined. In general,

sets
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A =

n⋃
i=1

(ai, bi],

where 0 ≤ a1, ai < bi and bi ≤ ai+1. For such sets, we define their measure as
the sum of the measures of individual intervals: λ(A) =

∑n
i=1 λ((ai, bi]). This

should not be surprising, as it is necessary to define it like this if we are to
respect countable (in this case only finite) additivity.

One step remains before we can invoke Theorem 2.3.1. We must show that our
uniform measure is countably additive on F0. However, the proof is beyond the
scope of this text.

This completes our argument that there exists a measure λ on the Borel σ−algebra
on (0, 1] that has the desired uniformity properties. We call this measure the
Lebesgue measure. It is a generalization of the notion of length. And on (0, 1]
it is a probability measure (why?).

Our successful extension of this uniform measure to all Borel sets implies that
the Vitali set is not a Borel set. Therefore, we have successfully avoided this
and other pathological sets that are incompatible with the notion of uniform
probability. Note that the Borel σ−algebra on (0, 1] is just a subset of the σ-
algebra of all Lebesgue-measurable sets (0, 1]. That is, there exist sets that are
Lebesgue measurable, but are not Borel sets.

2.4 Lebesgue measure on R
Borel sets and Lebesgue measure can be defined in a similar fashion for the real
line (and Rn, although this is too technical and out of the scope of this text).
Note that there is also more general way of defining Borel sets on any topological
space by starting with open sets. We can see how R and open intervals is just
a special case.

Definition 2.4.1 (Borel σ-algebra on R). Let C be the collection of all open
intervals in R. The generated σ-algebra σ(C) is called the Borel σ-algebra and
is denoted by BR.

The following two propositions give two alternative but equivalent definitions
of the Borel σ-algebra on the real line.

Proposition 2.4.1. Let C be the collection of all intervals of the form (−∞, a]
in R. Then σ(C) = BR.

The proof of this proposition is left as an exercise.

Proposition 2.4.2. Let C be the collection of all sets A ⊆ R, such that A ∩
(n, n+ 1] is a Borel set on (n, n+ 1] for all n ∈ Z. Then σ(C) = BR.

The proof of this proposition is left as an exercise.
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Now we are ready to extend the definition of Lebesgue measure to the real line.

Definition 2.4.2 (Lebesgue measure on the real line). We define the Lebesgue
measure of a set A ∈ BR as

λ(A) ,
∞∑

n=−∞
λ∗(A ∩ (n, n+ 1]),

where λ∗ is the Lebesgue measure on the unit interval.

In essence, we partition the real line into unit intervals, measure the set’s inter-
section with each interval and sum up the measures. However, we have yet to
prove that it it a valid measure on the real line.

Proposition 2.4.3. (R,BR, λ) is a measure space.

Proof. BR is a σ-algebra on R. It is also clear that λ is defined on all subsets
of R and that it is non-negative (it is a sum of terms that are non-negative).
Furthermore, the unit interval Lebesgue measure is a measure, so λ∗(∅) = 0 and
therefore λ(∅) = 0. What remains to be shown to complete the proof is that λ
is countably additive.

Let’s take a sequence of pairwise disjoint sets Ai ∈ BR:

λ

( ∞⋃
i=1

Ai

)
=

∞∑
n=−∞

λ∗(

∞⋃
i=1

Ai ∩ (n, n+ 1]) (by definition)

=

∞∑
n=−∞

∞∑
i=1

λ∗(Ai ∩ (n, n+ 1]) (by countable additivity of λ∗)

=

∞∑
i=1

∞∑
n=−∞

λ∗(Ai ∩ (n, n+ 1]) (Fubini’s theorem)

=

∞∑
i=1

λ(Ai) (by definition)

�

Proposition 2.4.4. (R,BR, λ) is not a probability space.

The proof of this proposition is left as an exercise.

Exercises

Exercise 2.1. Prove that the intersection of two σ-algebras on Ω is a σ-algebra
on Ω.
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Exercise 2.2. Show that the collection of open subsets of (0, 1] is not a σ-
algebra on (0, 1].

Exercise 2.3. Prove Corollary 2.2.1.

Exercise 2.4. Prove (b) and (c) from Proposition 2.2.3.

Exercise 2.5. Prove that the Lebesgue measure of an interval (a, b) on (0, 1]
is shift-invariant.

Exercise 2.6. Let F0 be the collection of ∅ and all subsets of (0, 1] which are
finite unions of disjoint intervals of the form (a, b]. Show that:

(a) F0 is an algebra.

(b) σ(F0) = B(0,1].

Exercise 2.7. Prove that the Lebesgue measure of a singleton is 0. That is,
λ(ω) = 0, for all ω ∈ (0, 1].

Exercise 2.8. Prove Proposition 2.4.1.

Exercise 2.9. Prove Proposition 2.4.2.

Exercise 2.10. Prove Proposition 2.4.4.
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Chapter 3

Conditional probability

Conditional probability defines how we should modify our uncertainty given
some evidence or truth. As such it is the core mechanism of learning. Con-
ditional probability also introduces an important special case of independent
events - events where conditioning on one event has no effect on the uncertainty
of the other.

Unless explicitly stated otherwise, all definitions, theorems and propositions in
this chapter assume that we are working on a probability space (Ω,F , P ).

3.1 Conditional probability measure

Definition 3.1.1 (Conditional probability). Let B ∈ F , such that P (B) > 0.
The conditional probability of event A conditional to event B is defined as

P (A|B) ,
P (A ∩B)

P (B)
.

Conditional probability cannot be derived from the axioms of probability mea-
sures - it must be defined. If you want to learn more about why conditional
probability is defined like this and why there are no reasonable alternative def-
initions, refer to Kadane (2011, Ch. 2).

A conditional probability is also a probability measure:

Theorem 3.1.1. Let B ∈ F and P (B) > 0. The function P (·|B) : F → [0, 1]
is a probability measure on (Ω,F).

Proof. Being a ratio of probability measures, the conditional probability is non-
negative. Furthermore,

33
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P (Ω|B) =
P (Ω ∩B)

P (B)
=
P (B)

P (B)
= 1

and

P (∅|B) =
P (∅ ∩B)

P (B)
=

P (∅)
P (B)

= 0.

What remains to be shown is that conditional probability is countably additive:

P (

∞⋃
i=1

Ai|B) =
P ((∪∞i=1Ai) ∩B)

P (B)
=
P (∪∞i=1(Ai ∩B))

P (B)

=

∑∞
i=1 P (Ai ∩B)

P (B)
=

∞∑
i=1

P (Ai|B).

�

3.2 Properties of conditional probability

Definition 3.2.1 (Partition). The partition of a set Ω is a countable collection
of disjoint events {Ai}, such that ∪∞i=1Ai = Ω.

Proposition 3.2.1 (Marginal probability). Let A ∈ F and let {Bi} be a par-
tition of Ω. Then,

P (A) =

∞∑
i=1

P (A ∩Bi).

Proof. Sets A ∩Bi are disjoint, therefore

∞∑
i=1

P (A ∩Bi) = P (

∞⋃
i=1

A ∩Bi) = P (A ∩
∞⋃
i=1

Bi) = P (A ∩ Ω) = P (A).

Note that the statement
⋃∞
i=1A ∩ Bi = A ∩

⋃∞
i=1Bi that we used in the proof

is not obvious. It is left as an exercise. �

Proposition 3.2.2 (Law of total probability). Let A ∈ F and let {Bi} be a
partition of Ω. Then,

P (A) =

∞∑
i=1

P (A|Bi)P (Bi).
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Proof. To prove this statement, we apply marginal probability and conditional
probability to obtain

P (A) =

∞∑
i=1

P (A ∩Bi) =

∞∑
i=1

P (A|Bi)P (Bi).

�

The following theorem is the cornerstone of Bayesian statistics:

Theorem 3.2.1 (Bayes’ rule). Let B ∈ F , such that P (B) > 0. For any event

A we have P (A|B) = P (B|A)P (A)
P (B) .

Proof. We start with the definition of conditional probability and apply the
definition again on the numerator. �

Proposition 3.2.3 (Bayes’ rule applied to partitions). Let A ∈ F , P (A) > 0
and let {Bi} be a partition of Ω. Then

P (Bi|A) =
P (A|Bi)P (Bi)∑∞
i=1 P (A|Bi)P (Bi)

.

Proof. We prove the statement by applying Bayes’s rule and the Law of total
probability:

P (Bi|A) =
P (A|Bi)P (Bi)

P (A)
=

P (A|Bi)P (Bi)∑∞
i=1 P (A|Bi)P (Bi)

.

�

Proposition 3.2.4 (Factorization of probability measures). For any countable
collection of events {Ai} we have

P (

∞⋂
i=1

Ai) = P (A1)

∞∏
i=2

P (Ai|A1 ∩A2 ∩ · · · ∩Ai−1).

This statement is conditional on all the conditional probabilities being well de-
fined.

Proof. First, we prove the statement for a finite collection of events. By applying
the definition of conditional probability to all factors on the right-hand side, all
but one of the terms cancel out:

P (A1)

n∏
i=2

P (A1 ∩A2 ∩ · · · ∩Ai)
P (A1 ∩A2 ∩ · · · ∩Ai−1)

= P (

n⋂
i=1

Ai).
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Now

lim
n→∞

P (

n⋂
i=1

Ai) = lim
n→∞

P (A1)

n∏
i=2

P (Ai|A1 ∩A2 ∩ · · · ∩Ai−1)

and, using continuity of probability on the left-hand side and the definition of
an infinite sequence on the right-hand side, we get

P (

∞⋂
i=1

Ai) = P (A1)

∞∏
i=2

P (Ai|A1 ∩A2 ∩ · · · ∩Ai−1).

�

3.3 Independence

Definition 3.3.1 (Independence). Events A and B are said to be independent
if P (A ∩B) = P (A)P (B).

Proposition 3.3.1 (Conditional probability of independent events). If A and
B are independent and P (B) > 0, then P (A|B) = P (A).

The proof is left as an exercise.

Definition 3.3.2 (Conditional independence). Events A and B are said to be
conditionally independent given event C if P (A ∩B|C) = P (A|C)P (B|C).

Definition 3.3.3 (Joint independence). A countable collection of events {Ai},
i ∈ I are said to be jointly independent if for every non-empty finite subset
I0 ⊆ I we have

P (
⋂
i∈I0

Ai) =
∏
i∈I0

P (Ai).

The following proposition characterizes the (lack of) relationship between dif-
ferent types of independence.

Proposition 3.3.2.

(a) Conditional independence does not imply independence: That is, for events
A, B and C, such that P (A|B ∩ C) = P (A|C), that does not imply that
P (A|B) = P (A).

(b) Independence does not imply conditional independence: That is, there exist
events A, B and C, such that P (A|B) = P (A) and P (A|B ∩C) 6= P (A|C).

(c) Pairwise independence does not imply joint independence: That is, for a
countable collection of events {Ai}, such that P (Ai|Aj) = P (Ai) for all
i 6= j, that does not imply that events {Ai} are jointly independent.
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(d) Joint independence implies pairwise independence of all sets in the collec-
tion.

The proof is left as an exercise.

Exercises

Exercise 3.1. Let A be an event and let {Bi} be a partition. Show that⋃∞
i=1A ∩Bi = A ∩

⋃∞
i=1Bi.

Exercise 3.2. Prove Proposition 3.3.1.

Exercise 3.3. Prove (d) in Proposition 3.3.2.

Exercise 3.4. Prove (a-c) in Proposition 3.3.2 by finding a counterexample.
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Chapter 4

Abstract integration

In this chapter we will introduce a more general approach to integration - ab-
stract integration of a function f with respect to a measure µ:

∫
fdµ.

While our treatment will be more general, we will primarily be interested in a
few special cases: integration with respect to the Lebesgue measure λ (or the
Lebesgue integral), integration with respect to a probability measure P , and
integration with respect to the counting measure #, which we define in this
chapter.

The Lebesgue integral will allow us to integrate a more general class of functions
(it is a strict generalization over the Riemann integral on bounded functions
on bounded intervals). It also has other nice properties that make it more
appropriate for rigorous probability theory. For example, limits of Lebesgue
integrable functions tend to be Lebesgue integrable and the integral can be
more easily extended to other, non-Rn spaces.

Integration with respect to a probability measure is particularly useful as it is
directly related to the expectation of random variables and will allow us to treat
this important quantity more generally, for all types of random variables.

4.1 A review of Riemann integration

First, we’ll briefly review the Riemann integral of a bounded function f on an
interval [a, b] that has at most a countable number of discontinuities.

We define a partition P of [a, b] as a finite set of points x0, x1, ..., xn such that
a = x0 ≤ x1 ≤ x2 ≤ ... ≤ xn = b.

39
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Additionally, we define the supremum and infimum of the function for each
interval in the partition:

Mi , sup{f(x) : xi−1 ≤ x ≤ xi}

and

mi , inf{f(x) : xi−1 ≤ x ≤ xi}.

Now we can define the upper and lower Riemann sums:

U(P, f) =
n∑
i=1

Mi(xi − xi−1)

and

L(P, f) =

n∑
i=1

mi(xi − xi−1).

Since f is bounded (say, by m ≤ f(x) ≤ M), the lower and upper Riemann
sums are also bounded

m(b− a) ≤ L(P, f) ≤ U(P, f) ≤M(b− a).

Finally, we define the lower and upper Riemann integrals:

∫ b

a

f(x)dx = inf U(P, f)

and

∫ b

a

f(x)dx = supL(P, f).

If the lower and upper Riemann integrals are the same, we say that f is Riemann
integrable and the value of the integral equals the value of the lower and upper
Riemann integral.
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4.2 Integrating simple functions

Before we proceed with the definition of more abstract integration, we must first
define what it means for a function to be measurable:

Definition 4.2.1 (Measurable function). Let (Ω,F) and (S,S) be measurable
spaces. Function f : Ω→ S is said to be a measurable function if for set A ∈ S
we have f−1(A) ∈ F , where

f−1(A) , {ω ∈ Ω|f(ω) ∈ A}.

That is, the pre-image f−1 of every set in S is in F .

Our interest lies in the measurable spaces where S is the real line and S is the
Borel sigma algebra on the real line. Unless otherwise noted, F-measurable
implies that the preimage of every Borel set is in F .

Let (Ω,F , µ) be a measure space. Let f : Ω→ R be an F-measurable function.

Definition 4.2.2 (Simple function). A function f is said to be simple if it can
be written as

f(ω) =

n∑
i=1

aiIAi(ω),∀ω ∈ Ω,

where ai ∈ R, Ai ∈ F , and IAi(ω) is the indicator function (IAi(ω) = 1 if ω ∈ Ai
and 0 otherwise).

That is, a function is simple if it attains a finite number of distinct values.

Whenever we’ll be referring to a simple function, we will be referring to the
unique canonical representation where ai are distinct and Ai disjoint.

Definition 4.2.3. Let f be a non-negative simple function. The abstract inte-
gral of f with respect to a measure µ is defined as

∫
fdµ ,

n∑
i=1

aiµ(Ai).

That is, the abstract integral of the non-negative simple function is a sum over
all distinct values, each multiplied by the measure of the set of points that attain
that value.

Now we can look at a function that is not Riemann integrable but is a simple
function, so we can integrate it using our abstract integral.
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Example 4.2.1 (A non-Riemann integrable function). Function f is defined
as follows: f(x) = 1, if x is irrational and 0 ≤ x ≤ 1, and f(x) = 0 everywhere
else. We will try to compute the integral of this function over the unit interval
[0, 1].

First, let’s compute the Riemann integral. Observe that no matter how fine
a partition we make, there will always be an irrational and a rational number
in every segment. So, the supremum (Mi) and infimum (mi) of the function
for each segment will be 1 and 0, respectively. This implies that the upper and
lower Riemann sums will be 1 and 0, respectively, regardless of the partition.
Therefore, the upper and lower Riemann integrals will not be the same. This
function is not Riemann integrable!

Now let’s compute the abstract integral. So far, we’ve only learnt how to compute
the abstract integral for simple functions. However, f is a simple function - it
attains only two distinct values, 1 and 0. To compute the integral, we now need
only the measures of the sets where it attains 1 and 0. That is, the measure of
the irrationals and rationals on [0, 1].

We’ll compute the integral with respect to the Lebesgue measure. So, what is the
Lebesgue measure of the set of rationals on [0, 1]? There are countably many
rationals and the Lebesgue measure of a singleton is 0. So, by the countable
additivity of measures, the measure of rationals on [0, 1] is 0. Furthermore, the
Lebesgue measure of the unit interval is 1. Because irrationals and rationals
are disjoint and together constitute the entire unit interval, the measure of all
irrationals on the unit interval must be 1. The Lebesgue integral of f is therefore
0× 0 + 1× 1 = 1.

This function f is therefore an example of a function that is not Riemann inte-
grable but is integrable with respect to the Lebesgue measure using the abstract
integral we just defined. Further interesting results can be obtained if we inte-
grate the function on the interval (−∞, x]. If x < 0 then the Lebesgue integral
is clearly 0 (the function is 0 everywhere) and if x > 1 the Lebesgue integral is
1. If 0 ≤ x ≤ 1, then the Lebesgue integral is x.

In Chapter 5 we will see how this characterizes the uniform probability law -
function f is the probability density function of the continuous uniform random
variable! So, even though we set countably infinitely many values to 0 (all
rationals) the density retains its properties. This illustrates how densities are
unique only up to a set of measure 0 and emphasizes how the density is not a
direct expression of probability.

4.3 Arbitrary measurable functions

Before we fully generalize the abstract integral, we need one more intermediate
step - the integral of a non-negative function:
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Definition 4.3.1. Let f : Ω→ [0,∞) be a non-negative F-measurable function.
Let S(f) be the collection of all non-negative simple functions g : Ω → [0,∞),
such that ∀ω ∈ Ω : g(ω) ≤ f(ω).

The abstract integral of f with respect to a measure µ is defined as

∫
fdµ , sup

g∈S(f)

∫
gdµ.

Note that the above integral can be infinite. Now we are ready for the general
definition:

Definition 4.3.2. Let (Ω,F , µ) be a measure space. Let f : Ω → R be an
F-measurable function. Let f = f+ − f− be a decomposition of f into a non-
negative component f+ , max(f, 0) ≥ 0 and a non-positive component f− ,
−min(f, 0) ≥ 0. Note without proof that both f+ and f− are measurable
functions.

The abstract integral of f with respect to measure µ is defined as

∫
fdµ ,

∫
f+dµ−

∫
f−dµ,

where the integrals of f+ and f− refer to the previously defined integral of non-
negative functions. If both of the integrals are infinite, the integral of f is left
undefined (we also say that it does not exist).

Note that the above definition can be used to integrate over an arbitrary mea-
surable set A ∈ F :

∫
A
fdµ =

∫
fIAdµ, where IA is the indicator function.

Function g = fIA is a product of two measurable functions and therefore mea-
surable. Hence we can integrate g as stated above.

Integrability, however, is a slightly more strict term than the existence of the
integral - it does not include infinite integrals:

Definition 4.3.3 (Integrability). We say that function f is integrable if
∫
|f |dµ <

∞. That is, if f is absolutely integrable - the integral of its absolute is finite.

Proposition 4.3.1. A function f is integrable iff both f+ and f− are integrable.

The proof of this proposition is left as an exercise.

In the case where f is integrable wrt the Lebesgue measure, we say that function
f is Lebesgue integrable.

Relationship between Riemann and Lebesgue integral

The abstract integral is well-defined but the definitions are not very practical.
The following theorems, which we state without proof, can be very helpful:
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Theorem 4.3.1. If a function f : [a, b] → R is Riemann integrable, then it is
Lebesgue integrable, and the two integrals coincide.

Theorem 4.3.2. If a non-negative function f on R is improper Riemann inte-
grable, then it is Lebesgue integrable, and the two integrals coincide.

That is, in most practical scenarios the Lebesgue and Riemann integral are
equivalent. In particular, for all Riemann integrable probability density func-
tions (see Chapter 5). However, as we have already shown, not all probabilility
densities are Riemann integrable. They are, of course, by definition, Lebesgue
integrable. Also note that there exist functions that are improper Riemann
integrable but not Lebesgue integrable, for example sin x

x .

4.4 Properties of abstract integration

Let (Ω,F , µ) be a measure space. Let f and g be F-measurable functions.

Definition 4.4.1. A property P is said to hold almost everywhere with respect
to a measure µ (µ-a.e. for short) if there exists a set N ∈ F , such that µ(N) = 0
and all ω ∈ Ω \N have the property P.

When dealing with probability measures, the expression almost surely (a.s. for
short) is often used instead.

The following two theorems each provide an answer to the very important ques-
tion - When can we interchange the integral and the limit?. These theorems are
among the most important results of abstract integration and are used in the
proofs of many other results.

Theorem 4.4.1 (Monotone convergence theorem (MCT)). Let fn be a non-
decreasing sequence (that is, fn(ω) ≤ fn+1(ω) for all ω and all n ≥ 1) of
non-negative measurable functions with limn→∞ fn(ω) = f(ω) µ-a.e.. That is,
fn converges point-wise to f almost everywhere. Then,

lim
n→∞

∫
fndµ =

∫
fdµ.

Theorem 4.4.2 (Dominated convergence theorem (DCT)). Let fn be a se-
quence of measurable functions with limn→∞ fn(ω) = f(ω) µ-a.e.. If there
exists an integrable function g, such that |fn(ω)| ≤ g(ω) for all n and ω, then

lim
n→∞

∫
fndµ =

∫
fdµ.

The proof of these theorems is beyond the scope of this text.
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Note that the MCT allows for infinite integrals - the function f is not necessarily
integrable. The existence of an dominating function g in the DCT, however,
implies that f and fn are integrable.

Proposition 4.4.1. Other properties of abstract integration:

(a)
∫
IAdµ = µ(A).

(b) If f ≥ 0, then
∫
fdµ ≥ 0.

(c) If f = 0 µ-a.e., then
∫
fdµ = 0.

(d) For integrable functions f and g:
∫

(f + g)dµ =
∫
fdµ+

∫
gdµ (linearity).

(e)
∫
afdµ = a

∫
fdµ, for a ∈ R.

Proof. We will prove (d) for the case of non-negative simple functions (the
general case is beyond the scope of this text):

Let f(ω) =
∑n
i=1 aiIAi(ω) and g(ω) =

∑m
j=1 biIBj (ω) be the canonical repre-

sentations of f and g as simple functions. By definition of a canonical represen-
tation, sets Ai are disjoint as are sets Bj . So, the sets Ai ∩Bj are also disjoint.
Then

(f + g)(ω) =

n∑
i=1

m∑
j=1

(ai + bi)IAi∩Bj (ω).

∫
(f + g)(ω)dµ =

n∑
i=1

m∑
j=1

(ai + bi)µ(Ai ∩Bj)

=

n∑
i=1

ai

m∑
j=1

µ(Ai ∩Bj) +

m∑
j=1

bi

n∑
i=1

µ(Ai ∩Bj)

=

n∑
i=1

aiµ(Ai) +

m∑
j=1

biµ(Bj) (marginalize)

=

∫
f(ω)dµ+

∫
g(ω)dµ

�

Statements (a-c) and (e) are left as an exercise.

Summation is a special case of integration

Abstract integration also elegantly generalizes sums and infinite series. First,
let’s define a new measure:
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Definition 4.4.2 (Counting function). Let (Ω,F) be a measurable space. A
function # : F −→ [0,∞) is defined as #(A) = |A| if |A| is finite and ∞
otherwise.

Proposition 4.4.2. The counting function # is a measure on (Ω,F).

The proof of this proposition is left as an exercise.

With abstract integration at our disposal, we can interpret sums of finite and
infinite sequences as an integral with respect to the counting measure:

Proposition 4.4.3. Let a1, a2, ... be an infinite sequence and define f : N −→ R
as f(i) = ai. Then

∞∑
i=1

ai =

∫
N
fd#.

Proof. We will prove the proposition for non-negative ai. The proof for arbitrary
ai follows from combining the positive and negative parts, as when we defined
the abstract integral.

First, we define a sequence of functions fn : N −→ R, such that fn(k) = f(k)
if k ≤ n and fn(k) = 0, otherwise. That is, each fn equals f up to the n-th
number and 0 everywhere else beyond that number.

Clearly, fn converges point-wise to f as n approaches ∞. Furthermore, fn are
non-decreasing, so we can apply the MCT to show

lim
n→∞

∫
N
fnd# =

∫
N

lim
n→∞

fnd# =

∫
N
fd#.

Also

∫
N
fnd# =

∫
{1}

fnd# + · · ·+
∫
{n}

fnd# +

∫
{n+1,n+2,... }

fnd#

= f(1) + f(2) + · · ·+ f(n) + 0,

because all the individual terms are integrals of constant functions. From this
and the above exchange of limit and integral, we have∫

N
fd# = lim

n→∞

∫
N
fnd# = lim

n→∞

n∑
i=1

f(i) =

∞∑
i=1

f(i).

�
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Therefore, all the results for abstract integration apply to summation. For ex-
ample, the exchange of limit and integral, which we already used in the proof
above, and criteria for integrability (a series converges if it is absolutely conver-
gent).

Exercises

Exercise 4.1. Prove Proposition 4.3.1.

Exercise 4.2. Prove Proposition 4.4.2. If the general proof for an arbitrary
measurable space turns out to be too challenging, try to prove it for the special
case of finite Ω or Ω = N (both with the power set as the sigma-algebra).

Exercise 4.3. Prove statement (a) in Proposition 4.4.1.

Exercise 4.4. Prove statement (b) in Proposition 4.4.1.

Exercise 4.5. Prove statement (c) in Proposition 4.4.1.

Exercise 4.6. Prove statement (e) in Proposition 4.4.1.
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Chapter 5

Random variables

A real-valued random variable (RV) is the fundamental building block of prob-
abilistic expression. It can be thought of as a concise and precise statement
about a probability space and the values we are interested in. That is, RVs are
tools for precise and unambiguous expression of uncertainty.

In practice we mostly work with random variables and their distributions, be-
cause working with them is much easier than working directly with measurable
spaces and probability measures.

Introductory probability courses typically focus on two families of RVs: discrete
and continuous RVs. In this chapter we will precisely define RVs and show that
there exist (infinitely) many RVs that are of practical interest but are neither
discrete nor continuous.

5.1 Random variables are measurable functions

Random variable is in a way a very unfortunate name, because random variables
are neither random nor variables! They are in fact functions! More precisely,
they are measurable functions:

Definition 5.1.1. Let (Ω,F) and (R,BR) be measurable spaces. A random
variable X is a function X : Ω→ R that is F-measurable.

Recall that measurable (see Definition 4.2.1) in this context means that the
preimage X−1 of every Borel set is in F . Measurability is necessary - when we
equip the measurable space (Ω,F) with a probability measure, we want to be
able to measure the probability of sets of values of our random variable. We now
proceed by doing just that. A random variable that maps from a probability
space to a new measurable space induces a (new) probability measure on that
new space:

49
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Definition 5.1.2. Let (Ω,F , P ) be a probability space. Let X be a random
variable. The probability law of X is a function PX : BR → [0, 1], which is
defined as

PX(B) , P ({ω ∈ Ω|X(ω) ∈ B}) = P ◦X−1(B)

Proposition 5.1.1. The probability law PX is a probability measure on (R,BR).

Proof. PX(∅) = 0 follows from the fact that PX is a finite measure. PX(R) =
P ({ω ∈ Ω|f(ω) ∈ R}) = P (Ω) = 1. What remains is to show countable
additivity. Note that the pre-images under X of two disjoint Borel sets are
disjoint, because X maps each element of Ω to a single element of R. Therefore,

PX(

∞⋃
i=1

Ai) = P (

∞⋃
i=1

{ω ∈ Ω|f(ω) ∈ Ai})

=

∞∑
i=1

P ({ω ∈ Ω|f(ω) ∈ Ai})

=

∞∑
i=1

PX(Ai).

�

The probability law of a RV is an example of a pushforward measure - a measure
that is obtained by pushing forward a measure from one measurable space to
another using a measurable function.

5.2 Cumulative distribution function

In practical applications, we rarely work directly with probability spaces, σ-
algebras, or even probability laws of RVs. Instead, we work with easier to
understand and easier to use representations of RVs. The most important such
representation is the cumulative distribution function (CDF):

Definition 5.2.1. The cumulative distribution function FX : R → [0, 1] of a
random variable X on a probability space (Ω,F , P ) is defined as

FX(x) , PX((−∞, x]) = P ({ω ∈ Ω|X(ω) ≤ x}).

Note that we often use compact notation FX(x) = P (X ≤ x).

Proposition 5.2.1. Let X and Y be random variables on (Ω,F , P ). The fol-
lowing statements are true:

(i) If PX(B) = PY (B) for all B ∈ BR then FX(x) = FY (x) for all x ∈ R.
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(ii) If FX(x) = FY (x) for all x ∈ R then PX(B) = PY (B) for all B ∈ BR.

Proof. The proof of (i) is straightforward: The CDF of a RV depends only on its
probability law. If two RVs have identical probability laws, they have identical
CDFs.

The proof of (ii) is more involved. One way of proving this is to invoke Dynkin’s
π-λ theorem. A corollary of that theorem is that if two measures agree on a
π-system, they agree on a σ-algebra generated by that π-system. A π-system
is an even more general collection than an algebra. It is a non-empty collection
of subsets of Ω that is closed under finite intersection. The set of intervals
{(−∞, x] : x ∈ R} that a CDF is defined on is a π-system, so it follows that
if two measures agree on a π-system (have the same CDF), they agree on the
entire σ-algebra.

An alternative is to use Caratheodory’s theorem in way very similar to our
extension of the Lebesgue measure to all Borel sets on the unit interval. First,
recall that the intervals (a, b] generate the Borel σ-algebra on R and their algebra
are finite unions of disjoint such intervals. Next, we introduce the (pre)measure
µ((a, b]) = F (b)−F (a) and extend it to finite unions via addition (the measure is
the sum of measures of disjoint intervals). This measure is finite. What remains
is to show the final condition of Caratheodory’s theorem - that the pre-measure
is countably additive on the algebra (not trivial to prove!). So, the measure µ
uniquely extends to all Borel sets. Because µ represents the probability law on
intervals (a, b] and depends only on the CDF, it follows that two RVs with the
same CDF have the same probability law on all Borel sets. �

The above statements say that if two RVs have identical probability laws, they
have identical CDFs. And vice-versa, if they have identical CDFs, they have
identical probability laws. That is, there is a one-to-one correspondence between
the representations of RVs with their probability laws and their representations
with CDFs. CDFs are, of course, a much simpler and easier to understand
representation. It might at first be surprising that the probability measure of
all Borel sets can be represented by a single function from R to R. However,
recall that we have already noted that the cardinality of the Borel sets is R.

Properties of CDFs

CDFs have the following properties.

Proposition 5.2.2. Let X be a random variable with CDF FX(·). Then FX(·)
has the following properties:

(a) If x ≤ y, then FX(x) ≤ FX(y) (non-decreasing function).

(b) limx→−∞ FX(x) = 0 and limx→∞ FX(x) = 1.

(c) ∀x ∈ R : limε↓0 FX(x+ ε) = FX(x) (right continuity).
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Proof. To prove (a), observe that if x ≤ y then {ω ∈ Ω|X(ω) ≤ x} ⊆ {ω ∈
Ω|X(ω) ≤ y}. Then use the property of probability measures in Proposition
1.3.1(c).

We will prove only the second part of (b) as the proof of the first part is sym-
metric.

lim
x→∞

FX(x) = lim
x→∞

P (X ≤ x) (definition of CDF)

= lim
n→∞

P (X ≤ xn) (sequence that goes to ∞)

= P (
⋃
n∈N
{ω ∈ Ω|X(ω) ≤ xn}) (continuity of probability)

= P (Ω)

= 1

Claim (c) is proved in a similar way:

lim
ε↓0

FX(x+ ε) = lim
ε↓0

P (X ≤ x+ ε) = (definition of CDF)

= lim
n→∞

P (X ≤ x+ εn) = (sequence that goes to 0)

= P (
⋂
n∈N
{ω ∈ Ω|X(ω) ≤ x+ εn}) (continuity of probability)

= P (X ≤ x)

= FX(x)

�

5.3 Quantile function

Definition 5.3.1 (Quantile function). The generalized inverse Q : (0, 1) → R
of the CDF F is defined as

Q(x) , inf{u : F (u) ≥ x}.

This generalization is necessary in order to define the inverse on the entire unit
interval for CDFs with discontinuities. For continuous CDFs, Q(x) and the
ordinary inverse F−1(x) are the same (left as an exercise).

The quantile function plays an important role in practice, both as a means of
summarizing the distribution of a random variable (for example, the median,
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Q( 1
2 )) and for generating samples from the distribution via the inverse transform

method (see Chapter 19.2). The latter is also interesting from a theoretical
perspective. Through the quantile function we can show that for every CDF
F and the standard probability space on the unit interval there exists a RV
whose CDF is F . That is, for every distribution there exists a RV with that
distribution:

Theorem 5.3.1. Let F be a function that satisfies the properties of CDFs from
Proposition 5.2.2 and let Q be its corresponding quantile function. Consider the
uniform probability space ((0, 1],B(0,1], λ). Let X : (0, 1]→ R be a RV such that
X(ω) = Q(ω) for all ω ∈ (0, 1) and X(1) is set to any real number. Then F is
the CDF of X.

Proof. FX(x) = PX((−∞, x]) = λ({ω ∈ (0, 1]|X(ω) ≤ x}]

= λ({ω ∈ (0, 1]|Q(ω) ≤ x}] = λ((0, F (x)) = F (x). �

So, every function that has the properties of a CDF corresponds to a probability
law of a RV.

5.4 Different RVs, same distribution

It is clear that two identical RVs will have identical probability laws and there-
fore identical CDFs. However, two different RVs can also have identical proba-
bility laws and CDFs!

Example 5.4.1. - Let ((0, 1],B(0,1], λ) be our probability space. Let X : (0, 1]→
R such that X(ω) = 1, if ω < 1

2 , and X(ω) = 0, otherwise. Let Y : (0, 1] → R
such that Y (ω) = 1−X(ω).

Clearly, X and Y are RVs and they are not identical. However, both X and
Y have the same CDF F : F (x) = 0, if x < 0, F (x) = 1

2 , if 0 ≤ x < 1, and
F (x) = 1, if x ≥ 1.

We can look at RV X as a fair coin and RV Y as a coin that always flips the
opposite of X. While they both have the same distribution, they are not the
same.

This distinction between a RV and its probability law (distribution, CDF) is so
important that it deserves its own section.

5.5 Discrete random variables

Now we are ready to introduce discrete and continuous RVs as a special case of
our more general treatment of RVs.
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Definition 5.5.1. RV X is a discrete random variable if there exists a countable
subset B ∈ BR such that PX(B) = 1.

As a consequence the probability law of a discrete RV can be uniquely specified
by assigning probabilities to at most a countable subset (and 0 everywhere else):

Definition 5.5.2 (Probability mass function (PMF)). Let X be a discrete
random variable. The function pX : R → [0, 1], pX(x) , PX({x}) is called the
probability mass function of X.

Proposition 5.5.1 (Properties of discrete RVs). Let X be a discrete RV with
PMF pX and CDF FX . Then

(a) There exists a countable subset S of R, such that
∑
x∈S pX(x) = 1 and

∀x /∈ S : pX(x) = 0.

(b) The PMF completely characterizes the probability law: PX(B) =
∑
x∈B∩S pX(x).

(c) FX(x) =
∑
xi∈S:xi≤x pX(xi).

(d) X is discrete ⇐⇒ FX(x) is piecewise constant.

Proof. The first part of (a) follows from the definition of a discrete RV. We
prove the second part by using countable additivity of probability - a non-zero
probability for an x outside of S would imply probability greater than 1. �

Statements (b), (c), and (d) are left as an exercise.

5.6 Continuous random variables

Continuous RVs are most often defined through the existence of a probability
density function (PDF) fX :

Definition 5.6.1 (Continuous random variable). RV X is a continuous RV if
there exists a non-negative measurable function fX : R→ [0,∞), such that for
any B ∈ BR, we have

PX(B) =

∫
B

fXdλ.

Function fX is the PDF of X.

By this definition, RV X is a continuous RV if there exists a non-negative
function that characterizes the RVs probability law through its integral. That
is, the probability of a set is the integral over that set.

In a typical first course in probability continuous RVs would be defined using
the Riemann integral. The issue with that is that here exist PDFs that would
characterize legitimate continuous random variables, but they are not integrable
in the Riemann sense. Example 4.2.1 from Chapter 4 illustrates this point.
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First, it shows that there are functions that are not Riemann integrable. And
second and more important, there are legitimate PDFs that are not Riemann
integrable. The example is of a function that is almost everywhere the same
as a uniform density, which is Riemann integrable. However, there also exist
PDFs that are not Riemann integrable and are not almost everywhere the same
as a Riemann integrable PDF. However, their construction is out of the scope
of this text.

A common alternative but equivalent measure-theoretic definition of a contin-
uous RV is that which is absolutely continuous with respect to the Lebesgue
measure:

Definition 5.6.2 (Absolute continuity). A measure µ is said to be absolutely
continuous with respect to Lebesgue measure if λ(A) = 0 implies µ(A) = 0 for
every measurable subset A.

The well-known Radon-Nikodym theorem establishes that absolute continuity
wrt Lebesgue measure implies the existence of a PDF (or the Radom-Nikodym
derivative). There also exist RV whose CDF is continuous but they are not
absolutely continuous - we introduce these in the next section.

We can show that the PDF has the following useful properties:

Proposition 5.6.1. Let X be a continuous RV with PDF fX . Then,

(a) FX(x) =
∫ x
−∞ fX(y)dλ.

(b)
∫∞
−∞ fX(y)dλ = 1.

(c) fX(x) ≥ 0, for all x ∈ R.

The proof is left as an exercise.

The following properties are worth noting regarding continuous RV:

Proposition 5.6.2.

(a) The PDF of a RV does not have to be continuous.

(b) If the CDF of a RV is continuous that does not imply that the RV is con-
tinuous.

(c) The PDF of a RV is unique only up to a set of Lebesgue measure 0. This
is unlike a CDF where two different CDFs characterize two different RVs.

Proof. A trivial counter-example that proves (a) is the uniform RV on the unit
interval - it is discontinuous at 0 and 1. The function from Example 4.2.1 is
another example - it is discontinuous everywhere.

Singular distributions that are covered later in this chapter are the counter-
example that proves (b). For example, the Cantor distribution has a continuous
CDF but is not a continuous RV (it does not admit a PDF).
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Part (c) follows from the definition of a continuous RV (see Definition 5.6.1) - if
some function f is the PDF then all functions that are almost everywhere the
same as f (wrt the Lebesgue measure) will have the same values of the integral.
For example, the function from Example 4.2.1 is a PDF of the uniform RV. �

5.7 Singular random variables

There exists a third pure type of RVs (the other two being discrete and contin-
uous random variables) - singular random variables. Before we define singular
RVs, we first define continuous measures.

Definition 5.7.1 (Continuous of a measure). A measure µ is said to be con-
tinuous if µ({ω}) = 0 for every ω ∈ Ω.

Proposition 5.7.1. If probability measure P is continuous then the correspond-
ing CDF is a continuous function.

Proof. If the measure of every singleton is 0, then the CDF has no jumps and
is therefore continuous. �

Proposition 5.7.2. If measure µ is absolutely continuous with respect to the
Lebesgue measure, it is continuous.

Proof. The Lebesgue measure of a singleton is 0, so by absolute continuity,
µ({ω}) = 0 for every ω ∈ Ω. �

So, absolute continuity of a measure implies its continuity. However, the con-
verse is not true:

Definition 5.7.2. A random variable is said to be a singular random variable
if its probability law PX is a continuous measure and there ∃A ∈ BR : λ(A) = 0
and PX(A) = 1.

A singular random variable therefore concentrates all of its probability on a set
of Lebesgue measure 0 where each element also has probability 0. It is implicit
from the definition that this set must be uncountable, because a countable set
of elements with probability 0 would not sum up to probability 1. Note that
the requirement that all the probability is on a set of Lebesgue measure 0 is
necessary in order for this to be a pure type. If only part of the probability
would be on such a set then the variable would be a mixture of a singular and
a continuous RV.

A singular RV is therefore continuous but not absolutely continuous, so it is not
a continuous RV in the sense we are used to and it has no PDF (every integral
wrt Lebesgue measure would be 0, because all the probability is assigned to a set
of Lebesgue measure 0!) It also doesn’t have a point mass, so it is not a discrete
RV. It would be more precise to say that we have discrete and continuous RVs
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and that continuous RVs are further subdivided into continuous and absolutely
continuous.

An example of a singular RV is the Cantor distribution.

5.8 Decomposition of probability measures

Theorem 5.8.1 (Decomposition theorem). Every CDF F can written as

F = w1Fcontinuous + w2Fdiscrete + w3Fsingular,

where wi ≥ 0,
∑
wi = 1, and the CDFs on the right-hand side correspond to a

continuous, discrete, and singular RV.

The theorem states that every RV is a combination of the three pure types.
While singular random variables are only of theoretical interest, RVs that are a
mix of a discrete and continuous RV are very common in practice.

Example 5.8.1. - In one particular university course the scores of students
that take the exam are uniform over (0, 100%]. However, there is also a 0.2
probability that a student does not even attend the exam in which case he auto-
matically receives a final score of 0%. Let the RV X be the final score received
by a student. What is the CDF of X?

This RV is not continuous, because its CDF is not absolutely continuous - it
has a 0.2 point-mass on a the set {0}, which is a singleton and therefore has
Lebesgue measure 0. It is also not discrete, because only 0.2 of the probability
is concentrated on a countable subset of R. And it is not singular, because it
does not concentrate all of its probability on a set of Lebesgue measure 0 and
the probability is not 0 for every singleton. So, X is not of a pure type - it is a
mixture of a discrete and a continuous random variable.

5.9 Functions of random variables

In practice, we will often be interested not just in random variables, but also
functions of random variables. The following proposition states that in most
cases, but not always, the function of a random variable will again be a random
variable:

Proposition 5.9.1. Let X : Ω → R be a RV. Let g : R → R be a Borel
measurable function. Then, Y = g(X) is also a random variable.

Proof. X is a RV and therefore, by definition, a measurable function. There-
fore, we only need to show that the composition of two measurable functions is
measurable. Because g is Borel measurable, the pre-image of a Borel set under
g will be a Borel set. And, because X is measurable, the pre-image of a Borel
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set under X will be measurable with respect to our σ-algebra. Therefore, the
pre-images of Borel sets under the composition g ◦X(·) will also be measurable
with respect to our σ-algebra. �

This proposition also suggests how to pick such a function g that g(X) will not
be a RV - we require a function that is not Borel measurable. That is, a function,
such that the pre-image of a Borel set is not a Borel set. One possible choice
would be a function that maps the elements of the Vitali set (see Theorem 2.1.1)
to 5 and the rest to 0 - the probability of 5 would then not be measurable. This
example is very theoretical. In practice, most of our functions will be Borel
measurable and we will rarely be wrong in assuming that the function of a
random variable is a random variable. In particular, all continuous functions
are Borel measurable.

In general, the CDF of a transformed random variable can be computed as

FY (y) = P (g(X) ≤ y) = P ({ω|g(X(ω)) ≤ y}) = PX(By),

where By is the set of all x, such that g(x) ≤ y. This by itself is not very useful,
but there are two special cases where it is easier to compute the transformed
RV.

Proposition 5.9.2 (Transformation of a discrete RV). Let X be a RV, g : R→
R a Borel measurable function, and Y = g(X). If X is discrete, then:

pY (y) =
∑

x∈g−1(y)

pX(x).

The proof is left as an exercise.

Example 5.9.1. Let X be a discrete RV whose probability law represents a fair
6-sided die. That is pX(i) = 1

6 , i = 1..6. Let g(x) = (x − 3)2. What is the
probability law of RV Y = g(X)?

X is a discrete RV so Y is also a discrete RV, because its support can’t be more
than that of X (a function maps a value to a single other value). The values
produced by g from 1..6 are 4, 1, 0, 1, 4, and 9. So, Y has non-zero probabilities
for 0, 1, 4, and 9: pY (1) = pY (4) = 2

6 and pY (0) = pY (9) = 1
6 .

Proposition 5.9.3 (Transformation of a continuous RV). Let X be a RV,
g : R → R a Borel measurable, monotone increasing or monotone decreasing,
and continuously differentiable function, and Y = g(X). Then,

fY (y) = fX(g−1(y))| d
dy
g−1(y)|.
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Proof. First note that the purpose of the conditions regarding g in the statement
of the theorem are for g to have an inverse and for that inverse to be differentiable
(or, to be more precise, non-differentiable at most on a set of Lebesgue measure
0, so that Y has a PDF).

Monotonicity also simplifies the relationship between the CDF of X and the
CDF of Y . If g is a monotone increasing function, we have

FY (y) = P (Y ≤ y) = P (g(X) ≤ y) = P (X ≤ g−1(y)) = FX(g−1(y)).

Note that the above is useful on its own, because it applies to any RV and
monotone increasing g.

Differentiating both sides with respect to y, we get

fY (y) = fX(g−1(y))
d

dy
g−1(y).

Similarly, if g is a monotone decreasing function, we get

FY (y) = P (X ≥ g−1(y)) = 1− P (X < g−1(y)) = 1− FX(g−1(y)).

Again, the above is useful on its own, because it applies to any RV and monotone
decreasing g.

Differentiating both sides with respect to y, we get

fY (y) = −fX(g−1(y))
d

dy
g−1(y).

However, because g is monotone decreasing, so is g−1. The derivative is therefore
negative and the increasing and decreasing cases can be summarized as

fY (y) = fX(g−1(y))| d
dy
g−1(y)|.

�

Example 5.9.2. Let X have a continuous uniform distribution on the unit
interval. Let g(x) = ex. What is the PDF of RV Y = g(X)?

For the uniform RV on the unit interval we have fX(x) = 1. Function g is
increasing, has an inverse g−1(x) = log(x), and its inverse is differentiable. We
have
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fY (y) = fX(g−1(y))| d
dy
g−1(y)| = 1|1

y
| = 1

y
,

because we have y ∈ {e0, e1} = {1, e}.

We can check if fY is indeed a PDF. It is non-negative and the integral is

∫ e

1

1

x
dx = | log(x)|e1 = 1.

Exercises

Exercise 5.1. Prove statements (b-d) in Proposition 5.5.1.

Exercise 5.2. Prove statements (a-c) in Proposition 5.6.2.

Exercise 5.3. Prove that the inverse of the CDF and the generalized inverse
from Definition 5.3.1 are equivalent for continuous RVs. Give an example that
demonstrates that they are not equivalent for RVs with discontinuities in the
CDF.

Exercise 5.4. Prove Proposition 5.9.2.



Chapter 6

Multiple random variables

6.1 Measure-theoretic background

Before we can talk about joint probability laws and CDF of two or more RVs,
we must extend our understanding of probability spaces and integration to R2.
Instead of assigning probabilities to subsets of the real line, we now have to
assign probabilities to subsets of R2:

Definition 6.1.1 (Product σ-algebra). Let (Ω1,F1) and (Ω2,F2) be measurable
spaces. The product σ-algebra is a σ-algebra for the corresponding product space
Ω1 × Ω2 and is defined as the σ-algebra generated by the rectangles A1 ×A2:

F1 ⊗F2 = σ({A1 ×A2 : A1 ∈ F1, A2 ∈ F2}).

Now we will extend our favorite σ-algebra to Rn and show that it is a product
σ-algebra.

Definition 6.1.2 (Borel σ-algebra). The Borel σ-algebra on Rn is the σ-algebra
generated by these collections of hyper-rectangles

BRn = σ({(−∞, b1)× (−∞, b2)× . . .× (−∞, bn) : bi ∈ R})
= σ({(a1, b1]× (a2, b2]× . . .× (an, bn] : ai, bi ∈ R})
= σ({(a1, b1)× (a2, b2)× . . .× (an, bn) : ai, bi ∈ R}).

We will not prove the equivalence of these definitions, but the argument is
similar to the arguments we used in the case of Borel sets on (0, 1] and R.

Now we can show that the Borel σ-algebra on Rn is a product algebra. And not
only that, it is a product of n copies of Borel σ-algebras on R!

61
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Proposition 6.1.1.
BRn = BR ⊗ BR ⊗ . . .⊗ BR︸ ︷︷ ︸

n

.

Proof. For simplicity, will prove it for n = 2. The proof extends to n via
induction.

First, we show that BR2 ⊆ BR ⊗ BR. By definition of a product σ-algebra, the
rectangle (a, b) × (c, d) belongs to BR ⊗ BR. Because the collection of all such
rectangles is a generating set of BR2 the product σ-algebra will contain at least
all the sets in BR2 .

To complete the proof, we show that BR ⊗ BR ⊆ BR2 . We introduce F , a
collection of all subsets A of R such that A × R ∈ BR2 . Note that F is a σ-
algebra (why?). F also contains all intervals (a, b), because (a, b)×R is in BR2 ,
So, BR ⊆ F and for every A ∈ BR we have A× R ∈ BR2 .

Similarly, we can derive that for every B ∈ BR we have R×B ∈ BR2 . It follows
that

A×B = (A ∩ R)× (R ∩B) = (A× R) ∩ (R×B) ∈ BR2 .

So, the σ-algebra generated by the collection of rectangles A×B, where A,B ∈
BR is a subset of BR2 . �

Definition 6.1.3 (Product measure). Let (Ω1,F1, µ1) and (Ω2,F2, µ2) be mea-
sure spaces and let F1 ⊗ F2 be the product σ-algebra of their product space
Ω1 × Ω2. A product measure µ1 × µ2 is a measure on the measurable space
(Ω1 × Ω2,F1 ⊗ F2) satisfying the property µ1 × µ2(A1 × A2) = µ1(A1)µ2(A2),
for all A1 ∈ F1, A2 ∈ F2.

Note that if the measure spaces in the definition of the product measure are σ-
finite then the product measure exists, is unique, and is also σ-finite. We will not
concern ourselves with the technical details and for us it will suffice that there
exists a product Lebesgue measure. The product of two probability measures
will also be of some interest, because of its connection with independence of
RVs.

Example 6.1.1 (Lebesgue integration on R2). Let (R2,BR2 , λ1 × λ2) be our
measurable space. So far in this chapter we have established that BR2 is a product
σ-algebra (and a product of two Borel σ-algebras) and that the product measure
λ1 × λ2 exists and is unique (we know λ exists on (R,BR) and we have noted
that it is σ-finite, although we did not go into the details of what that means,
other than that it is a condition less strict that finite).

By definition, we have λ1 × λ2(B1, B2) = λ1(B1)λ2(B2), so if the Lebesgue
measure λ is a generalization of length then the product measure of two Lebesgue
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measures can be seen as a generalization of area. For example, let’s integrate
function f(x1, x2) which has value 1 on the unit square [0, 1]2 and 0 otherwise:

∫
R2

fd(λ1 × λ2).

Any product measure is by definition a measure, so we are already equipped to
integrate wrt to a product measure. Function f is a simple function that takes
only two possible values - 0 and 1. The measure of the set where it has value 1
is λ1 × λ2([0, 1]2) = λ1([0, 1])λ2([0, 1]) = 1. The measure of the set where it has
value 0 will be multiplied by 0, so it does not affect the value of the integral:

∫
R2

fd(λ1 × λ2) = 1.

It might be somewhat surprising that we do not have to introduce any additional
theory for integration over 2 (or more) dimensions. However, note that dimen-
sionality of the sample space does not play a role in the definition of abstract
integration. We have measurable spaces and we measure (and integrate over)
subsets of those measurable spaces. The product measure λ × λ does measure
2-dimensional sets, but it is just a measure. And B = [0, 1]2 is a 2-dimensional
set, but it is still a set. The definition of the abstract integral does not depend
on the dimensionality of the sample space (or any partition that would depend
on its dimensionality), we only observe subsets with the same value.

In practice, it is in most cases more convenient to integrate function of 2 or
more variables first wrt one variable, then wrt another, etc. A very important
theorem from measure theory, which we state without proof, states that:

Theorem 6.1.1 (Tonelli/Fubini). Let (Ω1,F1, µ1) and (Ω2,F2, µ2) be measure
spaces, where µ1 and µ2 are σ-finite measures. Let µ = µ1 × µ2 be the product
measure on the measurable space (Ω1 ×Ω2,F1 ⊗F2). Let f : Ω1 ×Ω2 → R be a
measurable function. If

∫
|f |d(µ1 × µ2) <∞ then

∫
fdµ =

∫ [∫
f(ω1, ω2)dµ1(ω1)

]
dµ2(ω2) =

∫ [∫
f(ω1, ω2)dµ2(ω2)

]
dµ1(ω1).

So, when integrating with respect to a product measure and if the function is
integrable, we can integrate wrt one measure and then wrt the other. Note that
all the definitions in this chapter so far generalize from 2 measures to n measures
via induction. That is, a product measure of 3 measures is just a product of a
product measure and a measure, etc.
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6.2 Joint probability laws and CDFs

So far in this text we have only observed a single RV at a time. Now we are
ready to extend this to multiple RVs (random vector, random matrix). The
chapter focuses on joint distributions of two RVs. However, all the results
readily generalize to three or more random variables.

First, we must ask the following question. If X and Y are random variables on
the same probability space (Ω,F , P ), is (X(·), Y (·)) : Ω→ R2 also a RV on that
probability space? The following theorem says that the answer is yes.

Theorem 6.2.1. Let X and Y be random variables on probability space (Ω,F , P ).
Then, (X(·), Y (·)) : Ω→ R2 is F-measurable.

Proof. Let F2 = {S ⊆ R2 : (X−1(S), Y −1(S)) ∈ F}. F2 contains all measurable
rectangles A × B, their unions, and their complements, because X and Y are
measurable. So F2 is a σ-algebra that contains the Borel σ-algebra. �

The probability law and CDF generalize to two or more RVs:

Definition 6.2.1. The joint probability law of RVs X and Y is defined as

PX,Y (B) , P ({ω ∈ Ω|(X(ω), Y (ω)) ∈ B}), B ∈ BR2 .

Definition 6.2.2. The joint CDF of two random variables is defined as

FX,Y (x, y) , PX,Y ((−∞, x]× (−∞, y]) = P ({ω ∈ Ω|X(ω) ≤ x, Y (ω) ≤ y}).

Typically, we use the more concise notation FX,Y (x, y) = P (X ≤ x, Y ≤ y).

Proposition 6.2.1. Properties of joint CDF:

(a) lim
x→∞,y→∞

FX,Y (x, y) = 1.

(b) lim
x→−∞,y→−∞

FX,Y (x, y) = 0.

(c) For any x1 ≤ x2, y1 ≤ y2 we have FX,Y (x1, y1) ≤ FX,Y (x2, y2) (nondecreas-
ing).

(d) ∀x, y ∈ R : lim
u↓0,v↓0

FX,Y (x+ u, y + v) = FX,Y (x, y) (continuity from above).

(e) lim
y→∞

FX,Y (x, y) = FX(x) and lim
x→∞

FX,Y (x, y) = FY (y).

The proof of this proposition is left as an exercise.
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6.3 Independence of random variables

Recall that events A and B are said to be independent if P (A∩B) = P (A)P (B).
Using this definition, we can extend the notion of independence to RVs.

Definition 6.3.1. RVs X and Y are said to be independent if for any two
Borel sets B1, B2 ∈ BR the events {ω : X(ω) ∈ B1} and {ω : Y (ω) ∈ B2}
are independent. That is P ({ω : X(ω) ∈ B1, Y (ω) ∈ B2}) = P ({ω : X(ω) ∈
B1})P ({ω : Y (ω) ∈ B2}).

If we state this in terms of the probability laws of X and Y , we get a simpler
but equivalent definition:

RVs X and Y are said to be independent if and only if PX,Y (B1 × B2) =
PX(B1)PY (B2) for any two Borel sets B1, B2 ∈ BR.

We can also view the above definition in terms of product measures. Two RVs
are independent if and only if their joint probability law is a product measure
of their individual probability laws!

Proposition 6.3.1. RVs X and Y are independent if and only if FX,Y (x, y) =
FX(x)FY (y).

Proof. First, let’s show that independence implies that the joint CDF fac-
tors. FX,Y (x, y) = PX,Y ((−∞, x] × (−∞, y]) = PX((−∞, x])PY ((−∞, y]) =
FX(x)FY (y).

Now let’s show that if the joint CDF factors, we have independence of X and
Y . Let A = (a, b] and B = (c, d]. We have

P ({ω : X(ω) ∈ A, Y (ω) ∈ B})
= P (X ∈ A, Y ∈ B) (simplify notation)

= P (a < X ≤ b, c < Y ≤ d)

= FX,Y (b, d)− FX,Y (a, d)− FX,Y (b, c) + FX,Y (a, c)

= FX(b)FY (d)− FX(a)FY (d)− FX(b)FY (c) + FX(a)FY (c)

= (FX(b)− FX(a))(FY (d)− FY (c))

= P (X ∈ A)P (Y ∈ B).

�

The definition of independence and all statements so far in this section can be
generalized to countably many RVs. With 3 or more RVs we again, analogous to
3 or more events, have to distinguish between pairwise and joint independence
(joint implies pairwise, but the converse is not true). We only state the result
that will be most useful to us:
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Theorem 6.3.1. Let {Xi} be a countable collection of RVs. RVs Xi are jointly
independent if and only if

FX1,...(x1, . . . ) =

∞∏
i=1

FXi(xi).

We state this theorem without proof, but the argument is similar to the one for
2 RVs.

6.4 Jointly discrete random variables

So far, our treatment has been general, at the level of probability laws and
CDFs, which every RV has. In the case of jointly discrete or jointly continuous
random variables, more specific and thus more useful results can be obtained.

It is a well-known result that the Cartesian product of two countable sets is
countable. Therefore, the joint distribution of two discrete random variables is
also discrete.

Definition 6.4.1 (Joint probability mass function). Let X and Y be discrete
random variables. The function pX,Y : R2 → [0, 1],

pX,Y (x, y) , P (X = x, Y = y)

is called the joint probability mass function of X and Y .

The PMF of a jointly discrete RV completely characterizes its probability law
PX,Y (B) =

∑
x,y∈B pX,Y (x, y) and the marginal probability laws pX(x) =∑

y pX,Y (x, y) and pY (y) =
∑
x pX,Y (x, y).

Definition 6.4.2. Let X and Y be discrete random variables. The conditional
probability of X given Y is defined as

pX|Y (x|y) , P (X = x|Y = y) =
P (X = x, Y = y)

P (Y = y)
=
pX,Y (x, y)

pY (y)
,

where pY (y) > 0.

Theorem 6.4.1. Discrete RVs X and Y are independent if and only if ∀x, y ∈
R : pX,Y (x, y) = pX(x)pY (y).

Proof. If X and Y are independent, then P (X ∈ B1, Y ∈ B2) = P (X ∈
B1)P (Y ∈ B2), for any B1 and B2, including B1 = {x}, B2 = {y}. Hence,
pX,Y (x, y) = pX(x)pY (y).

If pX,Y (x, y) = pX(x)pY (y), we have
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P (X ∈ B1, Y ∈ B2) =
∑
x∈B1

∑
y∈B2

pX,Y (x, y) =
∑
x∈B1

∑
y∈B2

pX(x)pY (y)

=
∑
x∈B1

pX(x)
∑
y∈B2

pY (y) = P (X ∈ B1)P (Y ∈ B2).

Note: What remains is to show that independence on these intervals is enough
to imply independence on the entire σ-algebra.

�

6.5 Jointly continuous random variables

Similarly to a continuous RV the jointly continuous RVs are defined through
the existence of a joint probability density function.

Definition 6.5.1 (Jointly continuous RVs). X and Y are jointly continuous if
there exists a non-negative measurable function fX,Y : R2 → [0,∞), such that
for any B ∈ BR2 , we have

PX,Y (B) =

∫
B

fX,Y (x, y)d(λ(x)× λ(y)).

We call fX,Y the joint probability density function.

Note that unless we explicitly state otherwise, we will in the remainder of the
book assume that we are integrating with respect to the Lebesgue measure. For
example, dx, dy, du, dv will be shorthand for dλ(x), dλ(y), etc.

The joint PDF is a complete characterization of the joint distribution:

Proposition 6.5.1. Let X and Y be jointly continuous. Then,

FX,Y (x, y) =

∫ x

−∞

∫ y

−∞
fX,Y (u, v)dvdu.

The marginal PDFs can be derived from the joint PDF: fX(x) =
∫∞
−∞ fX,Y (x, y)dy

and fY (y) =
∫∞
−∞ fX,Y (x, y)dx.

Proof. By definition, FX,Y (x, y) = PX,Y ((−∞, x]× (−∞, y]). The result can be
obtained from the definition of the joint probability density function by setting
B = (−∞, x]× (−∞, y] and then applying Tonelli’s theorem. �

Theorem 6.5.1. Jointly continuous RVs X and Y are independent if and only
if fX,Y (x, y) = fX(x)fY (y) almost everywhere.
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Proof. By Proposition 6.3.1 we have FX,Y (x, y) = FX(x)FY (y), ∀x, y ∈ R.
Inserting for continuous RVs, we get:

∫ x

−∞

∫ y

−∞
fX,Y (u, v)dvdu =

(∫ x

−∞
fX(u)dv

)(∫ y

−∞
fY (v)du

)
=

∫ x

−∞

∫ y

−∞
fX(u)fY (v)dudv

This implies that fX,Y (x, y) = fX(x)fY (y) almost everywhere. the set where
this does not hold has Lebesgue measure 0 (see Chapter 4 where almost every-
where is defined). �

Definition 6.5.2. The conditional PDF of X given Y is defined as

fX|Y (x|y) ,
fX,Y (x, y)

fY (y)
,

for fY (y) > 0.

While the joint distribution of two discrete random variables is always discrete,
the joint distribution of two continuous random variables is not always continu-
ous. However, jointly continuous RVs are marginally continuous. The proof of
these statements is left as an exercise.

6.6 Mixed joint density

Often we are interested in joint distributions of discrete and continuous RVs.
For most practical purposes concerning marginals and conditionals, the PDF
and PMF play an identical role. To avoid the technical details, we define the
joint PDF-PMF and conditional for a discrete and a continuous RV.

Definition 6.6.1. The joint PDF-PMF of a continuous RV X and a discrete
RV Y is defined as

fX,Y (x, y) , fX|Y (x|y)py(y) = pY |X(y|x)fX(x),

where

fX|Y (x|y) =
fX,Y (x, y)

pY (y)

and

pY |X(y|x) =
fX,Y (x, y)

fX(x)
.
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Note that the marginal PDF of X can be obtained by summation over Y and
the marginal PMF of Y by integration over X, analogous to jointly discrete and
jointly continuous RVs.

Exercises

Exercise 6.1. Prove statements (a) and (b) from Proposition 6.2.1.

Exercise 6.2. Prove statement (c) from Proposition 6.2.1.

Exercise 6.3. Prove statement (d) from Proposition 6.2.1.

Exercise 6.4. Prove statement (e) from Proposition 6.2.1.

Exercise 6.5. Give an example where the joint distribution of two continuous
RVs is not jointly continuous.

Exercise 6.6. Show that the marginals of a jointly continuous RV are contin-
uous.
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Chapter 7

Expected value

The expected value, expectation, or mean of a RVs is arguably the most im-
portant single-value representation of a probability distribution. Geometrically,
it is the center of mass, and, unless the distribution is very skewed or multi-
modal, it will be a good summary of its location. Through the law of large
numbers, the expected value is also related to the sample average. Expected
value together with variance represent a complete representation of a normal
distribution, which is most often parametrized in with its mean and variance.

7.1 Definition of expectation

The expectation (expected value or mean) of a function of a random variable on
a probability space is defined as the integral of the composition of that function
and random variable with respect to the probability measure.

Definition 7.1.1. Let (Ω,F , P ) be a probability space, X : Ω → R a random
variable and g : R→ R a function. The expected value of g(X) is defined as

E[g(X)] ,
∫

Ω

g(X(ω))dP (ω).

If g is the identity, this simplifies to the expectation of the RV X:

E[X] ,
∫

Ω

X(ω)dP (ω).

Example 7.1.1 (Expected value of a Bernoulli RV). Later in this chapter we
will derive the expected value of a Bernoulli distribution using the much more

71
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convenient definition for the special case of discrete RVs, which is derived from
this more general definition.

However, to illustrate the use of the general definition, let ((0, 1],B(0,1], λ) be our
probability space and X : (0, 1]→ 0, 1, such that X((0, θ]) = 1 and X((θ, 1]) = 0,
θ ∈ (0, 1). Clearly, the probability law of X is Bernoulli(θ).

Using the definition of expectation and observing that X is a non-negative simple
function, we have

E[X] =

∫
Ω

X(ω)dP (ω) =

∫
(0,1]

X(ω)dP (ω) = 1λ((0, θ])+0λ((θ, 1]) = θ+0 = θ.

Alternatively, we can derive the expected value of a RV X from its probability
law PX(A) = P (X−1(A)):

Proposition 7.1.1. E[X] =
∫
R xdPX(x).

Proof. Let’s introduce a RV Y : R → R, such that Y (x) = x. The probability
law of this RV is PY (A) = PX(Y −1(A)) = PX(A) for all A ∈ BR. That is,
X and Y have identical probability laws and therefore identical expectations.
Then, E[X] =

∫
Ω
X(ω)dP (ω) = E[Y ] =

∫
R Y (x)dPX(x) =

∫
R xdPX(x).

�

The two definitions above apply to all RVs. However, they are not very useful
in practice. From it we can derive the more familiar and practically useful
definitions for discrete and continuous RVs.

Proposition 7.1.2. The expected value of a function of a discrete random
variable X is

E[g(X)] =

∞∑
i=1

g(xi)pX(xi).

Proof. For now, we’ll assume that g(X) is non-negative. Because X is a discrete
RV, g(X) has countably many values, so we can partition Ω into a countable
number of parts Ai, such that all ω with the same value of g(X(ω)) = ai are in
the same partition. Then we can write:

g(X(ω)) =

∞∑
i=1

aiIAi(ω).
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This is not a simple function representation due to the countable number of
terms, but we will approximate it with the following sequence of functions.

g(X)n(ω) ,
n∑
i=1

aiIAi(ω).

The sequence of functions g(X)n is non-decreasing and it is easy to check that
limn→∞ g(X)n(ω) = g(X(ω)). So, the MCT applies and the integral of X equals
the limit of the integral of Xn:

E[g(X)] = lim
n→∞

E[g(X)n] = lim
n→∞

n∑
i=1

aiP (Ai)

= lim
n→∞

 n∑
i=1

g(xi)
∑

xi:g(xi)=ai

P (X = xi)

 =

∞∑
j=1

g(xj)pX(xj).

To generalize this to arbitrary g(X), we can split the RV into a positive and
negative part, do each separately (in absolute terms, to ensure non-negativity)
and take the difference. The expectation will be defined if either part is not
infinite. �

Example 7.1.2 (Expected value of a Bernoulli RV). Let X ∼ Bernoulli(θ).
The pmf of this discrete distribution, whose support is 0 and 1, is p(1) = θ and
p(0) = 1− θ. Using the definition of the expected value, we have:

E[X] =

1∑
i=0

ip(i) = 0 · (1− θ) + 1 · θ = θ.

Example 7.1.3 (Expected value of a Poisson RV). Let X ∼ Poisson(λ). The
pmf of this discrete distribution, whose support is on non-negative integers, is

p(k) =
λke−λ

k!
.

Using the definition of the expected value, we have:

E[X] =

∞∑
k=0

k
λke−λ

k!
= λe−λ

∞∑
k=1

λk−1

(k − 1)!
= λe−λ

∞∑
i=0

λi

(i)!
= λe−λeλ = λ.
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Note that in the 2nd equality we took out λe−λ, canceled the k, and ignored the
k = 0 term of the series, which is 0. The 4th equality uses the fact that the
series is a Taylor series expansion of the exponential.

Proposition 7.1.3. The expected value of a function of a continuous random
variable X is

E[g(X)] =

∫
R
g(x)fX(x)dλ(x) =

∫
R
g(x)fX(x)dx.

Proof sketch without g(·). This follows from the definition of the density:

PX(B) =

∫
B

fX(x)dλ(x)

hence dPX(x) = fX(x)dλ(x), which we substitute into

E[X] =

∫
R
xdPX(x)

from Proposition 7.1.1.

�

Example 7.1.4 (Expected value of Exponential RV). Let X ∼ Exp(λ). The
pdf of this continuous distribution, whose support on the positive reals, is f(x) =
λe−λx. Using the definition of the expected value, we have:

E[X] =

∫ ∞
0

xλe−λxdx

= λ

∫ ∞
0

xe−λxdx

= λ

(
−x
λ
e−λx

∣∣∣∣∞
0

−
∫ ∞

0

− 1

λ
e−λxdx

)
= −xe−λx

∣∣∣∣∞
0

+

∫ ∞
0

e−λxdx

= −xe−λx − 1

λ
e−λx

∣∣∣∣∞
0

=
1

λ
.
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In line 3 we used integration by parts with u = x and dv = e−λxdx, so du = dx
and v = − 1

λe
−λx.

Being an integral, expected value might not be integrable (for example, the
Cauchy distribution) or might be integrable but infinite (for example, the Pareto
distribution for some parameter values). That is, there exist RVs with an un-
defined expected value and RVs with infinite expectation.

Example 7.1.5 (RVs with infinite or undefined mean). Let X be a discrete RV
that takes values 2i, where i is a positive integer. Its pmf is p(2i) = 1

2i . We
have

∑∞
i=1

1
2i = 1, so X is indeed a RV.

The expectation of X is

E[X] =

∞∑
i=1

2i
1

2i
=

∞∑
i=1

1 =∞,

so X has an infinite expectation, even though it can only attain finite (but ar-
bitrarily large) values.

We can use the same idea to define a RV with an undefined expected value. The
key observation is that the expected value of X is an integral of the identity x
and that an integral will be undefined if the positive and negative parts of x are
both infinite.

Let Y be a discrete RV that takes values 2i, where i is a non-zero integer. Its
pmf is p(2i) = 1

2
1

2|i|
= 1

2|i|+1 . That is, Y is obtained by applying one half of X
to the positive and one half to the negative integers.

The expectation of Y is

E[Y ] = E[Y +]− E[Y −] =
1

2

∞∑
i=1

2i
1

2|i|
− 1

2

−1∑
i=−∞

|2i| 1

2|i|
=∞−∞

and thus undefined.

We complete the definitions of the expected value with a more general definition
in terms of the CDF of the RV:

Proposition 7.1.4.

E[X] =

∫ ∞
0

(1− F (x))dx−
∫ 0

−∞
F (x)dx.

Proof. We will prove this with the defining property of abstract integration
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that the integral is the difference between the positive and negative part of the
function: E[X] = E[X+]− E[X−].

First, we have for the absolute negative part of X and any ω ∈ Ω:

X−(ω) =

∫ 0

−X−(ω)

1dx

=

∫ 0

−∞
IX−(ω)≥−xdx

=

∫ 0

−∞
IX(ω)≤xdx.

The first line is just the area of a rectangle with sides of length 1 and −X−(ω).
The second line is the same integral, but this time over the negative reals and an
indicator indicating the interval (−x, 0). The final line replaces the non-negative
part X− with X. We may do this, because we are integrating only over the
negative part of the real line.

It follows from the definition of expectation that

E[X−] =

∫
Ω

X−(ω)dP (ω) =

∫
Ω

[∫ 0

−∞
IX(ω)≤xdx

]
dP (ω)

=

∫ 0

−∞

[∫
Ω

IX(ω)≤xdP (ω)

]
dx =

∫ 0

−∞
P (X ≤ x)dx =

∫ 0

−∞
F (x)dx

Similarly, we can show that

E[X+] =

∫ 0

−∞
P (X > y)dx =

∫ 0

−∞
(1− F (x))dx,

which completes the proof. �

7.2 Properties of expectation

Expected values then have all the properties of abstract integration from the
previous chapter. Let (Ω,F , P ) be a probability space. Let X and Y be random
variables.

Proposition 7.2.1. Properties of expected values:

(a) E[IA] = P (A).

(b) If X ≥ 0 then E[X] ≥ 0.
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(c) If X = 0 a.s. then E[X] = 0.

(d) For finite E[X] and E[Y ]: E[X + Y ] = E[X] + E[Y ] (linearity).

(e) E[aX] = aE[X].

(f) If X ≥ 0 a.s. and E[X] = 0 then X = 0 a.s..

Proof. (a-e) are just special cases of Proposition 4.4.1. We state (f) without
proof. �

7.3 Variance and covariance

Definition 7.3.1 (Variance). Let X be a real-valued random variable, such
that E[X] <∞. The variance of X is defined as

V ar[X] = σ2
X , E[(X − E[X])2].

We refer to σX as the standard deviation of X.

Proposition 7.3.1. Let X be a real-valued random variable. V ar[X] = 0 if
and only if X is constant a.s..

Proof. Let c be a real constant. First, we show that X = c a.s. is sufficient.
From property (c) from Proposition 7.2.1 and linearity of expectation we have
E[X] = c. Therefore, X − E[X] = 0 a.s. and (E[X − E[X])2 = 0 a.s.. This is
also a random variable, so, using property (c) again, we get E[(X−E[X])2] = 0.

Now we show that it is necessary. V ar[X] = E[(X − E[X])2] = 0 and (X −
E[X])2 ≥ 0, so, by property (f) from Proposition 7.2.1, we have that (X −
E[X])2 = 0 a.s.. Therefore, X = E[X] a.s. and X is a constant a.s.. �

Proposition 7.3.2. Let X be a real valued random variable. Then,

V ar[X] = E[X2]− E[X]2.

The proof is left as an exercise.

Proposition 7.3.3 (Jensen inequality). Let X be a random variable and g a
convex function. Then,

g(E[X]) ≤ E[g(X)].

Similarly, if g is a concave function,

g(E[X]) ≥ E[g(X)].
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Proof. We will prove the first statement, the proof of the second is similar. Let
bx+ a be a line tangent to g at the point E[X]. That is, bE[X] + a = g(E[X]).
Because g is convex, it lies above any of it’s tangents, so

E[g(X)] ≥ E[bX + a] = bE[X] + a = g(E[X]).

�

Proposition 7.3.4. Let X be a real-valued random variable. Then,

E[X2] ≥ E[X]2.

Proof. Observe that the square is a convex function. The proposition follows
from Jensen’s inequality. �

Definition 7.3.2 (Covariance). Let X and Y be real-valued random variables,
such that E[X] <∞ and E[Y ] <∞. The covariance of X and Y is defined as

Cov[X,Y ] , E[(X − E[X])(Y − E[Y ])] = E[XY ]− E[X]E[Y ].

Definition 7.3.3 (Correlation). Let X and Y be real-valued random variables,
such that E[X] <∞ and E[Y ] <∞. The correlation of X and Y is defined as

ρ[X,Y ] ,
Cov[X,Y ]√
V ar[X]V ar[Y ]

.

Definition 7.3.4 (Zero correlation). Random variables X and Y are said to
be uncorrelated if ρ[X,Y ] = 0.

Equivalent conditions are if Cov[X,Y ] = 0 or E[XY ] = E[X]E[Y ].

Proposition 7.3.5. Let X and Y be a random variables, such that E[X] <∞,
E[Y ] <∞ and X and Y are independent. Then,

E[XY ] = E[X]E[Y ].

Partial proof assuming that the variables are continuous.

E[XY ] =

∫ ∫
xyfX,Y (x, y)dxdy

=

∫ ∫
xyfX(x)fY (y)dxdy

=

(∫
xfX(x)dx

)(∫
yfY (y)dy

)
= E[X]E[Y ].
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�

Corollary 7.3.1. If X and Y are independent then they are uncorrelated.

The corollary states that independence implies uncorrelatedness. It is important
to note that the converse is not true.

Example 7.3.1 (Uncorrelated but dependent RVs). Let X be a standard nor-
mal RV. By definition, E[X] = 0 and, using Example 9.2.1, E[X3] = 0.

Let Y = X2. Clearly, X and Y are dependent - knowing the value of X deter-
mines the value of Y . However,

Cov[X,Y ] = E[XY ]− E[X]E[Y ] = E[X3]− E[X]E[X2] = 0.

Zero covariance (correlation) does not imply independence. Covariance is just
a special case of independence - linear independence.

Proposition 7.3.6. Let X and Y be real valued random variables. Then,

V ar[X + Y ] = V ar[X] + V ar[Y ] + 2Cov[X,Y ].

Proof.

V ar[X + Y ] = E[(X + Y )2]− (E[X] + E[Y ])2

= E[X2 + Y 2 + 2XY ]− (E[X]2 + E[Y ]2 + 2E[X]E[Y ])

= E[X2]− E[X]2 + E[Y 2]− E[Y ]2 + 2(E[XY ]− E[X]E[Y ])

= V ar[X] + V ar[Y ] + 2Cov[X,Y ].

�

Proposition 7.3.7. Variance, covariance and correlation have some other use-
ful properties:

(a) V ar[aX + b] = a2V ar[X].

(b) Cov[aX, bY ] = abCov[X,Y ].

(c) ρ(aX, bY ) = abCov[X,Y ]

|a||b|
√
V ar[X]V ar[Y ]

.

The proof is left as an exercise.

Proposition 7.3.8. Let Xi, i = 1..n be real valued random variables. Then,

V ar[

n∑
i=1

aiXi] =

n∑
i=1

a2
iV ar[Xi] + 2

∑
i,j:i<j

aiajCov[Xi, Xj ].
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Proof. The proof is similar to the proof for the special case of two variables.

V ar[
∑
i

aiXi] = E[(
∑
i

aiXi)
2]− (

∑
i

E[aiXi])
2

=
∑
i,j

E[aiajXiXj ]−
∑
i,j

E[aiXi]E[ajXj ]

=
∑
i,j

E[aiajXiXj ]− E[aiXi]E[ajXj ]

Now we split the terms into two groups:

=
∑
i,j:i=j

(E[aiajXiXj ]− E[aiXi]E[ajXj ])

+ 2
∑
i,j:i<j

(E[aiajXiXj ]− E[aiXi]E[ajXj ])

=

n∑
i=1

a2
iV ar[Xi] + 2

∑
i,j:i<j

aiajCov[Xi, Xj ].

�

Theorem 7.3.1. Suppose E[Xk] <∞ for some k then E[Xj ] <∞ for j < k.

The proof of this theorem is left as an exercise. In words, the theorem says that
if the Xk-th moment exists and is finite, then all lower-order moments also exist
and are finite. In particular, if a RV has finite variance it has a finite mean.

Proposition 7.3.9 (Cauchy-Schwarz inequality on expectations). Let X and
Y be random variables with finite variance. Then,

E[XY ] ≤
√

E[X2] E[Y 2].

Proof. This is a direct application of the Cauchy-Schwarz inequality with the
inner product defined with the expectation of the product of random variables.

�

Proposition 7.3.10 (Cauchy-Schwarz inequality on covariance). Let X and Y
be random variables with finite variance. Then,

Cov[X,Y ]2 ≤ Var[X] Var[Y ].

The proof of this proposition is beyond the scope of this text.

Corollary 7.3.2. Correlation between random variables is between -1 and 1.
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7.4 Conditional expectation

Definition 7.4.1. The conditional expectation of a discrete RV X is defined as

E[X|Y = y] ,
∑
x

xpX|Y (x|y).

The conditional expectation of a continuous RV X is defined as

E[X|Y = y] ,
∫
xfX|Y (x|y)dx

Note that if the value y is not known, the conditional expectation is a RV (a
function of Y) and we write E[X|Y ].

Proposition 7.4.1 (Law of iterated expectation). Let X and Y be RVs. Sup-
pose E[X] is defined, then

E[E[X|Y ]] = E[X].

Partial proof assuming jointly discrete RVs.

E[E[X|Y ]] =
∑
y

(∑
x

xpx|y(x|y)

)
p(y) =

=
∑
y

(∑
x

x
p(x, y)

p(y)

)
p(y) =

=
∑
y

∑
x

xp(x, y) =

=
∑
x

∑
y

xp(x, y) =

=
∑
x

x
∑
y

p(x, y) =

=
∑
x

xp(x) =

= E[X]

�

Proposition 7.4.2 (A more general law of iterated expectation). Let X be
a random variable, such that E[X] is defined. For any RV Y on the same
probability space and measurable function g we have

E[E[X|Y ]g(Y )] = E[Xg(Y )].
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Proof. We use the Law of iterated expectation and the fact that constants can
be moved outside expectations (g(Y ) is known conditional on Y ):

E[Xg(Y )] = E[E[Xg(Y )|Y ]] = E[E[X|Y ]g(Y )].

�

Corollary 7.4.1.

0 = E[E[X|Y ]g(Y )]− E[Xg(Y )] = E[(E[X|Y ]−X)g(Y )].

Note that g(Y ) − E[X|Y ] is also a function of X, so this Corollary suggests
that the conditional expectation of X on Y takes out all ’linear’ information
from X that is in Y . The remainder is uncorrelated with any function of Y .
The conditional expectation E[X|Y ] appears to be in some sense an optimal
estimator of X.

Proposition 7.4.3. If E[X2] <∞ then for any measurable function g,

E[(X − E[X|Y ])2] ≤ E[(X − g(Y ))2].

Proof.

E[(X − g(Y ))2] = E[(X − E[X|Y ] + E[X|Y ]− g(Y ))2]

= E[(X − E[X|Y ])2] + E[(E[X|Y ]− g(Y ))2]

− 2E[(X − E[X|Y ])(E[X|Y ]− g(Y ))]

≥ E[(X − E[X|Y ])2]

The final line is due to E[(X − E[X|Y ])(E[X|Y ] − g(Y ))] = 0 (see Corollary
7.4.1) and E[(X|Y ]− g(Y ))2] ≥ 0. �

That is, the conditional expectation is the optimal estimator with respect to
mean squared error.

Exercises

Exercise 7.1. Give an example of two random variables that are uncorrelated
but not independent.

Exercise 7.2. Prove Theorem 7.3.1.

Exercise 7.3. Prove Proposition 7.3.2.

Exercise 7.4. Prove Proposition 7.3.4 without using Jensen’s inequality.

Exercise 7.5. Prove Proposition 7.3.7.

Exercise 7.6. Prove the law of iterated expectation for jointly continuous RVs.
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Multivariate distributions

8.1 Expectation, variance, and covariance

Definition 8.1.1. A multivariate random variable or random vector X is a
column vector X = [X1, X2, ..., Xk]T , k ≥ 1 whose components are random
variables on the same probability space.

Definition 8.1.2. Let X and Y be k-variate and r-variate random variables,
respectively.

The expectation of X is defined as

E[X] = µ , (E[X1],E[X2], ...,E[Xk])T .

Cov[X,Y ], the cross-covariance matrix of X and Y is a k× r symmetric matrix
with components

Cov[X,Y ]i,j , Cov[Xi, Yj ].

In matrix form,

Cov[X,Y ] = E[(X − E[X])(Y − E[Y ])T ] = E[XY T ]− E[X]E[Y ]T .

Similarly, ρ[X,Y ], the cross-correlation matrix of X and Y , is a k × r matrix
with components

ρ[X,Y ]i,j = ρ[Xi, Yj ].

83
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If X = Y , we refer to Cov[X,X] = Cov[X] = Var[X] as the covariance matrix
and to ρ[X,X] = ρ[X] as the correlation matrix. When k = r, the cross-
covariance and cross-correlation matrices are squared and symmetric.

Proposition 8.1.1. The properties of univariate expectation and variance trans-
fer to the multivariate random variables:

E[BX + a] = B E[X] + a

Cov[BX + a] = B Cov[X]BT

Var[X + Y ] = Var[X] + Var[Y ] + Cov[X,Y ] + Cov[Y,X]

ρ[X] =
(√

diag(Var[X])
)−1

Cov[X]
(√

diag(Var[X])
)−1

For any m × k matrix B and m−vector a. Note that diag(A) is a matrix with
diagonal elements the same as the square matrixA and 0 everywhere else. So,√

diag(Var[X]) is a matrix with standard deviations on the diagonal and zeroes
everywhere else.

The proof is left as an exercise.

8.2 The multinomial distribution

The multinomial distribution is the generalization of the binomial distribution
to more than one outcome.

Definition 8.2.1. The probability mass function of a k-variate multinomial
distribution (k ≥ 1) is

p(x1, x2, ..., xk) =
n!

x1! · · ·xk!
px1

1 · · · p
xk
k

where the two parameters are a positive integer n (number of trials) and pi ≥
0,
∑k
i=1 pi = 1 (outcome probabilities).

Note that for k = 2 we get the binomial distribution.

The expectation, variance, and covariance of the multinomial distribution are
as follows:

Proposition 8.2.1.

E[Xi] = npi

Var[Xi] = npi(1− pi)
Cov[Xi, Xj ] = −npipj , i 6= j
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The proof of these properties is left as an exercise.

8.3 Transformations

Proposition 8.3.1. Let (X1, X2, ..., Xn) be RVs with joint pdf f(x1, x2, ..., xn).
Let g : Rn → Rn be an invertible and continuously differentiable function given
by Yi = gi(X1, X2, ..., Xn). Let g−1(y) = (h1(y), h2(y), ..., hn(y)) be the inverse
of g. Then, the joint density of Yi is

fY1,Y2,...,Yn(y1, y2, ..., yn) = fX1,X2,...,Xn(h1(y), h2(y), ..., hn(y))|det Jh|,

where Jh is the Jacobian matrix

Jh =


∂x1

∂y1
∂x2

∂y1
. . . ∂xn

∂y1
∂x1

∂y2
∂x2

∂y2
. . . ∂xn

∂y2
...

...
. . .

...

∂x1

∂yn
∂x2

∂yn
. . . ∂xn

∂yn


and ∂xi

∂yj
= ∂hi(y1,y2,...,yn)

∂yj
.

It turns out that det Jh = 1/det Jg, where Jg has elements of the form ∂yi
∂xj

=
∂gi(x1,x2,...,xn)

∂xj
.

We omit the proof of this proposition.

8.4 The multivariate normal distribution

Definition 8.4.1. The probability density function of a k-variate normal dis-
tribution (k ≥ 1) is

f(x) =
1

(2π)
k
2 (det Σ)

1
2

exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
, x ∈ Rk

where the two parameters are µ ∈ Rk (mean vector) and k× k positive definite
matrix Σ (covariance matrix).

Proposition 8.4.1. Let Z = [Z1, Z2, ..., Zk]T be a random vector, such that Zi
are independent univariate standard normal variables Zi ∼ N(0, 1). Let µ ∈ Rk
and A a k × k non-singular matrix. Then,
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AZ + µ ∼ N(µ,Σ), with Σ = AAT .

Proof. The Zi are independent, so their joint PDF is

f(z1, ..., zk) =

k∏
i=1

1√
2π

exp(−z
2
i

2
) = (2π)−

k
2 exp(−1

2
zT z).

We have an affine transformation g(Z) = AZ + µ with inverse Z = g−1(X) =
A−1(X − µ). We can apply Proposition 8.3.1 with det Jh = det(A−1) =
(detA)−1, so

f(x) = |(detA)−1|f(A−1(x− µ))

= (2π)−
k
2 |(detA)−1| exp

(
−1

2
(x− µ)T (AAT )−1(x− µ)

)
= (2π)−

k
2 |(detA)−1| exp

(
−1

2
(x− µ)T (Σ)−1(x− µ)

)
, x ∈ Rk.

�

Corollary 8.4.1. Every k−variate normal distribution is a transformation
AZ + µ of a k-variate random vector Z with standard normal components.

Note: By definition, any positive definite matrix Σ can be written as a product
Σ = AAT , where A is non-singular.

Proposition 8.4.2. Let X be a k−variate normal distribution X ∼ N(µ,Σ).
Let b ∈ Rk and B be a non-singular k × k matrix. Then,

BX + b ∼ N(Bµ+ b, BΣBT ).

Proof. By Corollary 8.4.1 we can write X = AZ + µ with Σ = AAT . Then
BX + b = B(AZ + µ) + b = BAZ + Bµ + b, where B is non-singular and
BAATBT = BΣBT . �

Proposition 8.4.3. If X ∼ N(µ,Σ) then E[X] = µ and Cov[X,X] = Σ.

Proof. By the properties of multivariate expectation and covariance and Corol-
lary 8.4.1 we can write X = AZ+µ with Σ = AAT . Then E[X] = E[AZ+µ] =
AE[Z] + µ = µ. Cov[X] = Cov[AZ + µ] = ACov[Z]AT = AAT = Σ. �
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Proposition 8.4.4 (Marginal and conditional distribution). Let X be a k-
variate normal distribution, k > 1. If we partition the components of X into
two random vectors XA and XB, each with at least one component, we can write

X =

[
XA

XB

]
∼ N

(
µ =

[
E[XA]
E[XB ]

]
,Σ =

[
ΣAA,ΣAB
ΣBA,ΣBB

])
,

where ΣWZ = Cov(XW , XZ). For any such partition, we have

(a) XA ∼ N(E[XA],ΣAA).

(b) XA|XB = xb ∼ N(µA + ΣABΣ−1
BB(xB − E[XB ]),ΣAA − ΣABΣ−1

BBΣBA).

The proof is left as an exercise.

Note that the univariate marginals of a multivariate normal are univariate nor-
mal. However, the converse is not always true. There exist multivariate dis-
tributions with univariate normal marginals that are not multivariate normal.
Finding a counterexample is left as an exercise.

Another important property of the MVN is that because relationship between
univariate normals is only linear, we have that uncorrelatedness implies inde-
pendence. This is also left as an exercise.

Exercises

Exercise 8.1. Prove all the statements in Proposition 8.2.1.

Exercise 8.2. Prove all the statements in Proposition 8.1.1.

Exercise 8.3. Prove Corollary 8.4.1.

Exercise 8.4. Prove Proposition 8.4.4.

Exercise 8.5. Find a bivariate distribution where the two marginal distribu-
tions are univariate normal but the distribution is not bivariate normal.

Exercise 8.6. Show that unit diagonal correlation (uncorrelatedness) of a mul-
tivariate normal distribution implies independence of individual random vari-
ables (that is, that the joint density factors into individual marginals).
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Chapter 9

Alternative representations
of distributions

In this chapter we are going to present probability generating functions and
moment generating functions. These are alternative representations of distribu-
tions (PMFs and PDFs), which are sometimes more convenient for deriving the
expected value, the variance, and other properties of distributions.

9.1 Probability generating functions

Definition 9.1.1. The probability generating function (PGF) of an non-negative
integer-valued random variable X is defined as

αX(t) , E[tX ] =

∞∑
i=0

tipX(i).

Note that PGFs are defined for non-negative random values. However, in this
text we restrict ourselves to integer-valued (discrete) random variables.

Proposition 9.1.1.

(a) αX(1) = 1.

(b) If X and Y are independent random variables: αX+Y (t) = αX(t)αY (t).

(c) If random variables X and Y have identical probability generating functions,
then they have the same distribution.

89
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(d) If αX(t) has a radius of convergence ρ > 1 then

E[X] =
d

dt
αX(t)|t=1

and

V ar[X] =
d2

dt2
αX(t)|t=1 +

d

dt
αX(t)|t=1 − (

d

dt
αX(t))2|t=1.

(e) pX(i) =
(

1
i!

)
di

dtiαX(t)|t=0.

Proof. (a) Left as an exercise.

(b) Left as an exercise.

(c) Follows from uniqueness of power series representations of functions.

(d) The radius of convergence justifies the differentiation and evaluation at t = 1:

d

dt
αX(t) =

∞∑
i=0

ipX(i)ti−1

and

d

dt
αX(t)|t=1 =

∞∑
i=0

ipX(i) = E[X].

Taking the second derivative and evaluating at t = 1:

d2

dt2
αX(t) =

∞∑
i=2

i(i− 1)pX(i)ti−2

and
d2

dt2
αX(t)|t=1 = E[X(X − 1)] = E[X2]− E[X].

Finally,

V ar[X] = E[X2]− E[X]2 =
d2

dt2
αX(t)|t=1 +

d

dt
αX(t)|t=1 − (

d

dt
αX(t))2|t=1.

(e) Left as an exercise. �
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Example 9.1.1. Expectation of a Geometric RV

Let the PMF of X be p(i) = θ(1 − θ)i, for i ≥ 0, and 0 otherwise. That is, X
has a Geometric distribution.

By definition, the PGF of X is

α(t) =

∞∑
i=0

tiθ(1− θ)i = θ

∞∑
i=0

(t(1− θ))i = θ
1

1− t(1− θ)
.

The final step is based on the fact that the series is a Geometric series. The
step is justified when the series converges: |t(1 − θ)| < 1. By rearranging and
taking into account that for a Geometric distribution we have 0 < θ < 1, we get
|t| ≤ 1

1−θ .

The convergence radius is therefore greater than 1 for any 0 < θ < 1 between 0
and 1, so we can use

E[X] =
d

dt
α(t)|t=1

.

Taking the derivative, we get

=
d

dt

θ

1− t(1− θ)
|t=1 =

θ(1− θ)
(1− t(1− θ))2

|t=1 =
θ(1− θ)
θ2

=
1− θ
θ

.

Example 9.1.2. Sum of two independent Poisson RVs is a Poisson RV

Let X ∼ Poisson(λX) and Y ∼ Poisson(λY ), λX , λY > 0. What is the distri-
bution of X + Y ?

Recall that the PMF of a Poisson is p(i) = λi

i! e
−λ. Its PGF is then

α(t) =

∞∑
i=0

tip(i) =

∞∑
i=0

ti
λi

i!
e−λ = eλ(t−1) = e−λ

∞∑
i=0

(tλ)i

i!
= eλ(t−1),

where the final step is based on recognizing the Taylor series expansion of etλ at
0.

Using the property of PGFs that the sum of two independent RVs’ PGF is the
product of their PGFs, we have
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αX+Y (t) = etλXetλY = et(λX+λY ).

Because the PGF uniquely determines the distribution, the sum of independent
Poisson RVs is also Poisson with rate λX + λY .

Example 9.1.3. Expected value and variance of a Poisson RV

Let X ∼ Poisson(X) We have shown in Example 9.1.2 that the PGF of a
Poisson RV with rate λ is α(t) = eλ(t−1). So

E[X] =
d

dt
eλ(t−1)|t=1 = λeλ(t−1)|t=1 = λ.

Differentiating one more time, we have

d2

dt2
eλ(t−1)|t=1 = λ2eλ(t−1)|t=1 = λ2

and

Var[X] =
d2

dt2
α(t)|t=1 +

d

dt
α(t)|t=1 − (

d

dt
α(t))2|t=1 = λ2 + λ− λ2 = λ.

9.2 Moment generating functions

Definition 9.2.1. The moment generating function (MGF) of a random vari-
able X is defined as

MX(t) , E[etX ].

In the special case of a discrete random variable this reduces to

MX(t) =
∑
x

etxpX(x)

and for a continuous random variable

MX(t) =

∫
x

etxfX(x)dx.

Although t can be complex, we restrict ourselves to t ∈ R.
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Note that there is a relationship between PGFs and MGFs. If a non-negative
RV has a MGF and a PGF, we have M(t) = E[etX ] = E[(et)X ] = α(et).

The following theorem, which we state without proof, comes from the properties
of analytic functions:

Theorem 9.2.1. Let X and Y be random variables, such that MX(t) = MY (t),
∀t ∈ [−ε, ε] for some ε > 0. Then, X and Y have the same CDF.

Proposition 9.2.1.

(a) MX(0) = 1.

(b) If X and Y are independent RVs: MX+Y (t) = MX(t)MY (t).

(c) MaX+b(t) = etbMX(at).

(d) Let MX(t) be finite for t ∈ [−ε, ε] for some ε > 0 then dk

dtk
MX(t)|t=0 =

E[Xk], for k ≥ 1. (moment generating property).

Proof. Properties (a-c) are left as an exercise. The proof of property (d) is

more involved. We have dk

dtk
MX(t) = dk

dtk
E[etX ] = E[ d

k

dtk
etX ] = E[XketX ].

Evaluating at t = 0 we get E[Xk]. Note that the exchange of derivatives
and expectation in this proof is not trivial - we have to invoke the dominated

convergence theorem. It suffices to show E[limh↓0
ehX−1
h ] = limh↓0 E[ e

hX−1
h ]

(recall the definition of the derivative - this is its value at 0 for this function ehX).

We show it by first showing that ehX−1
h ≤ XehX and thatXehX converges. That

is, E[XehX ] ≤ ∞. �

Example 9.2.1 (MGF of the standard normal RV). First, let’s derive the MGF
of a standard normal RV. Using the definition of a MGF and plugging in the
PDF of the standard normal, we get

M(t) = E[etX ] =

∫ ∞
−∞

etx
1√
2π
e−

x2

2

=
1√
2π

∫ ∞
−∞

e−
1
2 (x2−2tx)

= e
t2

2

∫ ∞
−∞

1√
2π
e−

1
2 (x−t)2

= e
t2

2 .

The key steps in the above derivation are completing the square in the expo-
nent and then recognizing that we have an integral over a PDF of a normal
distribution, which has to integrate to 1.
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Next, we have

E[X] =
d

dt
e
t2

2 |t=0 = te
t2

2 |t=0 = 0,

E[X2] =
d2

dt2
e
t2

2 |t=0 = e
t2

2 + t2e
t2

2 |t=0 = 1.

E[X3] =
d3

dt3
e
t2

2 |t=0 =
d

dt
(1+t2)e

t2

2 |t=0 = 2te
t2

2 +(1+t2)te
t2

2 |t=0 = (t3+3t)e
t2

2 = 0.

Example 9.2.2. Distribution of the sum of two independent normal RVs

From Example 9.2.1 we know that the MGF of the standard normal Z ∼ N(0, 1)

is e
t2

2 . Next, recall that every normal distribution can be obtained as an affine
transformation aZ + b of the standard normal.

Next, using the property of MGFs that MaX+b(t) = etbMX(at), we can derive
the MGF of X ∼ N(µ, σ2):

MσZ+µ(t) = etµeσ
2 t2

2 .

Let X ∼ N(µX , σ
2
X) and Y ∼ N(µY , σ

2
Y ) be independent RVs. The MGF of

their sum is

MX+Y (t) = MX(t)MY (t) = etµXe
σ2Xt

2

2 etµY e
σ2Y t

2

2 = et(µX+µY )e(σ2
X+σ2

Y ) t
2

2 .

This implies that the sum of two independent normal RVs is a normal RV with
mean µX + µY and variance σ2

X + σ2
Y .

Exercises

Exercise 9.1. Prove statements (a), (b) and (e) in Proposition 9.1.1.

Exercise 9.2. Prove statements (a-c) in Proposition 9.2.1.



Chapter 10

Concentration inequalities

10.1 Markov inequality

Proposition 10.1.1 (Markov inequality). Let X be a non-negative random
variable and let E[X] exist. Then, for any a > 0,

P (X ≥ a) ≤ E[X]

a
.

Proof.

E[X] = E[XI{X<a} +XI{X≥a}]

= E[XI{X<a}] + E[XI{X≥a}] (linearity of expectation)

≥ E[XI{X≥a}] (X is non-negative)

≥ E[aI{X≥a}]

= aE[I{X≥a}]

= aP (X ≥ a)

�

10.2 Chebyshev inequality

Proposition 10.2.1 (Chebyshev inequality). Let X be random variable with
expectation µ and variance σ2 <∞. Then, for any a > 0,

P (|X − µ| ≥ aσ) ≤ 1

a2
.

Or, equivalently, by setting b = aσ,
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P (|X − µ| ≥ b) ≤ σ2

b2
.

Proof. We will use the Markov inequality on the non-negative RV |X − µ|2:

P (|X − µ| ≥ aσ) = P (|X − µ|2 ≥ (aσ)2) ≤ E[|X − µ|2]

(aσ)2

=
σ2

(aσ)2

=
1

a2

�

10.3 Chernoff bound

Proposition 10.3.1 (Generic Chernoff bound). Let X be a random variable.
Then, for any a and every t > 0,

P (X ≥ a) ≤ E[etX ]

eta
.

Proof. We prove this by applying the Markov inequality to P (etX ≥ eta). �

Proposition 10.3.2 (Chernoff bound for Bernoulli variables). Let X1, ..., Xn ∼iid

Bernoulli(p), with p > 1
2 . Let Sn =

∑n
i=1Xi. Then, for every δ > 0,

P (Sn ≥ (1 + δ)np) ≤
(

eδ

(1 + δ)1+δ

)np
.

Proof. For a Bernoulli variable we have E[etXi ] = pet+(1−p) = 1+p(et−1) ≤
ep(e

t−1). So, from independence of Xi, we have E[etSn ] ≤ enp(et−1).

For any δ > 0 and taking t = ln(1+δ) > 0 and a = (1+δ)np, we have E[etSn ] ≤
eδnp and e−ta = (1 + δ)−(1+δ)np. Substituting into the generic Chernoff bound,
we have

P (Sn − np ≥ δnp) = P (Sn ≥ (1 + δ)np) ≤ eδnp

(1 + δ)(1+δ)np
=

(
eδ

(1 + δ)(1+δ)

)np
.

�
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10.4 Hoeffding inequality

Proposition 10.4.1 (Hoeffding inequality). Let X1, X2, ..., Xn be independent
random variables, bounded by ai ≤ Xi ≤ bi. Let S =

∑n
i=1Xi. Then, for every

t > 0,

(a) P (Sn − E[Sn] ≥ t) ≤ e
− 2t2∑n

i=1
(bi−ai)2 ,

(b) P (Sn − E[Sn] ≤ −t) ≤ e
− 2t2∑n

i=1
(bi−ai)2 ,

(c) P (|Sn − E[Sn]| ≥ t) ≤ 2e
− 2t2∑n

i=1
(bi−ai)2 .

Proof. By the generic Chernoff bound we have P (X ≥ t) ≤ e−stE[esX ] for every
s > 0. If we apply this to Sn − E[Sn], we get

P (Sn − E[Sn] ≥ t) ≤ e−stE[es(Sn−E[Sn])]

= e−stE[es(
∑n
i=1Xi−E[Sn])]

= e−stE[

n∏
i=1

es(Xi−E[Sn])]

= e−st
n∏
i=1

E[es(Xi−E[Sn])]. (from independence of Xi)

What remains is to find a good bound for E[es(Xi−E[Sn])]. To do this, we will
rely on an intermediate result, which we state without proof:

Lemma 10.4.1. Let X be a random variable, such that E[X] = 0 and a ≤ X ≤
b. Then, for all s > 0

E[esX ] ≤ e
s2(b−a)2

8 .

P (Sn − E[Sn] ≥ t) ≤ e−st
n∏
i=1

E[es(Xi−E[Sn])]

≤ e−st
n∏
i=1

e
s2(bi−ai)

2

8 (by the above lemma)

= e−stes
2 ∑n

i=1
(bi−ai)

2

8

= e
−2t2∑n

i=1
(bi−ai)2 (let s =

4t∑n
i=1(bi − ai)2

)
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This concludes the proof of (a). Claim (b) can be proven by applying (a) to
−Xi and statement (c) can be proven by combining (a) and (b).

�

Exercises

Exercise 10.1. Show that the Chernoff bound for Bernoulli variables is a spe-
cial case of the Hoeffding inequality.



Chapter 11

Convergence of random
variables

11.1 Types of convergence

Definition 11.1.1 (Convergence of a sequence of real numbers). A sequence
of real numbers {xn} is said to converge to some x ∈ R if for any ε > 0 there
exists an n0, such that

|xn − x| < ε,∀n ≥ n0.

We write xn −−→ x.

Definition 11.1.2 (Point-wise convergence). A sequence of random variables
Xi is said to converge point-wise to X if Xn(ω) −−→ X(ω), ∀ω ∈ Ω.

We write Xn
p.w.−−→ X.

Definition 11.1.3 (Almost sure convergence). A sequence of random variables
Xi is said to converge almost surely to X if

P ({ω : Xn(ω) −−→ X(ω)}) = 1.

We write Xn
a.s.−−→ X.

Definition 11.1.4 (Convergence in probability). A sequence of random vari-
ables Xi is said to converge in probability to X if

lim
n→∞

P (|Xn −X| > ε) = 0,∀ε > 0.

We write Xn
P−−→ X.
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Definition 11.1.5 (Convergence in r-th mean). A sequence of random variables
Xi is said to converge in r−th mean (r ≥ 1) to X if

lim
n→∞

E[|Xn −X|r] = 0.

We write Xn
r−−→ X and in the special case of r = 2 Xn

q.m.−−→ X (in quadratic
mean).

Definition 11.1.6 (Convergence in distribution). A sequence of random vari-
ables Xi is said to converge in distribution to X if

lim
n→∞

FXn(x) = FX(x),∀x ∈ R, where FX(·) is continuous.

We write Xn
D−−→ X.

11.2 Relationships between types of convergence

Theorem 11.2.1. Xn
p.w.−−→ X =⇒ Xn

a.s.−−→ X.

Proof. This is immediately clear from the definitions. Point-wise convergence
implies that convergence holds not only for a set of measure 1 but for all ω. �

Theorem 11.2.2. Xn
a.s.−−→ X =⇒ Xn

P−−→ X.

The proof of this is beyond the scope of this text.

Example 11.2.1 (Convergence in probability does not imply almost sure con-
vergence). Consider the following sequence of random variables:

Xn =

{
1 with probability 1

n ,

0 with probability 1− 1
n .

We have limn→∞ P (|Xn| > ε) = limn→∞
1
n = 0, so Xn

P−−→ 0. On the other
hand, let An be the event that Xn = 1. These events are independent and∑∞
n=1 P (An) =

∑∞
n=1

1
n = ∞. The Second Borel-Cantelli lemma (see Chapter

12.1) states that infinitely many An will occur, so Xn does not converge to 0
almost surely.

Theorem 11.2.3. Xn
r−−→ X =⇒ Xn

P−−→ X.

Proof. We’ll use the Markov inequality. For Y ≥ 0 and ε > 0 we have

P (Y > ε) = P (Y r > εr) ≤ E[Y r]

εr
.
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By applying this to Y = |Xn −X|, we get

P (|Xn −X| > ε) ≤ E[|Xn −X|r]
εr

.

Since limn→∞E[|Xn −X|r] = 0, limn→∞ P (|Xn −X| > ε) = 0 �

Example 11.2.2 (Convergence in probability does not imply convergence in
r-th mean). Consider the following sequence of random variables:

Xn =

{
n3 with probability 1

n2 ,

0 with probability 1− 1
n2 .

We have limn→∞ P (|Xn| > ε) = limn→∞
1
n2 = 0, so Xn

P−−→ 0. However,
E[Xn] = n diverges.

Theorem 11.2.4. Xn
r−−→ X =⇒ Xn

s−−→ X, for r > s ≥ 1.

Proof. We can prove this using Lyapunov’s inequality. This inequality states
that for a random variable X and numbers 0 < s < r <∞ we have E[|X|r] 1

r ≥
E[|X|s] 1

s . The result follows immediately. �

Theorem 11.2.5. Xn
P−−→ X =⇒ Xn

D−−→ X.

Proof. For any ε > 0 we have

FXn(x) = P (Xn ≤ x)

= P (Xn ≤ x ∪X ≤ x+ ε) + P (Xn ≤ x ∪X > x+ ε)

≤ FX(x+ ε) + P (|Xn −X| > ε).

Similarly, we have

FX(x− ε) ≤ FXn(x) + P (|Xn −X| > ε).

So,

FX(x− ε)− P (|Xn −X| > ε) ≤ FXn(x) ≤ FX(x+ ε) + P (|Xn −X| > ε).

Since Xn
P−−→ X, P (|Xn −X| > ε)→ 0 and we have
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FX(x− ε) ≤ lim inf
n→∞

FXn(x) ≤ lim sup
n→∞

FX(x) + P (|Xn −X| > ε).

If FX is continuous at x, then we take ε→ 0, which proves the result. �

Example 11.2.3 (Convergence in distribution does not imply convergence
probability). Consider X ∼ Bernoulli( 1

2 ), the sequence Xi = X and Y = 1−X.

Clearly, Xn
D−−→ Y , because they have the same distribution. However,

|Xi − Y | = 1, for all i, so Xn does not converge to Y in probability.

11.3 Useful theorems

Here we state, without proof, several useful theorems:

Proposition 11.3.1. For any real-valued constants a and b we have

(a) If Xn
a.s.−−→ X and Yn

a.s.−−→ Y , then aXn + bYn
a.s.−−→ aX + bY

and XnYn
a.s.−−→ XY .

(b) If Xn
P−−→ X and Yn

P−−→ Y , then aXn + bYn
P−−→ aX + bY

and XnYn
P−−→ XY .

(c) If Xn
r−−→ X and Yn

r−−→ Y , then aXn + bYn
r−−→ aX + bY .

Theorem 11.3.1 (Slutsky’s theorem). For any real-valued constant c we have:

(a) If Xn
D−−→ X and Yn

D−−→ c, then Xn + Yn
D−−→ X + c.

(b) If Xn
D−−→ X and Yn

D−−→ c, then XnYn
D−−→ cX.

Theorem 11.3.2 (Continuous mapping theorem). Let g be a function that is
discontinuous at most on a set of measure 0. Then,

(a) If Xn
a.s.−−→ X, then g(Xn)

a.s.−−→ g(X).

(b) If Xn
P−−→ X, then g(Xn)

P−−→ g(X).

(c) If Xn
D−−→ X, then g(Xn)

D−−→ g(X).



Chapter 12

Limit theorems

12.1 Borel-Cantelli lemmas

The Borel-Cantelli lemmas are several results that talk about finite or infinite
occurrence of events. We state the two most common ones.

The first Borel-Cantelli lemma says that if the sum of probabilities of a sequence
of events is finite, then the probability of infinitely many of them occurring is 0
(that is, finitely many of them will occur almost surely):

Theorem 12.1.1 (First Borel-Cantelli lemma). Let {Ai} be a sequence of
events, such that

∑∞
n=1 P (An) <∞. Then P (∩∞n=1 ∪∞k=n Ak) = 0.

Proof.

P (

∞⋂
n=1

∞⋃
m=n

Am) = P (

∞⋂
n=1

Bn) (notation Bn =

∞⋃
m=n

Am)

= lim
n→∞

P (Bn) (continuity of probability)

= lim
n→∞

P (

∞⋃
m=n

Am)

≤ lim
n→∞

∞∑
m=n

P (Am) (Boole’s inequality)

= 0. (sum is finite by assumption)

�

The second Borel-Cantelli lemma says that if the sum of probabilities of a se-
quence of independent events is infinite, then the probability of only finitely
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many of them occurring is 0 (that is, infinitely many of them will occur almost
surely):

Theorem 12.1.2 (Second Borel-Cantelli lemma). Let {Ai} be a sequence of
independent events, such that

∑∞
n=1 P (An) =∞. Then P (∪∞n=1 ∩∞k=n A

c
k) = 0.

Proof.

P (

∞⋃
n=1

∞⋂
m=n

Acm) ≤
∞∑
n=1

P (

∞⋂
m=n

Acm) (Boole’s inequality)

=

∞∑
n=1

lim
k→∞

P (

k⋂
m=n

Acm) (continuity of probability)

=

∞∑
n=1

lim
k→∞

k∏
m=n

P (Acm) (assumed independence)

= 0. (by Lemma 12.1.3)

�

The following Lemma is required in the above proof:

Lemma 12.1.3. Let pi be a sequence of numbers between 0 and 1. If
∑∞
i=1 pi =

∞ then limn→∞
∏n
i=1(1− pi) = 0.

Proof. Since log(1− pi) ≤ −pi, we have

n∏
i=1

(1− pi) =

n∏
i=1

elog(1−pi) ≤
n∏
i=1

e−pi = e−
∑n
i=1 pi .

By taking the limit of both sides, we get the desired result. �

12.2 Weak Law of Large Numbers

Theorem 12.2.1 (WLLN). Let Xi be a sequence of identically distributed in-
dependent random variables with mean E[X]. Define Sn =

∑n
i=1Xi. Then,

Sn
n

P−−→ E[X].

Partial proof assuming Xi have finite variance σ2. By the linearity of expecta-

tion and variance, we can show that E[Snn ] = E[X] and V ar[Snn ] = σ2
S = σ2

n .

By Chebyshev’s inequality we have P (|Snn − E[X]| > aσS) ≤ 1
a2 for any a > 0.

Substituting a = ε
σS

, where ε > 0, we get

P (|Sn
n
− E[X]| ≥ ε) ≤ σ2

S

ε2
=

σ2

nε2
.
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By increasing n the right-hand side can be made arbitrarily close to 0 for any ε
and σ, therefore, in the limit, the left-hand side tends to 0.

�

12.3 Strong Law of Large Numbers

Theorem 12.3.1 (SLLN). Let Xi be a sequence of identically distributed inde-
pendent random variables with finite mean E[X]. Define Sn =

∑n
i=1Xi. Then,

Sn
n

a.s.−−→ E[X].

Partial proof assuming Xi have finite variance σ2. We will assume that theXi ≥
0 and generalize at the end of the proof. From the proof of the WLLN, we al-
ready have

P (|Sn
n
− E[X]| ≥ ε) ≤ σ2

nε2
.

Now we consider a deterministic subsequence of squared indices:

∞∑
j=1

P (|
Sj2

j2
− E[X]| ≥ ε) ≤

∞∑
j=1

σ2

j2ε2
<∞.

We took squared indices to obtain convergence of the right-hand side. Finiteness
of the left-hand side implies, together with the First Borel-Cantelli lemma, that
Sj2

j2
a.s.−−→ E[X].

Now we show that this also holds for j2 ≤ n ≤ (j + 1)2. Since Xi ≥ 0, we have

Sj2 ≤ Sn ≤ S(j+1)2

Sj2

(j + 1)2
≤ Sn

n
≤
S(j+1)2

j2

Sj2

(j + 1)2

i2

i2
≤ Sn

n
≤
S(j+1)2

j2

(j + 1)2

(j + 1)2

Sj2

j2

j2

(j + 1)2
≤ Sn

n
≤

S(j+1)2

(j + 1)2

(j + 1)2

j2
.

As j →∞, we have

E[X] ≤ Sn
n
≤ E[X].



106 CHAPTER 12. LIMIT THEOREMS

Therefore, Sn
n

a.s.−−→ E[X].

To generalize to arbitrary RVs with finite variance, we write Xn = X+
n −X−n .

Since both terms on the right-hand side are non-negative and have finite vari-
ance, the same arguments apply.

�

12.4 Central Limit Theorem

Theorem 12.4.1 (CLT). Let Xi be a sequence of identically distributed inde-
pendent random variables with mean E[X] and finite variance V ar[X]. Define

Sn =
∑n
i=1Xi. Then,

√
n(Snn − E[X])

D−−→ N(0, V ar[X]). Or, equivalently
Sn
n

D−−→ N(E[X], V ar[X]
n ).

Partial proof assuming the existence of the MGF. Define a new sequence of ran-

dom variables Yi = Xi−E[X]√
V ar[X]

. Clearly, Yi are also independent and identically

distributed, with E[Y ] = 0 and V ar[Y ] = 1.

The Taylor expansion of the MGF of Yi around 0 is

MY (t) = E[etY ] = MYi(0) + tE[Y ] +
t2

2
V ar[Y ] + t2h(t) = 1 +

t2

2
+ t2h(t),

where h(t) goes to 0 as t goes to 0.

Now we introduce Zn =
∑n
i=1 Yi√
n

. Using the properties of MGF, the MGF of Zn
is

MZ(t) = MY (
t√
n

)n = (1 +
t2

2n
+
t2

n
h(

t√
n

))n.

As n→∞MZ(t)→ e
t2

2 . This is the MGF of the standard normal distribution,
which completes the proof. �

We state the following three theorems without proof.

Theorem 12.4.2 (Berry-Esseen inequality). Suppose that Xi also have a finite
third moment. Then,

sup
s
|P (

√
n(Snn − E[X])√

V ar[X]
≤ s)− Φ(s)| ≤ 33

4

E[|X − E[X]|3]

σ3
√
n

,

where Φ is the CDF of the standard normal distribution.
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Theorem 12.4.3 (Multivariate CLT). Let Xi be a sequence of identically dis-
tributed independent k-dimensional random vectors with finite mean E[X] =

[µ1, ..., µk]T and covariance Σ. Define Sn =
∑n
i=1Xi. Then,

√
n(Snn −E[X])

D−−→
N(0,Σ).

Theorem 12.4.4 (The Delta method). Let Xi be a sequence of random vari-

ables, such that Xn
D−−→ N

(
µ, σ

2

n

)
. Let g be a differentiable function, such that

g′(µ) 6= 0. Then,

g(Xn)
D−−→ N

(
g(µ), (g′(µ))2σ

2

n

)
.
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Chapter 13

Markov chains

A Markov chain is a mathematical model that has numerous practical applica-
tions, including some that are particularly useful for data analysis methods and
computation, such as simulation and sampling-based approximation to expec-
tations. Note that our treatment of the subject is biased towards results that
are essential for the introduction of Markov Chain Monte Carlo (MCMC).

Markov chains are a type of stochastic process. Take a probability space (Ω,F , P )
and a measurable space (S,S). A stochastic process is a family of random vari-
ables X : Ω→ S indexed by t: {X(t), t ∈ T}, X(t) ∈ S. The set S is the state
space of the stochastic process. The index set T can be thought of as time and
can be uncountable. Continuous-time Markov chains have many applications
and are interesting in their own right. However, for our purposes we can restrict
ourselves to the index set of natural numbers. We can think of a discrete-time
stochastic process as a sequence of random variables X0, X1, X2, . . . that take
values in set S.

13.1 Countable state space

Definition 13.1.1. A homogeneous discrete-time Markov chain with a count-
able state space is a discrete-time stochastic process with a countable state
space, such that

P (Xi+1 = xi+1|Xi = xi, Xi−1 = xi−1, . . . , X0 = x0) = P (Xi+1 = xi+1|Xi = xi).

In words, given the current state of the Markov chain, the transition probabilities
to the next state are conditionally independent of the history of the process.
This defining property is also known as the Markov property.

We will only be concerned concerned with homogeneous or stationary Markov
chains - Markov chains where P (Xi+1 = xi+1|Xi = xi) does not depend on i
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(that is, does not change over time).1 We can compactly represent the transition
probabilities of a homogeneous Markov chain:

Definition 13.1.2. The one time step transition matrix of a homogeneous
countable state space Markov chain is the function K(x, y) : S × S → [0, 1],
such that K(x, y) , P (Xi+1 = y|Xi = x).

For finite S the transition matrix K can be represented with a matrix, where
each row and column correspond to a state and the values in a row represent
the probability vector for transitions from that state to all other states.

Proposition 13.1.1 (Chapman-Kolmogorov). For every m,n ≥ 0 and x, y ∈
S, we have

Km+n(x, y) =
∑
z∈S

Km(x, z)Kn(z, y).

The proof is left as an exercise.

Theorem 13.1.1. P (Xi+m = y|Xi = x) = Km(x, y).

That is, the m-step transition probability is the m−th power of the transition
matrix K. The proof is left as an exercise.

We now introduce the first concepts that will allow us to study Markov chains
and identify those that are of particular interest.

Definition 13.1.3. We say that a state y is reachable from state x if there
exists a m ≥ 0 such that Km(x, y) > 0.

Definition 13.1.4. We say that states x and y communicate and write x ∼ y
if y is reachable from x and x is reachable from y.

Proposition 13.1.2. The communicate relation is an equivalence relation (it
is reflexive, symmetric, and transitive).

The proof is left as an exercise.

The communicate relation partitions S into equivalence classes. We will be
particularly interested in cases where there is only one class. That is, where
every state communicates with every other state.

Definition 13.1.5. A Markov chain is irreducible if x ∼ y for every pair x, y ∈
S.

We also want to rule out another class of Markov chains - chains that exhibit
periodic behavior.

Definition 13.1.6. The period of a Markov chain state x is the greatest com-
mon divisor of all n such that Kn(x, x) > 0. A state with period > 1 is called

1Non-homogeneous Markov chains are too general to allow for strong theoretical results.
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periodic and a state with period 1 is aperiodic. Similarly, a Markov chain where
all states have period 1 is called aperiodic.

Observe how a period a > 1 implies that the Markov chain can return to state
x only at step counts that are multiples of a, hence, periodically.

Proposition 13.1.3. If K(x, x) > 0, then state x is aperiodic.

The proof is left as an exercise. Note that this property is relatively easy to
satisfy in practice and therefore a convenient way of ensuring aperiodicity when
constructing Markov chains for MCMC.

Proposition 13.1.4. If states x and y communicate, then they have the same
period.

The proof is left as an exercise. A direct corollary of this proposition is that all
states in an irreducible Markov chain have the same period.

Now we are ready to discuss the limiting behavior of a Markov chain. First, we
define the stationary distribution of a Markov chain:

Definition 13.1.7. A distribution π(x) on S is stationary for a Markov chain
with transition matrix K if πK = π or, equivalently,

∑
y∈S

π(y)K(y, x) = π(x).

In words, a stationary distribution is invariant - if we are at some point in time
distributed with that distribution and make one step according to the transition
matrix, we remain in that distribution.

A Markov chain can have more than one stationary distribution or it can be
without a stationary distribution. However, limiting ourselves to irreducible and
aperiodic Markov chains substantially simplifies asymptotic behavior, as shown
by two very important theorems:

Theorem 13.1.2. For a irreducible aperiodic Markov chain with a stationary
distribution π we have limn→∞Kn(x, y) = π(y) for any initial distribution.

The theorem basically says that an irreducible aperiodic countable state space
Markov chaing will converge to its stationary distribution, if it has one, regard-
less of where we start. We state this theorem without proof.

Finally, we have the SLLN analogue for Markov chains:

Theorem 13.1.3. For any irreducible Markov chain with stationary distribu-
tion π and function f : S → R with Eπ[f(X)] =

∑
x∈S f(x)π(x) < ∞ we

have
1

n

n∑
i=1

f(Xi)
a.s.−−→ Eπ[f(X)]
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for any initial distribution.

We state this theorem without proof. Note that aperiodicity is not necessary
for the SLLN to apply.

Existence and uniqueness of a stationary distribution

The above limit theorems for countable-space Markov chains assume the ex-
istence of a stationary distribution. In this section we provide more tools for
determining its existence, its uniqueness, and identifying whether a distribution
is a stationary distribution of a Markov chain.

First, we need to add to our classification of states:

Definition 13.1.8. The first positive return time Tx of state x is Tx , min{n ≥
1 : Xn = x|X0 = x}.

That is Tx is the number of steps before the chain that started in x returns to
x for the first time. Note that Tx is a random variable.

Definition 13.1.9. A state is called transient if P (Tx < ∞) < 1. If it is not
transient it is recurrent.

In words, recurrent states have that we will return to them in a finite number
of steps with probability 1 (almost surely).

This classification can be further refined as follows.

Definition 13.1.10. A state x is positive-recurrent if it is recurrent and E[Tx] <
∞. If a state is recurrent and E[Tx] = ∞, then it is null-recurrent. Otherwise
it is transient.

This refinement is necessary, because for a countably infinite state space we can
have cases where we will return in a finite number of steps with probability
1, but our expected return time would be infinite.2 That is, despite the state
being recurrent, the visits would not be frequent enough for the chain to have
a stationary distribution (see Example 13.1.1).

Proposition 13.1.5. Positive-recurrence, null-recurrence and transience are
class properties - all states in a communicating class share them.

Proof. Let x and y be states that communicate. That is, there exists a m ≥ 0,
such that Km(x, y) > 0. Suppose x is recurrent. It follows that y must also be
recurrent, because every time we re-visit x there is a non-zero probability that
we will re-visit y in m steps. A similar argument can be used for null-recurrence
and transience. �

2While it might at first be counter-intuitive, there exists random variables that take only
finite values but still have an infinite expectation.
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Therefore, if one state in an irreducible chain is positive-recurrent, all states are
positive recurrent. If all states in a chain are positive-recurrent, we say that the
chain is positive-recurrent.

Theorem 13.1.4. An irreducible Markov chain has a stationary distribution if
and only if it is positive recurrent. If it does, then the stationary distribution π
is unique and

π(x) =
1

E[Tx]
> 0.

Partial proof of uniqueness assuming K(x, y) > 0 for all pairs of states. Suppose
an irreducible Markov chain has more than one stationary distribution and take
two of those stationary distributions, π1 and π2. Let x be the state that maxi-

mizes π1(z)
π2(z) over all z ∈ S and let a = π1(x)

π2(x) . It follows that aπ2(z) ≥ π1(z), for

all z ∈ S. Because the chain is irreducible, we have

π1(x) =
∑
z∈S

π1(z)K(z, x) ≤
∑
z∈S

aπ2(z)K(z, x) = aπ2(x) = π1(x).

The inequality must therefore never be strict and we have π1(z) = aπ2(z) for
all z ∈ S. This is where we use the assumption K(x, y) > 0 for all x, y ∈ S
- if K(z, x) = 0 the equality would hold even if π1(z) < aπ2(z). Because the
stationary distributions must sum to 1, it follows that π1(z) = π2(z), for all
z ∈ S. �

Because all states in an irreducible finite-state Markov chain are recurrent and
positive-recurrent, we have:

Corollary 13.1.1. An irreducible finite-state Markov chain has a unique sta-
tionary distribution.

Proof. Because positive-recurrence is a class property, it suffices to show that at
least one state is positive-recurrent. Because the state space is finite, if we start
in state i at least one state j must be visited an infinite number of times with
positive probability. However, because the chain is irreducible, there is a positive
probability of getting from j to i. Therefore, there is a positive probability that
the chain starting in j will visit j and infinite number of times, which implies
that j is positive-recurrent. �

So, a Markov chain with a countable state space will have a unique stationary
distribution if not only can we get from every state to every other state but
also visit every state frequently enough. For finite state spaces this simplifies,
because being able to get from every state to every other state implies that
every state will be visited infinitely many times and with finite return time.
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Example 13.1.1 (A null-recurrent chain). Take a Markov chain whose state
space are positive integers. Let K(i, i + 1) = i

i+1 and let K(i, 1) = 1
i+1 . All

other transition probabilities are 0. That is, from state i the chain moves to the
next integer with probability i

i+1 or moves back to state 1 with probability 1
i+1 .

All states communicate, so we have an irreducible chain. To classify the states
based on recurrence, it therefore suffices to classify one of the states. Let’s focus
on state 1. We have:

P (T1 <∞) = 1
2 + 1

2
1
3 + 1

2
2
3

1
4 + 1

2
2
3

3
4

1
5 + ... = 1

1×2 + 1
2×3 + 1

3×4 + 1
4×5 ... =∑∞

i=1
1

i(i+1) =
∑∞
i=1( 1

i −
1
i+1 ) = 1− limn→∞

1
n = 1.

So, the chain is recurrent. However:

E[T1] = 1 1
2 + 2 1

2
1
3 + 3 1

2
2
3

1
4 + 4 1

2
2
3

3
4

1
5 + ... = 1

2 + 1
3 + 1

4 + 1
5 ... =

∑∞
i=1

1
i+1 =∞.

So, this irreducible chain is recurrent, but not positive recurrent. It is null-
recurrent. Therefore, it does not have a stationary distribution! Even though
we will return to each state almost surely, it does not happen often enough to
result in a stationary distribution.

Finally, the following will be particularly useful for constructing Markov Chains
with desirable stationary distributions:

Definition 13.1.11 (Detailed balance). Consider a Markov chain with state
space S and transition matrix K. A distribution π is said to satisfy detailed
balance for this Markov chain if for every pair of states x, y ∈ S we have

π(x)K(x, y) = π(y)K(y, x).

Note that Markov chains that satisfy detailed balance are also referred to as
time reversible (or just reversible).

Theorem 13.1.5. If distribution π satisfies detailed balance for a Markov chain,
then it is a stationary distribution of the Markov chain.

Proof. We must show that detailed balance of π implies that
∑
y∈S π(y)K(y, x) =

π(x) (the definition of a stationary distribution).

From detailed balance, we have

∑
y∈S

π(y)K(y, x) =
∑
y∈S

π(x)K(x, y) = π(x)
∑
y∈S

K(x, y) = π(x).

The second step follows from the fact that the probabilities of x transitioning
to some state y must sum to 1. �
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Note that while it is a sufficient condition, it is not a necessary condition. There
exist Markov chains that do not satisfy detailed balance but have a stationary
distribution.

13.2 A note on general state space Markov chains

The results for countable state space Markov chains that are relevant to MCMC
transfer to general state spaces, albeit with additional measure-theoretic con-
siderations. In this section we briefly discuss this general setting. A detailed
treatment can be found in Robert and Casella (2013) or Meyn and Tweedie
(2012).

The main difference when moving to a general, possibly uncountably infinite
state space S is similar to moving from discrete to continuous random variables.
We can no longer talk just about transition probabilities between states (that
is, K(x, y), where x, y ∈ S), because all of these probabilities could be 0.

Instead, we introduce a measurable space and we specify the transition proba-
bilities by defining a transition kernel (or just kernel).

Definition 13.2.1. Let (S,S) be a measurable space. A transition kernel K :
S → S of a Markov Chain is a map

K(x,B) = P (Xi ∈ B|Xi−1 = x),

where x ∈ S and B ⊆ S, that satisfies:

� For every x, K(x,B) is a probability measure on (S,S).

� For every B, K(x,B) is a measurable function.

Although K now denotes a kernel, the transition matrix that we used for count-
able S uniquely determines a kernel. That is, for countable state spaces, it
suffices to specify a transition matrix.

The Chapman-Kolmogorov equation and definition of a stationary distribution
(measure) transfers to the general setting:

Proposition 13.2.1 (Chapman-Kolmogorov). For every m,n ≥ 0, x ∈ S, and
A ∈ S, we have

Km+n(x,A) =

∫
S

Km(x, dz)Kn(z,A).

Definition 13.2.2. A sigma-finite measure π(x) on S is stationary for a Markov
chain with transition kernel K if
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∫
S

K(y,A)dπ = π(A).

The statement that being in detailed balance implies that the distribution is a
stationary distribution of the Markov chain also transfers to the general setting.
In particular, for continuous state space, we have the detailed balance condition
π(x)k(x, y) = π(y)k(y, x), where π is a density and k(x, y) are densities (also
known as transition functions), such that K(x,A) =

∫
A
k(x, y)dy.

The definition of irreducibility does not transfer to general state spaces. While
we can talk about the probability of visiting a set A ∈ S from state x ∈ S, we
can not talk, at least not in general, about the probability of visiting a state
x. For example, when we are dealing with densities. Instead, an analogue to
irreducibility is constructed via φ−irreducibility, where φ is a measure.

Less formally, a chain is φ−irreducible if there exists a measure φ on S such
that, whenever φ(A) > 0, the probability of reaching A from x is positive for
all x ∈ S. In essence φ−reducibility identifies sets that are always reached with
some positive probability, regardless of the starting state.

A chain can be φ−irreducible for many different φ. For example, suppose that
a chain is φ−irreducible, then it is irreducible for any non-trivial restriction of
φ. A more useful definition is obtained via the so called maximal irreducibility
measure ψ, which is an irreducibility measure such that ψ(A) = 0⇒ φ(A) = 0,
for every irreducibility measure φ and all sets A. In other words, the maximal
irreducibility measure is the irreducibility measure that has the least null sets.

It can be shown, that the maximal irreducibility measure φ exists as long as at
least one irreducibility measure ψ exists. It is also unique in the sense that all
maximal irreducibility measures identify the same null sets. Furthermore, it can
be shown that if the chain has a stationary distribution π and is φ−irreducible
(for any φ), then the chain is recurrent, the stationary distribution is unique,
and the chain is π−irreducible.

Even though a chain is φ−irreducible and has a stationary distribution (hence,
a unique stationary distribution), problems with convergence to the stationary
distribution might arise if the chain is started at an x that is in the null set.
On the other hand, it can be shown that starting the chain at an x from set A
where φ(A) > 0 guarantees not only that every φ−positive set will be visited
with probability one, but that it will be visited infinitely many times with
probability one. The final step is to remove these null sets from the state space.
This comes at no harm, because the null set can not be visited from outside the
null set. The formalization of this is called Harris recurrence. A φ−irreducible
chain is Harris-recurrent if the probability of visiting set A from state x is 1
for all x and all φ−positive A. Any φ−irreducible chain can trivially be made
Harris recurrent by removing the null set.
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Using the above measure-theoretic technicalities, the two Theorems that are key
for MCMC also transfer to the general setting:

Theorem 13.2.1. For a Harris-recurrent aperiodic Markov chain with a sta-
tionary measure π we have limn→∞Kn(x,A) = π(A) for any initial distribu-
tion.3

Theorem 13.2.2. For any Harris-recurrent Markov chain with stationary mea-
sure π and function f : S → R with Eπ[f(X)] =

∫
S
f(x)dπ <∞ we have

1

n

n∑
i=1

f(Xi)
a.s.−−→ Eπ[f(X)]

for any initial distribution.

13.3 Central Limit Theorem for Markov Chains

As we have stated earlier in this chapter, Markov chains, which are a sequence
of dependent random variables, admit a SLLN that is no different from the
SLLN for sequences of independent random variables. This should not be that
surprising, because we know that expectation is linear - the sum of expectations
is the expectation of the sum of random variables, regardless of whether the
random variables are independent or not.

The same, however, does not apply to variance - the variance of a sum of
dependent random variables depends on the covariances. This suggests that
if Markov chains do admit a CLT, it would not be the same as the one we
stated for independent random variables.

Before we state the CLT, we introduce lag-k autocovariance of a discrete time
stationary stochastic process:

γk = Cov[f(Xi), f(Xi+k)].

That is, the lag-k autocovariance is just the covariance of random variables in
the stochastic process that are exactly k apart. Because we are assuming a
stationary process, the γk is the same for all pairs exactly k apart.

Again, we are interested in estimating the integral Eπ[f(X)] =
∫
f(x)dπ(x)

with the average f̂n = 1
nf(Xi) of samples Xi from P . We already discussed the

SLLN for Markov chains - for relatively well-behaved chains, we have f̂n
a.s.−−→

Eπ[f(X)]. Now we are ready to state the CLT for Markov chains.

3A stronger statement is true, that the convergence is not only set-wise but in total varia-
tion. That is, uniformly over sets.
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Theorem 13.3.1. For an irreducible Markov chain with stationary distribution
π and starting distribution π, we have

nVar[f̂n]→ σ2 =

+∞∑
k=−∞

γk

and, if σ2 is finite

√
n(f̂n − Eπ[f(X)])

D−−→ N(0, σ2).

The proof of this theorem is beyond the scope of this text. As we can see, the
CLT is identical to the CLT for iid RVs, except for the computation of variance
of the estimator, which must now take into account the dependencies between
the RVs.

The estimation of the above variance is very important in practice, because it
leads to Monte Carlo standard errors or some other quantification of the error
of our Monte Carlo estimator. We will explore the topic further by showing how
the lag-k covariances arise and how we can estimate them in practice.

From basic probability theory we know that for a mean of n possibly dependent
RVs X1, ..., Xn we have

σ2
n = nVar[

1

n

n∑
i=1

Xi] =
1

n

n∑
i=1

Var[Xi] +
1

n
2

n−1∑
i=1

n∑
j=i+1

Cov[Xi, Xj ].

If we assume that RVs k apart have the same covariance (in the context of
stochastic processes, homogeneity) and use the lag-k autocovariance notation
(γ0 = Var[X], zero-lag autocovariance), we get

σ2
n = γ0 + 2

n−1∑
i=1

n− i
n

γi,

which converges to

σ2
n = γ0 + 2

∞∑
i=1

γi =

∞∑
i=−∞

γi

as n −−→∞. Note that, by definition, γk = γ−k.

Estimating this variance is an important practical problem. We discuss it further
in Section 20.2.
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Exercises

Exercise 13.1. Prove Proposition 13.2.1.

Exercise 13.2. Prove Theorem 13.1.1. Hint: Use Proposition 13.2.1.

Exercise 13.3. Prove Proposition 13.1.2.

Exercise 13.4. Prove Proposition 13.1.3.

Exercise 13.5. Prove Proposition 13.1.4.



120 CHAPTER 13. MARKOV CHAINS



Part II

Reasoning with uncertainty
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Chapter 14

Introduction to statistical
inference

14.1 Data, model, parameters

The essence of statistical analysis is inferring (learning) the properties of the
underlying process that generated the data.

For example, observe data that were generated by flipping a (not necessarily
fair) coin 10 times. Is it a fair coin?

H T H T H H T H H H.

We often refer to this a sample from our data generating process. The sample
has certain properties, for example, the relative frequency of heads is 0.7.

While it might be tempting to use the properties of the sample as a substitute
for the properties of the data generating process, they are not the same. To
further illustrate this point, let’s flip the same coin again using the exact same
process:

T T H T T H H H T H.

The sequence is different than before as is the relative frequency of heads (0.5).
The properties of the process are unchanged, but the properties of the data are
different. Clearly, the two are not the same. And thinking that they are is one
of the most common sources of misunderstanding, misinterpretation and flawed
statistical analyses.

Without a doubt, the properties of the data depend on the properties of the
data generating process. If they didn’t, we couldn’t learn anything about the
process from the data it generates. Furthermore, the bigger our sample size,
the more are the properties of the generating process reflected in the properties

123
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of data. In fact, this is formally suggested by the limit theorems. We know, for
example, that the more coin flips we have, the closer their relative frequency
will be to the underlying expectation of flipping heads. However, in statistical
analyses, there will always be at least some uncertainty associated with where
the properties of the process lie and one of the main tasks of statistical inference
is to quantify that uncertainty.

The properties of data are easy to compute and the properties of the generating
process that interest us are typically determined by the problem we are trying
to solve. In our case, for example, the expected value of the coin flipping heads.
The challenge and art of data analysis lies in selecting a suitable relationship
between the two - a hypothesis of how the data were generated or a model.

In our example, it is reasonable to interpret the data as if they were generated
by drawing independent samples from a Bernoulli distribution with parameter
θ ∈ [0, 1]:

Y1 = y1, ..., Y20 = y20|θ ∼iid Bernoulli(θ).

Because the sum of independent and identically distributed Bernoulli variables
is distributed Binomial, we could equivalently write

Y =

20∑
i=1

yi|θ ∼ Binomial(20, θ).

In fact, if we can assume that the coin tosses are independent and stationary
(their expectation is constant over time), then this is one of the rare cases where
there is only one choice of model. Also, our parameter θ has a straightforward
interpretation θ = E[Y ].

In this case our model is an explicit distributional assumption with a finite num-
ber of parameters. We will refer to these kind of models as parametric. Models
that are not parametric will be called non-parametric. In non-parametric mod-
els the distributional assumption is implicit and/or the number of parameters is
infinite. Note that this is a non-rigorous practical distinction. The theoretical
differences between parametric and non-parametric models are more nuanced
and out of the scope of this text.

Our choice of parametric model determines the distribution of the data given
the parameters. The notation Y =

∑20
i=1 yi|θ ∼ Binomial(20, θ) can be unrolled

into the underlying explicit distributional assumption that

p(Y = y|θ) =

(
20

y

)
θy(1− θ)20−y,

where y =
∑20
i=1 yi.
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The function p(y|θ) plays a central role in parametric inference. It is called
the likelihood function and we will often write L(θ; y) = p(y|θ) and `(θ; y) =
log p(y|θ). This naming convention and notation are deliberate to make the
distinction between the likelihood and PMFs/PDFs. The function p(y|θ) when
viewed as a function of θ with y known (as is typically the case with statistical
analyses) is not a PMF or PDF.

What remains is to infer θ from the data. There are many different approaches to
statistical inference to choose from, each with its advantages and disadvantages.
The remainder of the chapter is dedicated to three examples that will briefly
illustrate three of the most common: maximum likelihood, Bayesian inference
and null-hypothesis significance testing. Each of these will be covered in more
detail in the following chapters.

14.2 Approaches to statistical inference

Example 14.2.1 (Maximum likelihood estimate for a Binomial proportion).
Maximum likelihood is, as the name suggests, concerned with finding the param-
eter values that maximize the likelihood. That is, the parameter value that is
out of all parameter values the most likely to have generated the data.

In our example we have a sample with n = 20 observations, 12 of which are
heads and 8 are tails. Inserting this data into the chosen likelihood, we get

L(θ; y) =

(
20

12

)
θ12(1− θ)8.

From this point maximum likelihood estimation becomes an optimization problem
of finding the value of θ that maximizes the value of L(θ; y). In most cases it is
more convenient to work with the log-likelihood `(θ; y). The log-likelihood is also
numerically more stable, because products of probabilities/densities are turned
into sums of their logarithms. Because the logarithm is a monotone increasing
function the maximum of the likelihood is the same as the maximum of the
log-likelihood. Taking the derivative

d

dθ
`(θ; y) = 12

1

θ
− 8

1

1− θ
,

we can see that it is 0 at θ = 12
20 . The maximum likelihood estimate of θ is there-

fore 0.6. It should not be too surprising that the maximum likelihood estimate
corresponds to the sample average.

This type of estimation falls into the category of point estimation, because the
result is only a point in the parameter space. Point estimates are often good
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enough, especially if we are interested only in prediction, but they lack the quan-
tification of uncertainty that is necessary for making decisions. To illustrate this
point, imagine a coin that flips heads 6000 times out of 10000. The maximum
likelihood point estimate would be the same, 0.6, yet our intuition (and the limit
theorems) tells us that the second estimate is more reliable. If we had to choose
a coin that we believe is more likely to be unfair, we would choose the second
coin.

In Chapter 16 we discuss maximum likelihood in more detail, including how to
quantify uncertainty in maximum likelihood estimates. In this example we will
only construct a crude confidence interval with the tools we already have. We
know, by the CLT, that the sample relative frequency of 20 Bernoulli trials will
be distributed approximately normally around the mean

y ≈ N(θ,
σ2
Y

20
).

The variance of a Bernoulli RV is at most 0.25, so we state with at least 95%
probability that the interval [0.6− 2× 0.5√

20
, 0.6 + 2× 0.5√

20
] or [0.38, 0.82] contains

the true θ. This interval is wide and contains 0.5, so it’s not strong evidence
against the coin being fair. That is, if the true mean were 0.5 it would not be
that surprising to get such a sample.

Note that this construction is based on the assumption that our sample size is
large enough for the CLT to apply. Better techniques exist for binary data and
will be discussed later.

Example 14.2.2 (Bayesian inference for a Binomial proportion). The funda-
mental difference between Bayesian and so-called frequentist or classical statis-
tics lies not in statistics but in how we view probability. If our view in Example
14.2.1 was that the data y are random and the parameter θ is an unknown
constant, the Bayesian view is that θ is random variable. Not because it is ran-
dom, it might very well be a constant, but because we choose to represent our
uncertainty in what the value of θ might be with a random variable.

The main objective of Bayesian statistics is to compute the posterior distribution
p(θ|y) - the distribution of the parameter after we see the data. This is done
using Bayes’ theorem which gave Bayesian statistics its name:

p(θ|y) =
p(y|θ)p(θ)
p(y)

=
p(y|θ)p(θ)∫
p(y|θ)p(θ)dθ

.

To compute the posterior distribution, we need the likelihood and p(θ) - the prior
distribution or prior. The prior can be interpreted as our probabilistic opinion
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about the parameter before we see the data.

How do we select a prior? There are many different approaches, subjective and
objective with respect to some criterion, which we will discuss in Chapter 18. For
now, we will assume that we don’t and we assume that a uniform distribution
over all possible θ is an adequate representation of this:

θ ∼ Unif(0, 1) or, equivalently p(θ) = 1.

Now we have the prior and the likelihood and we can compute the posterior:

p(θ|y) =
p(y|θ)p(θ)
p(y)

∝ p(y|θ)p(θ) (proportional to)

= p(y|θ) (prior density is 1)

=

(
20

12

)
θ12(1− θ)8

∝ θ12(1− θ)8

Because PDFs (PMFs) integrate (sum) to 1, the scale of the PDF (PMF) is
irrelevant, because it can be recovered from the shape of the distribution. That
is, the shape of the PDF/PMF is enough to uniquely identify it, so we ignore
multiplicative constants. The shape θ12(1 − θ)8 is that of the Beta distribution
with parameters α = 13 and β = 9:

p(θ|y) =
1

B(13, 9)
θ13−1(1− θ)9−1.

The main advantage of Bayesian statistics is that we can answer probabilistic
questions about θ - all the information we need is contained in the posterior
distribution p(θ|y). For example, we can compute an interval where the true
value of θ lies with 95% probability. That is, the interval

(Qθ|y(0.025), Qθ|y(0.975)) ≈ (0.38, 0.78),

where Q is the quantile function of the posterior.

Similarly, we could, for example, compute the probability that this coin’s θ is
greater than 0.5:

P (θ > 0.5|y) =

∫ 1.0

0.5

p(θ|y)dθ ≈ 0.81.
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Example 14.2.3 (Exact Binomial test for proportion). Null-hypothesis signif-
icance testing, as the name suggests, focuses on testing a particular hypothesis.
While there are many different tests, they all follow the same process:

� First, the hypothesis of interest that is to be tested is assumed to be true.
Hence, the name null hypothesis.

� Second, a test statistic is chosen and we compute its distribution given the
null hypothesis.

� Third, the value of the test statistic for the sample is compared to the
distribution. If it is very unlikely to have been generated were the null
hypothesis true, we choose to reject the null hypothesis.

In our case we might be interested in testing if the coin is fair. Therefore, the
null hypothesis would be that it is:

H0 : θ =
1

2
.

A reasonable test statistic in this case would be the deviation from the expected
equi-distribution of tails and heads. The bigger the absolute difference between
number of tails and number of heads, the less likely it is that the coin is fair.
Our sample has an absolute difference of 12−8 = 4. The probability of obtaining
a difference at least this large is

P (|#heads - #tails| ≥ 4|H0) = P (y ≤ 8 or y ≥ 12|H0) = 2F (8|H0) ≈ 0.50.

Null-hypothesis significance testing has a long tradition of both use and misuse.
We will discuss this approach to inference in more detail in Chapter 17.



Chapter 15

Nonparametric inference -
The bootstrap

15.1 Empirical CDF

Definition 15.1.1. Let {Xn} be independent and identically distributed RVs.
Their empirical cumulative distribution function (ECDF) is defined as

Fn(x) ,
1

n

n∑
i=1

IXi≤x.

Proposition 15.1.1 (Properties of the ECDF). For all x, we have

(a) E[Fn(x)] = F (x).

(b) V ar[Fn(x)] = F (x)(1−F (x))
n .

(c) Fn(x)
a.s.−−→ F (x).

(d) supx |Fn(x)− F (x)| a.s.−−→ 0 (Glivenko-Cantelli theorem).

Proof. The indicator random variable for a particular x takes value 1 with prob-
ability F (x). Hence, we are dealing with a Bernoulli random variable, so (a) and
(b) follow. Property (c) follows from the SLLN. Property (d) is stated without
proof. �
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15.2 Statistical functionals and the plug-in prin-
ciple

Definition 15.2.1. A statistical functional T is a map from the space of CDFs
to R.

Definition 15.2.2. The plug-in estimator of statistical functional θ = T (F ) is

defined as θ̂n , T (Fn).

15.3 Properties of point estimators

Before we discuss the properties of plug-in estimators, we define some general
notions that are helpful in characterizing the usefulness of estimators of statis-
tical functionals.

Definition 15.3.1. A point estimator θ̂n of θ0 is unbiased if E[θ̂n] = T (F ).

Definition 15.3.2. A point estimator θ̂n of θ0 is consistent if θ̂n
P−−→ θ0.

Definition 15.3.3. The mean square error (MSE) of a point estimator is

MSE(θ̂) , E[(θ̂ − θ)2].

Proposition 15.3.1 (Bias-variance decomposition). MSE(θ̂) = (E[θ̂] − θ)2 +

Var[θ̂].

The proof is left as an exercise.

Proposition 15.3.2. If MSE(θ̂n)→ 0 then θ̂n is consistent.

The proof is left as an exercise.

Definition 15.3.4. A point estimator θ̂n is asymptotically normal if

θ̂n − θ0

σθ̂n

D−−→ N(0, 1).

For most common functionals, their plug-in estimators have at least some of
these desirable properties (see Exercises). Unfortunately, there are no general
rules for when a plug-in estimator is a good estimator. Although the Glivenko-
Cantelli theorem has very strong implications, it is not enough to imply T (Fn)→
T (F ), because a small change in Fn could still cause a big change in T (Fn).
In order for the implication to work, T has to be sufficiently smooth, where
the notion of smoothness here is more general, because we are talking about
functions.

15.4 Bootstrapping the variance of an estimator

Plug-in estimators are very simple and convenient estimators of parameters. In
most cases our plug-in estimator will have nice asymptotic properties, but in
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practice, we are interested in how good our estimate is on a finite sample. In
this section we will introduce a very simple but powerful and general approach
to estimating the uncertainty associated with a plug-in estimator: the bootstrap.

We start by describing the algorithm:

Algorithm 15.4.1. Let the ECDF Fn be our sample from F and let T be a
functional of interest. Then, the following algorithm returns an estimate of the
variance of the plug-in estimator θ̂n:

1: procedure Bootstrap-Variance(Fn, T , m)
2: for i← 1 : m do . number of bootstrap samples
3: sample X∗1 , ..., X

∗
n iid from Fn . sampling with replacement

4: let F ∗n represent X∗1 , ..., X
∗
n

5: θ̂∗n,i ← T (F ∗n)
6: end for

7: return 1
m−1

∑m
i=1

(
θ̂∗n,i − θ̄∗n

)2

, where θ̄∗n = 1
m

∑m
i=1 θ̂

∗
n,i.

8: end procedure

The key idea of the bootstrap is to simulate m replications of the original sample
by sampling with replacement. For each replication we compute the value of the
functional and we use these m values of the functional to estimate the variance.

Before we formally state the statement made by this algorithm, we formally
define the objects from the algorithm.

Definition 15.4.1. The bootstrap sample from ECDF Fn is defined as a col-
lection of n independent samples from Fn. That is,

X∗1 , X
∗
2 , ..., X

∗
n ∼ Fn.

Definition 15.4.2. The bootstrap empirical cumulative distribution function
is defined as

F ∗n(x) ,
1

n

n∑
i=1

IX∗i ≤x.

Definition 15.4.3. The bootstrap plug-in estimator is defined as θ̂∗n , T (F ∗n).

Definition 15.4.4 (Estimated bootstrap variance). V̂arB [θ̂∗n] = 1
m−1

∑m
i=1

(
θ̂∗n,i − θ̄∗n

)2

,

where θ̄∗n = 1
m

∑m
i=1 θ̂

∗
n,i and m is the number of bootstrap replications.

The statement we are making with this algorithm is that the estimated boot-
strap variance V̂arB [θ̂∗n] is a good estimate for the variance of the plug-in esti-

mator Var[θ̂n]. Note that V̂arB [θ̂∗n] itself is just an estimate for the bootstrap

variance VarB [θ̂∗n|Fn], which is in practice very difficult to compute exactly due
to the combinatorial explosion of possible combinations:
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Definition 15.4.5 (Bootstrap variance). Var[θ̂∗n|Fn] = 1
nn

∑nn

i

(
θ̂∗n,i − θ̄∗n

)2

,

where θ̄∗n = 1
nn

∑nn

i θ̂∗n,i.

So, in order for the bootstrap estimate of variance to work, we must have

V̂arB [θ̂∗n] ≈ Var[θ̂∗n|Fn] ≈ Var[θ̂n].

The first approximation is obvious - estimated bootstrap variance is a consistent
and unbiased estimator of bootstrap variance. Furthermore, we can make it
arbitrarily accurate by increasing the number of bootstrap samples m!

The second approximation is more difficult to show in general. We provide
some intuition: Imagine that we could draw not just one Fn but an arbitrary
number of samples of size n from our population. We could use the values
of the functional on these samples to estimate the variance of the estimate of
the functional Var[θ̂n]. With the bootstrap, we are doing exactly this, but
pretending that Fn is F . And, as n grows large, Fn is a better and better
approximation to F . A bootstrap sample F ∗n is to the ECDF Fn what the
ECDF Fn is to the underlying population F .

15.5 Bootstrapping confidence intervals

Confidence intervals are among the most common ways of summarizing the
uncertainty associated with an estimator, second only to the variance/standard
deviation of an estimator. Before we proceed with describing three different pro-
cedures for constructing confidence intervals, we will first formalize the concept
of a confidence interval.

Definition 15.5.1 (Confidence interval). A 1 − α confidence interval for a
parameter θ is an interval Cn = [a, b], such that

P (θ ∈ Cn) = 1− α,

for all possible values of θ. The bounds a and b are functions of the data.

It is beneficial to think about confidence interval not as an interval but as a
procedure to construct an interval for the given data. If an experiment would
be repeated many times and we used a 1 − α confidence interval procedure
each time, the 1 − α of the constructed confidence intervals would contain the
true value of the parameter. Hence, the confidence interval is random, not
the parameter, and it is in general incorrect to say that the true value of the
parameter lies in the confidence interval with 1− α probability.

We will use the term confidence level to refer to 1− α and coverage probability
to refer to the proportion of cases when the true parameter is covered by the
confidence interval. Ideally, the two would be the same for our procedure for
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constructing confidence intervals. However, in practice, it is difficult to guaran-
tee this in general, so confidence intervals in practice are often too wide or too
narrow.

Definition 15.5.2. The (1−α) Bootstrap standard confidence interval is based
on the bootstrap estimate of variance:

Cn = [θ̂n − z1−α2 σ̂, θ̂n + z1−α2 σ̂],

where zx is the z-score (quantile function of the standard normal distribution)

at x and σ̂ =

√
V̂arB [θ̂∗n].

Note that the definition assumes a symmetric two-sided confidence interval.
That needn’t be the case - we can use the same process to construct one-sided
or asymmetric intervals.

The bootstrap standard confidence interval is very similar to the classic standard
confidence interval, the only difference is that we employ bootstrap to estimate
the standard deviation, instead of estimating σ̂θ̂ directly. Other than simplicity
of computation, there is no other advantage of the bootstrap standard confidence
interval.

Standard confidence intervals serve as a decent quick quantification of uncer-
tainty, but the assumption of normality leads to incorrect coverage, especially
with skewed distributions. Furthermore, bootstrap standard confidence inter-
vals systematically underestimate the coverage probability.

Now we introduce another intuitive approach to constructing CI that typically
gives better coverage than standard normal intervals:

Definition 15.5.3. Let Fθ̂∗n,m
be the ECDF based on m bootstrap replications

θ̂∗n,1, . . . , θ̂
∗
n,m. The (1−α) symmetric percentile confidence interval is based on

the quantiles of these replications:

Cn = [Q(
α

2
), Q(1− α

2
)].

We can compute percentile confidence intervals using Algorithm 20.3.1.

15.6 Practical considerations

The bootstrap is an extremely powerful technique but it does have certain lim-
itations. Theoretically, the most important question is for which statistical
functionals will the bootstrap variance (or quantiles of the distribution of boot-
strapped values) tend to the true variance (or quantiles). Answering this ques-
tion is not trivial and in most cases requires advanced tools from functional
analysis.
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One of the few more general cases where the bootstrap is guaranteed to work
are linear statistical functionals, as long as the 2-nd moment of the functional
is finite. That is, functionals of the form T (F ) =

∫
r(x)dF (x) with the corre-

sponding plug-in estimator

T (Fn) =

∫
r(x)dFn(x) =

1

n

n∑
i=1

r(Xi).

Note that most common functionals such as the mean, median, and variance
are linear functionals.

One clear example where the bootstrap certainly fails are extreme order statis-
tics, such as the maximum.

Even when the bootstrap is guaranteed to work, the guarantees are typically
asymptotic. That is, as n (sample size) and m (number of bootstrap replica-
tions) tend to infinity. In practice, however, we have to deal with finite n and
m, albeit m can be arbitrarily large.

Dealing with m is straightforward - in essence, we are dealing with a standard
case of Monte Carlo approximation. As a rule of thumb, m = 100 should
be enough for means and medians, while m = 10000 might be required for
functionals such as extreme quantiles. Of course, this also depends on the
approximation error that is still acceptable. However, we needn’t rely on such
recipes, because we can in most cases estimate the approximation error from the
variability of the bootstrapped values. And we can make m arbitrarily large,
subject to constraints on time or computational resources.

Unfortunately, in practice we rarely have a choice regarding how large n is.
Again, for functionals like the median and mean, even n in the 10s would be
enough for reasonable approximations of variance and even reasonable coverage
of typical confidence intervals. For more extreme functionals, 100s of observa-
tions might be required.

Exercises

Exercise 15.1. Prove Proposition 15.3.1.

Exercise 15.2. Prove Proposition 15.3.2.

Exercise 15.3. Show that the sample mean is an unbiased, consistent and
asymptotically normal estimator of the mean.

Exercise 15.4. Show that sample variance is a consistent but biased estimator
of variance.

Exercise 15.5. Show that sample correlation is a consistent estimator of cor-
relation.



Chapter 16

Parametric inference -
Maximum Likelihood

Now we return to parametric methods. Like with non-parametric inference, the
goal is still to infer the properties of a data generating process based on a sample
independent observations from that process:

Y1 = Y1, Y2 = Y2, ...., Yn = yn ∼iid
unknown data
generating process

.

However, unlike with the plug-in estimators and bootstrap inference, parametric
approaches have to explicitly hypothesize what the unknown data generating
process might be.

16.1 Parametric models and the likelihood

Definition 16.1.1. A parametric model H for data y is a parametrized collec-
tion of distributions

H =
{
p(y|θ) : θ ∈ Θ = Rk

}
,

where p is the joint PDF/PMF of the data, Θ is our parameter space and
θ = (θ1, ..., θk) is our parameter.

Definition 16.1.2. The likelihood function is defined as

L(θ; y) , p(y|θ).

The log-likelihood function is defined as `(θ; y) , logL(θ; y).
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If iid observations are assumed, the likelihood factorizes to L(θ; y) =
∏n
i=1 p(yi|θ).

However, keep in mind, that this is an assumption. In general, the observations
need not be conditionally independent.

Note that the likelihood is not a density or probability mass function - instead,
it is the density/probability of the data viewed as a function of the parameters,
not the data. That is, the likelihood does not necessarily integrate to 1.

16.2 The maximum likelihood estimator

Definition 16.2.1. The maximum likelihood estimator (MLE) of the parameter
θ is defined as

θ̂n , arg max
θ

L(θ; y).

Proposition 16.2.1 (Invariance). Let θ̂ be the MLE of θ. Let g be a function.

Then, g(θ̂) is the MLE of g(θ).

Proof. The proposition does not state that g is bijective, so we must consider
the possibility that g(θ) = ν maps distinct θ to the same ν. Let g−1(ν) =
{θ : g(θ) = ν} be the preimage of all θ that are mapped to a particular ν.

The domain of g is the parameter space, so the MLE θ̂ must be in g−1(ν) for

exactly one ν, which we will call ν̂. As θ̂ is the maximum of L(θ), ν̂ must be

the maximum L(ν). And we know ν̂ = g(θ̂). �

The MLE has several other nice properties. The MLE is consistent and asymp-
totically normal, two properties of estimators that we have already defined. The
MLE is also asymptotically efficient, which we will show in Section 16.3. These
properties only hold under one or more conditions. We list them here and invoke
them as required by a particular theorem:

R1 θ 6= θ0 ⇔ p(·|θ) 6= p(·|θ0) (identifiability).

R2 The support of p(y|θ) is the same for all θ. That is, the same values of y
have non-zero p(y|θ) for all θ.

R3 The point θ0 is an interior point of the parameter space Θ.

R4 p(y|θ) is differentiable in θ on Θ.

R5 p(y|θ) is three times differentiable in θ on Θ and for all θ ∈ Θ there exist a
constant c and a function M(y) such that

| ∂
3

∂θ3
log p(y|θ)| ≤M(y),

with Eθ0 [M(y)] < ∞, for all θ0 − c < θ < θ0 + c and all y in the support
of Y .
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R6 The integral
∫
p(x|θ)dx can be differentiated twice under the integral sign

as a function of θ.

These conditions are often omitted or summarized as under certain regularity
conditions.

Theorem 16.2.1 (Consistency of MLE). Assume regularity conditions R1-R4.

The MLE θ̂n is a consistent estimator of θ0.

The proof of this theorem is out of the scope of this text. We refer the interested
reader to Hogg et al. (2005, ch. 6.).

Example 16.2.1 (Linear regression). We’ll demonstrate maximum likelihood
estimation on the most popular parametric model - linear regression. The model
assumes a linear relationship between the expectation of the target (dependent)
variable y and the input (independent) variable(s) x:

yi = βTxi + εi,

where εi (the residuals) are assumed to be identically and independently dis-
tributed with mean 0. Additionally, we will assume that their distribution is
normal: εi ∼iid N(0, σ2).

Let’s derive the maximum likelihood estimator for the coefficients β. First, we
write the likelihood explicitly:

L(β, σ2; y, x) =

n∏
i=1

p(yi|xi, β, σ2) =

n∏
i=1

1√
2πσ2

exp(− (yi − βTxi)2

2σ2
).

The log-likelihood is then `(β, σ2; y, x) =

n∑
i=1

log

(
1√

2πσ2
exp(− (yi − βTxi)2

2σ2
)

)
= n log

1√
2πσ2

− 1

2σ2

n∑
i=1

(yi − βTxi)2.

Observe that the likelihood is maximized (in terms of β) where (yi − βTxi)
2

is minimized. That is, the MLE for β is obtained where the sum of squared
residuals is minimized and it does not depend on σ2.

So, for this model, maximizing the likelihood corresponds to minimizing the mean
squared error! Is that always the case? No, far from it - it is a consequence of
using a likelihood based on the normal distribution. If we instead assumed, for
example, Laplace-distributed residuals, the MLE would correspond to minimizing
the sum of absolute errors.
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Finally, we derive, in matrix form, the MLE estimate (or the ordinary least-
squares estimate, if you prefer). We want to minimize

(y −Xβ)T (y −Xβ) = (yT − βTXT )(y −Xβ) = yT y − 2βTXT y + βTXTXβ.

Taking the derivative with respect to β, we get −2XT y+ 2XTXβ, which equals
0 where XT y = XTXβ. Assuming XTX is invertible, we get

βMLE = (XTX)−1XT y.

16.3 Asymptotic normality and efficiency of MLE

First, we’ll introduce a quantity that plays an important role in several areas
of statistics - Fisher information. Fisher information deals with the question of
how much the data are expected to constrain the parameter values. That is,
how much information are the data expected to bring.

If the data bring a lot of information, then we expect the likelihood to form a
sharp peak - the data could not have been generated by many different parame-
ter values. On the other hand, if the data bring little information, the likelihood
will be more flat - a wider range of parameter values is likely to have generated
the data.

The goal is to quantify this difference. One way of doing this is by observ-
ing the derivative of the log-likelihood d

dθ log f(X|θ), also known as the score
function. Sharper peaks will have higher slopes and flatter peaks lower slopes.
The absolute or squared value of the score function would therefore be a good
indicator.

Of course, we do not know what the data will be, so we can only compute the
expected value. This leads to the following definition of Fisher information:

Definition 16.3.1. (Unit) Fisher information is defined as

I(θ) , E

[(
d

dθ
log f(X|θ)

)2
∣∣∣∣∣θ
]

=

∫ (
d

dθ
log f(x|θ)

)2

f(x|θ)dx.

In the case of not just one but multiple n iid observations, Fisher information
is defined as In(θ) , nI(θ).

Proposition 16.3.1. An alternative view is that Fisher information is the vari-
ance of the score function

I(θ) = Var

[
d

dθ
log f(X|θ)

∣∣∣∣θ]
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.

The proof is based on showing that the expected value of the score function is
0 and is left as an exercise.

We can also write Fisher information as:

Proposition 16.3.2. If log f(X|θ) is twice differentiable, then

I(θ) = −E

[
d2

dθ2
log f(X|θ)

∣∣∣∣θ] .
The proof is left as an exercise.

The first definition shows that Fisher information can be expressed as the vari-
ance of the score function. The motivation behind such a definition would be
that the score function is expected to vary more if there is a peak and less if
the likelihood is flat.

The alternative definition stated as a proposition shows that Fisher information
can be expressed as the (negative) expectation of the second derivative of the
log-likelihood - the curvature of the log-likelihood. Higher curvature of course
implies higher peaks.

Theorem 16.3.1 (Asymptotic normality of MLE). Assume regularity condi-
tions R1-R6. If the Fisher information I(θ0) is positive and finite, then for any

consistent sequence of MLE θ̂n we have

θ̂n − θ0
D−−→ N

(
0, In(θ0)−1

)
.

The proof of this theorem is out of the scope of this text. We refer the interested
reader to Hogg et al. (2005, ch. 6.1).

Corollary 16.3.1. When Theorem 16.3.1 applies, we also have

θ̂n − θ0
D−−→ N

(
0, In(θ̂n)−1

)
.

That is, plugging in a consistent estimator does not affect asymptotic normality.
The proof of this corollary is left as an exercise. The corollary provides an
estimate for the asymptotic standard error of the MLE: σ̂MLE ≈

√
In(θ0)−1.

We can utilize the asymptotic normality of MLE to construct confidence inter-
vals:

Definition 16.3.2. The (1− α) MLE standard confidence interval is
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Cn = [θ̂n − z1−α2 σ̂MLE, θ̂n + z1−α2 σ̂MLE],

where zx is the z-score.

Example 16.3.1. Let’s revisit the Bernoulli example from Chapter 14. We
already know that the MLE estimate of the proportion is the ratio of 1s (θ̂n =∑

yi
n ) and the likelihood is Binomial

L(θ; y) = θ
∑
yi(1− θ)n−

∑
yi .

To get to the confidence intervals we first derive the Fisher information, which
is the (minus) expected value of the second derivative of the log-likelihood. For
brevity, we write k =

∑
yi:

d

dθ
`(θ; y) =

d

dθ
(k log θ + (n− k) log(1− θ)) =

k

θ
− n− k

1− θ
.

Differentiating for the second time:

d

dθ

(
k

θ
− n− k

1− θ

)
= − k

θ2
− n− k

(1− θ)2
.

Now we take the expectation over k, taking into account that E[k|θ] = nθ (the
expected value of a Binomial or a sum of Bernoulli):

E

[
− k

θ2
− n− k

(1− θ)2

∣∣∣∣θ] = −n
θ
− n

1− θ
= − n

θ(1− θ)
.

So, the Fisher information is

In(θ) =
n

θ(1− θ)

and unit Fisher information is

I(θ) =
1

θ(1− θ)
.

This leads to the confidence interval

Cn =

[
θ̂n − z1−α2

√
θ(1− θ)

n
, θ̂n + z1−α2

√
θ(1− θ)

n

]
.
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By plugging in θ̂n, we arrive to the same interval as we did with the normal
approximation argument in Chapter 14. While that works in some cases, Fisher
information is a more general approach to constructing CIs for MLE estimators.

Asymptotic efficiency of MLE

Definition 16.3.3. Consider two estimators θa and θb, such that

√
n(θa − θ)

D−−→ N
(
0, σ2

a

)
and
√
n(θb − θ)

D−−→ N
(
0, σ2

b

)
.

We define asymptotic relative efficiency as ARE(θa, θb) ,
σ2
a

σ2
b

Theorem 16.3.2. If θn is the MLE and θ̂n is an other estimator, then ARE(θn, θ̂n) ≤
1.

The theorem states that out of all in some sense well-behaved estimators, MLE
has, asymptotically, the smallest variance. This result is a combination of the
asymptotic normality result from above and the Cramer-Rao lower bound theo-
rem, which states that the inverse of the Fisher information is the lower bound
on the variance of any unbiased estimator.

Multi-parameter case

The normality and efficiency arguments also extend to multiple parameters.
Fisher information generalizes to the Fisher information matrix.

Definition 16.3.4. The Fisher information matrix is defined (component-wise)
as

[I(θ)]ij , E

[(
∂

∂θi
log f(X|θ)

)(
∂

∂θj
log f(X|θ)

)∣∣∣∣θ] .
In the case of not just one but multiple n iid observations, Fisher information
is defined as In(θ) , nI(θ).

Analogous to the univariate case, we can also compute the Fisher information
matrix

Proposition 16.3.3. If the corresponding differentiation can be made, then

[I(θ)]ij = −E

[
∂

∂θiθj
log f(X|θ)

∣∣∣∣θ] .
The proof is left as an exercise.

Proposition 16.3.4. The Fisher information matrix is symmetric and positive
semi-definite.



142CHAPTER 16. PARAMETRIC INFERENCE - MAXIMUM LIKELIHOOD

The proof is left as an exercise.

Theorem 16.3.1 and Corollary 16.3.1 also hold for the multivariate case (we
state this without proof) with the inverse of the Fisher information matrix as
the covariance matrix.

This can be utilized to construct confidence regions (a generalization of CIs),
however, these are rarely used in practice. Instead, we still only focus on indi-
vidual parameters. For the i− th parameter we have

θ̂ni − θ0i
D−−→ N

(
0,
[
In(θ0)−1

]
ii

)
.

Note that this requires us to compute the inverse of the Fisher information ma-
trix and take the i−th diagonal element. This is not the same as computing the
univariate Fisher information for the i−th parameter and taking the reciprocal
value (although it is in some cases).

Example 16.3.2 (The univariate normal distribution). The univariate normal
distribution has 2 parameters, µ and σ2. The likelihood and log-likelihood of a
normal distribution model for n iid observations are

L(µ, σ2; y) =

n∏
i=1

1√
2πσ2

exp(− (yi − µ)2

2σ2
) = (2πσ2)−

n
2 exp(−

∑n
i=1(yi − µ)2

2σ2
)

and

`(µ, σ2; y) = −n
2

(log 2π + log σ2)−
∑n
i=1(yi − µ)2

2σ2
.

To get the Fisher information matrix, we first compute the 2nd order partial
derivatives with respect to the parameters

∂
∂µ`(µ, σ

2; y) =
∑n
i=1(yi−µ)

σ2 ,

∂
∂σ2 `(µ, σ

2; y) = − n
2σ2 +

∑n
i=1(yi−µ)2

2σ4 ,

∂2

∂µ2 `(µ, σ
2; y) = − n

σ2 ,

∂2

∂µσ2 `(µ, σ
2; y) = −

∑n
i=1(yi−µ)

σ4 ,

∂2

∂(σ2)2 `(µ, σ
2; y) = n

2σ4 − 2
∑n
i=1(yi−µ)2

2σ6 ,

Note that we don’t have to compute ∂2

∂σ2µ`(µ, σ
2; y) - we can use the symmetry

of the Fisher information matrix. Finally, we compute the expected values (with
respect to y) of the partial derivatives
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E[ ∂
2

∂µ2 `(µ, σ
2; y)] = E[− n

σ2 ] = − n
σ2 ,

E[ ∂2

∂µσ2 `(µ, σ
2; y)] = E[−

∑n
i=1(yi−µ)

2σ4 ] = 0,

E[ ∂2

∂(σ2)2 `(µ, σ
2; y)] = E[ n

2σ4 − 2
∑n
i=1(yi−µ)2

2σ6 ] = − n
2σ4 ,

so the (unit) Fisher information matrix is

I(µ, σ2) =

[
1
σ2 0
0 1

2σ4

]
.

So, asymptotically, the error (variance) of the MLE estimator for µ is σ2

n and

for σ2 it is 2σ4

n . The former is already familiar to us, but it is worth noting that
the error for the mean does not depend on the value of the mean, just on the
variance (this is not true for all distributions). Furthermore, the errors for the
mean and the variance are not correlated.

Exercises

Exercise 16.1. Prove Proposition 16.3.1.

Exercise 16.2. Prove Proposition 16.3.2.

Exercise 16.3. Prove Proposition 16.3.3.

Exercise 16.4. Prove Corollary 16.3.1.

Exercise 16.5. Prove Proposition 16.3.4.
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Chapter 17

Null-hypothesis significance
testing

17.1 General framework

Hypothesis testing is a family of statistical inference methods that focus on
testing the truth (or falsehood) of a well-defined hypothesis. In this chapter we
will focus on the most popular framework of hypothesis testing - null-hypothesis
significance testing (NHST).

Formally, suppose we have a parametric model parametrized with θ (may be a
vector) and we want to test a well-defined hypothesis about where θ might lie
against an alternative hypothesis. That is, we partition the parameter space
into two disjoint sets H0 : θ ∈ Θ0 and H1 : θ ∈ Θ1.

H0 is called the null-hypothesis and H1 is called the alternative hypothesis. If the
null-hypothesis completely specifies the distribution (for example, Θ0 = {θ0}),
we call it a simple hypothesis, otherwise it is a composite hypothesis.

We proceed by defining a random variable X and a rejection region R, which is
a subset of the values of X. If X ∈ R, we reject the null-hypothesis, otherwise
we do not reject it (we retain it). This is a very general formulation of the
process. In most cases the random variable is a test statistics (a function of the
data that describes how extreme the sample is if the null-hypothesis were true)
and the rejection region is defined by a threshold - a critical value. If the sample
is extreme beyond the critical value, we reject the null-hypothesis.

The hypothesis testing process has 2 possible decisions, reject the null-hypothesis
or retain the null-hypothesis, and therefore 4 possible outcomes. The two de-
sirable ones are that we reject a false null-hypothesis and retain a true null-
hypothesis. The two errors are rejecting a true null-hypothesis (Type I error)
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or retaining a false null-hypothesis (Type II error).

Of course, the goal is to define a hypothesis test, such that the probability of
Type I or Type II error is minimal. These probabilities play a central role in
hypothesis testing and we proceed with a more formal definition.

Definition 17.1.1. The power function of a test with rejection region R is
defined as β(θ) , P (X ∈ R|θ).

This is an abstract definition, but for any well-defined test this will be a function
that maps parameter values to the probability of rejecting the null-hypothesis
if that parameter value is the true parameter value.

Now we can define the significance level of a test:

Definition 17.1.2. A test has significance level α if its size is less or equal to
α ≥ supθ∈Θ0

β(θ).

The quantity supθ∈Θ0
β(θ) is called the size of a test and represents the largest

probability of rejecting the null-hypothesis that is true.

In other words, a test having significance level α means that the probability of
Type I error is at most α.

In practice we typically determine the significance level that serves our purpose.
Ideally, we would then like to use a test that has the lowest Type II error (highest
power under the alternative-hypothesis) among all tests at that significance
level. In some cases, such most powerful tests are known, for example, the
likelihood-ratio test for simple hypotheses that we cover later in this chapter.
However, in most cases they are not or they do not exist, so we use one of the
widely used tests. Note that for a given test and data sample there is always
a trade-off - lower significance level reduces probability of Type I error but
increases the probability of Type II error (and vice-versa). The only way to
reduce both is to gather more data.

Example 17.1.1 (Z-test). Suppose we have a sample X1, ..., Xn from a normal
population with unknown mean µ and known variance σ2. And suppose we
want to test if the mean is at most a particular value H0 : µ ≤ µ0 against the
alternative that it is greater H1 : µ > µ0.

A popular test statistic in such cases is

Z =
X − µ0

σ/
√
n
,

where X is the sample average. Standardized deviation from the hypothesized
mean looks like a sensible test statistic - if the actual mean equals the true mean
the test statistic of the sample should be close to 0. The further it deviates, the
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less likely it is that the sample had been generated from a distribution with the
hypothesized mean.

We will reject the null-hypothesis if Z > zα (the standard score at level α), so
the power function is β(µ) = P (Z > zα). Under the null-hypothesis Z has a
standard normal distribution, but if µ is the true mean the distribution of Z
shifts by µ− µ0 (standardized), so:

β(µ) = P (Y +
X − µ0

σ/
√
n

> zα) = P (Y > zα −
µ− µ0

σ/
√
n

) = 1− Φ(zα −
µ− µ0

σ/
√
n

),

where Y ∼ N(0, 1) and Φ is the CDF of the standard normal.

Finally, we compute the size of the test. Observe that β(µ0) = α and that β(µ)
is an increasing function. Therefore, for all µ ≤ µ0 we have β(µ) ≤ α. So, the
test has significance level α. Note that this does not mean that the probability
of rejecting a true null-hypothesis is α! Because we have a composite hypothesis
we can only claim that the probability of rejecting a true null-hypothesis is at
most α (it could be less).

Rejecting the null-hypothesis is often referred to as finding a statistically signif-
icant result.

Statistical significance should not be confused with practical importance. The
former talks about something being true with some level of certainty while the
latter is concerned with the size of the effect and depends on the given context.
For example, if we gathered a random sample of babies, we would be able to
determine that there are statistically significantly more boys than girls (about
1.05 boys are born for every girl). This result is also an interesting fact about
humans and therefore of practical significance to science. However, it is probably
of no practical significance to manufacturers of newborn baby greeting cards -
they would probably still make the same amount of it’s a girl and it’s a boy
cards.
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Chapter 18

Parametric inference -
Bayesian

18.1 The Bayesian perspective

The differences between Bayesian statistics and the classical approaches to in-
ference are rooted in a fundamental difference in how probability is viewed. In
classical approaches we view probability as the property of random experiments.
In Bayesian statistics, however, we view probability as a tool for expressing un-
certainty.

Bayesian statisticians share the statistical modelling approach and use the same
models (that is, the same likelihoods p(y|θ)) but the above difference leads to a
fundamentally different treatment of a model’s parameters θ.

This difference can be illustrated by trying to answer this arguably very natural
question:Given this model p(y|θ) and some data y, what is the probability that
θ > 0.5?

In maximum likelihood inference, for example, we treated θ as an unknown
constant, the data on the other hand we treated as random variables, realizations
from the idealized random experiment that we are using to interpret the process
we are studying. Because θ is treated as a constant the above question is not
even allowed in the maximum likelihood inference framework (NHST is the
same)! MLE inference then proceeds in a different way - finding the parameter
value that maximizes the probability of the data. Furthermore, uncertainty is
quantified through the parameter estimator, which is a random variable, because
it is a function of the data, which are random.

In Bayesian statistics, on the other hand, we treat the parameter as a ran-
dom variable. Not necessarily because we would indeed think it is random, but
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because we don’t know what its value is and we choose to represent our un-
certainty with a random variable. The question p(θ > 0.5|y) now becomes a
legitimate question! What remains, of course, is to provide a means for com-
puting the answer. For that we turn to the cornerstone of Bayesian statistics,
Bayes’ theorem:

p(θ|y) =
p(y|θ)p(θ)
p(y)

=
p(y|θ)p(θ)∫
p(y|θ)p(θ)dθ

∝ p(y|θ)p(θ).

The theorem is already familiar to us as is one of the terms - the likelihood
p(y|θ). The likelihood is determined by our choice of model.

The distribution of the parameter after observing the data p(θ|y) is referred
to as the posterior distribution (density) or just the posterior. The posterior
completely describes the uncertainty associated with the parameters after seeing
the data and can be used to answer any probabilistic question regarding the
parameters.

To compute the posterior we require two more terms. The term p(y) only serves
the purpose of normalizing the posterior and is, as illustrated above, an integral
and difficult to compute. Because is is not a function of θ it does not affect the
shape of the posterior and we can use that fact to avoid ever having to compute
it.

Finally, p(θ) is known as the prior distribution (density) or just the prior. It is
the distribution of the parameter before we see the data - it represents our prior
uncertainty about where the parameter is. It is the quintessentially Bayesian
concept and root of all the advantages and issues with Bayesian statistics. It’s
makes sense that if we are to be uncertain after seeing the data, we must be
uncertain before seeing the data and that uncertainty has to be quantified in
order to compute the posterior uncertainty.

Definition 18.1.1 (Conjugate prior). If for some likelihood p(y|θ) the posterior
distribution p(θ|y) and the prior distribution p(θ) are in the same family, we
say that the prior is a conjugate prior for the likelihood.

Conjugate priors simplify computation and allow us to incrementally learn our
models, using the posterior from one iteration as the prior for the next iteration
of learning. Historically, conjugate priors were very important, because Bayesian
computation would otherwise be infeasible. However, many models that are
commonly used in practice do not have conjugate priors (in fact most), so we
have to rely on numerical methods to do Bayesian inference (see Chapter ??1)

Example 18.1.1 (Conjugate prior for the Bernoulli). We’ve already seen in
Chapter 14 that using a U(0, 1) prior for the parameter of the Bernoulli model

1The random number generation chapter is excluded for now.
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results in a Beta posterior. If we combine that with the fact that U(0, 1) is a
special case of beta - Beta(1, 1) - we should consider the possibility that Beta
might be conjugate for this likelihood.

Let’s compute the posterior for the likelihood yi|θ ∼iid Bernoulli(θ) with the
prior θ ∼ Beta(α, β):

Now we have the prior and the likelihood and we can compute the posterior
(k =

∑
yi, for brevity):

p(θ|y) =
p(y|θ)p(θ)
p(y)

∝ p(y|θ)p(θ) (proportional to)

=

((
n

k

)
θk(1− θ)n−k

)
1

B(α, β)
θα−1(1− θ)β−1 (insert densities)

∝ θk+α−1(1− θ)n−k+β−1 (remove constants)

We can see that the posterior is shaped like a Beta density and we can recognize
what the parameters are:

θ|y ∼ Beta(
∑

yi + α, n−
∑

yi + β).

Therefore, the Beta distribution is a conjugate prior for the Bernoulli likelihood!
We can check that for α = 1 and β = 1 we get the result for the U(0, 1) prior.
The prior also has a straightforward interpretation - α and β represent the
counts of 1s and 0s that our prior opinion is based on. And inference for this
Bernoulli-Beta model reduces to adding the newly observed 1s and 0s to the
prior counts.

In practice it might sometimes be infeasible or unnecessary to compute the
posterior. In such cases we might compute only the peak of the posterior,
which is also known as the MAP estimator:

Definition 18.1.2 (MAP estimator). The maximum a-posteriori (MAP) esti-
mator of the parameter θ is defined as

θ̂n , arg max
θ

p(θ|y).

Analogous to the MLE being the maximum of the likelihood the MAP is the
maximum of the posterior distribution. Note that the two can, under certain
conditions, be the same (left as an exercise). MAP estimation is also the first
step of trying to estimate the Bayesian posterior with a normal distribution.
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In large samples there is a strong relationship between frequentist and Bayesian
inference:

Theorem 18.1.1 (Bernstein-von Mises (informal)). Under certain regularity
conditions the Bayesian posterior in large samples is approximately normal with
mean approximately θMLE and covariance matrix approximately In(θ)−1.

In particular, this says that frequentist confidence intervals and Bayesian pos-
terior intervals will be approximately the same.

Exercises

Exercise 18.1. Derive the condition under which the MLE and MAP estimator
will be the same, assuming that both estimators exist.
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Computational methods
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Chapter 19

Monte Carlo method

19.1 Monte Carlo integration

Computing integrals of the form

I =

∫
Ω

f(x)dx,

where f is a real-valued function on Ω ⊆ Rk is a common computational problem
in many areas, including statistics. In particular Bayesian statistics, where we
rely heavily on being able to integrate the posterior distribution of parameters
of our statistical model.

The main idea of Monte Carlo integration is to approximate the above integral
using random sampling:

I =

∫
Ω

f(x)dx =

∫
Ω

f(x)

p(x)
p(x)dx = E[

f(x)

p(x)
],

where p(x) is a PDF such that p(x) > 0 whenever f(x) 6= 0. That is, we have
introduced a random variable X on Ω, such that the integral can be expressed

as an expectation of the ratio f(x)
p(x) over that random variable.

By the law of large numbers we have

xn =
1

n

n∑
i=1

f(Xi)

p(Xi)

a.s.−−→ E[
f(x)

p(x)
] = I,

which leads to the conclusion that we can estimate I by generating independent

samples from X. Additionally, if Var[ f(x)
p(x) ] < ∞, then we know, by the CLT,
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that, for n of reasonable size, the error of our Monte Carlo approximation will
be approximately

σMC ≈

√
Var[ f(x)

p(x) ]
√
n

=
SD[ f(x)

p(x) ]
√
n

.

Monte Carlo approximation error therefore decreases with the root of the num-
ber of samples we draw. While we can make it arbitrarily close to 0 by drawing
enough samples, this rate of convergence O(n−

1
2 ) is very poor compared to even

the most simple quadrature methods, which converge O(n−3).

However, the main advantage of Monte Carlo integration is that this rate of
convergence is independent of the dimension of the integral! None of the steps
we took rely on f being a single variable function or X a univariate random
variable. So, unlike quadrature methods, Monte Carlo integration scales to high-
dimensional integration. In fact, when dealing with high-dimensional integra-
tion, Monte Carlo methods are in most cases the only option. Other advantages
of Monte Carlo integration are its simplicity and wide applicability.

If f is defined on a bounded subset, for example, without loss of generality,
Ω = [0, 1]k, we can always use the uniform distribution on Ω (the uniform
PDF/PMF is positive everywhere and therefore satisfies the condition that
p(x) > 0 whenever f(x) 6= 0). Then Monte Carlo integration simplifies to

I =

∫
[0,1]k

f(x)dx = E[f(x)].

Note that Monte Carlo integration can also be used when Ω is countable or
countable in some dimensions and uncountable in others, as long as we can
define a suitable random variable.

19.2 Generating random numbers

Monte Carlo methods are an excellent tool but to apply them, we have to
be able to sample from the desired distribution. Random number generation
is a very broad and rich field. In this chapter we will only review the most
basic approaches and refer the interested reader to other sources. Chapter
20, however, is dedicated to Markov Chain Monte Carlo, a family of Monte
Carlo methods that are indispensable to modern Bayesian statistics and machine
learning.

The key component of random number generators (RNGs) is the uniform RNG.
The uniform RNGs that we find in modern programming languages and software
are linear congruential RNGs. They generate deterministic (pseudo-random)
sequences of numbers and are often referred to as pseudo-random to emphasize
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this fact. For most practical tasks, however, sequences of numbers generated
by pseudo-RNGs are statistically indistinguishable from true random sequences
and their period is long enough so it is practically impossible to consume the
entire sequence. Pseudo-RNGs also require a seed - a starting point in the
deterministic sequence. Manually setting the seed aids in the repeatability and
reproducibility of analyses and algorithms with random components.

Random variates from other distributions are then generated using a uniform
RNG and applying transformation, rejection or weighting. In the remainder of
the chapter we describe representatives of these approaches.

Inverse transformation method

The inverse transformation method is a very simple and effective approach to
generating random variates from a target distribution for which we can evaluate
the quantile function (inverse of the CDF).

Proposition 19.2.1 (Inverse transformation). Let U ∼ Unif(0, 1) and let F be
a CDF. Then, Q(U) has the CDF F .

Proof. Let X = Q(U). FX(x) = P (X ≤ x) = P (Q(U) ≤ x) = P (U ≤ F (x)) =
F (x). �

This leads to the following algorithm.

Algorithm 19.2.1. Let Q be the generalized inverse of our target distribution.
Then, the following algorithm returns m independent samples from our target
distribution:

1: procedure Inverse-Sampling(Q,m)
2: for i← 1 : m do . for each sample
3: sample u from Unif(0, 1)
4: xi ← Q(u)
5: end for
6: return x
7: end procedure

Rejection sampling

Sometimes no closed-form transformation exists that would transform samples
from the proposal distribution that we can easily sample from to the target
distribution that we are interested in. One common approach in such situa-
tions is to sample from the proposal distribution and then reject samples that
are less probable under the target distribution. Before we introduce the basic
acceptance-rejection sampling algorithm, we motivate it with an example.

TODO !!!!
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The example above illustrates a very important idea that sampling from a dis-
tribution is equivalent to sampling uniformly from the area or volume under the
PMF/PDF of that distribution. If the area is complicated, we can instead en-
velop it with an area that is easier to sample from uniformly and reject samples
that fall outside the area of the target distribution. While generating random
samples from a distribution requires a complete understanding of its PMF/PDF,
checking if a sample falls in the area typically only requires us to evaluate the
PMF/PDF at a point. This is the main idea of rejection sampling methods.

Algorithm 19.2.2. Let g be our proposal density. Let f be a function such
that f(x) = Cp(x) for some C > 0 and all x.1 And let M be a positive constant
such that f(x) ≤ Mg(x), for all x. Then, the following algorithm returns m
independent samples from density p:

1: procedure Rejection-Sampling(f, g,M,m)
2: for i← 1 : m do . for each sample
3: repeat . repeat until accepted
4: sample y from g
5: sample u from Unif(0, 1)

6: until u ≤ f(y)
Mg(y)

7: xi ← y
8: end for
9: return x

10: end procedure

Proof that rejection sampling works. The samples produced by the algorithm
are independent and identically distributed. Let h be their density. We have

h(y) = P (Y = y ∩ accept Y ) = g(y)P (accept Y |Y = y) = g(y) f(y)
Mg(y) ∝ f(y) ∝

p(y).

Furthermore, we can show the unconditional acceptance probability.

P (accept Y ) = P

(
U ≤ f(Y )

Mg(Y )

)
=

∫
P

(
U ≤ f(Y )

Mg(Y )
|Y = y

)
g(y)dy

=

∫
f(y)

Mg(y)
g(y)dy =

C

M
.

Therefore, the number of samples required to accept one sample follows a Ge-
ometric distribution with p = C

M and mean M
C . This shows that the efficiency

of rejection sampling depends on how tightly Mg(y) envelops f(y). In the ideal
case of Mg(y) = f(y), we have P (accept Y ) = 1, so we require just one sample
to generate a sample from f (and therefore p). �

1Note that we may have f = p as a special case. However, with this more general formu-
lation we can show that it it sufficient to know p only up to a normalization constant. This is
very convenient when the normalization constant is difficult to compute, as is the case with
most Bayesian posteriors.
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The efficiency of the above rejection sampling algorithm is proportional to how
well the envelope fits the target density. In higher dimensions it becomes difficult
to find a tight-fitting envelope, so this algorithm is not suitable for multivariate
distributions.

Importance sampling

Suppose we want to approximate the following integral via Monte Carlo inte-
gration

I =

∫
Ω

f(x)p(x)dx = Ep[f(x)],

however, we are unable to efficiently sample from p(x).

Rejection methods compensate for drawing samples from the proposal distribu-
tion instead of the target distribution by rejecting some of the samples. Weight-
ing methods achieve the same by weighting the samples from the proposal dis-
tribution.

Importance sampling, the main representative of this idea, generalizes Monte
Carlo integration by introducing a proposal distribution g which we do know
how to efficiently sample from. Then,

I =

∫
Ω

f(x)p(x)dx =

∫
Ω

f(x)p(x)

g(x)
g(x)dx = Eg[

f(x)p(x)

g(x)
].

The importance sampling estimator of I is then

xn =
1

n

n∑
i=1

f(Xi)p(Xi)

g(Xi)
.

How do we choose g? Of course, g needs to be easy to sample from and g(x) > 0
whenever f(x)p(x) 6= 0 (from Monte Carlo integration). The following proposi-
tion sheds some light on what the shape of g should be.

Proposition 19.2.2. The proposal distribution g that minimizes the variance
of the importance sampling estimator V ar[xn] is

g∗(x) =
|f(x)|p(x)∫
|f(t)|p(t)dt

.

Proof. The variance of the estimator is

Var[
f(X)p(X)

g(X)
] = Eg[(

f(X)p(X)

g(X)
)2]− (Eg[

f(X)p(X)

g(X)
])2.
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The second term in the expression above is the integral we are approximating
squared and is therefore independent of choice of g. To minimize the variance,
we need to chose a g that minimizes the first term. Using Jensen’s inequality,
we have

Eg

[
(
f(X)p(X)

g(X)
)2

]
≥ Eg

[
|f(X)|p(X)

g(X)

]2

=

(∫
|f(x)|p(x)dx

)2

,

which gives us a lower bound on the variance that is independent of choice of
g. If we plug the supposed optimal g∗ into the above, we can see that it attains
the lower bound. That is, no other choice of g can have lower variance, so g∗ is
indeed optimal.

�

This proposition is not directly useful. If we could sample from this optimal
density, then we could probably sample from p as well. However, it does suggest
that the shape of g should closely match the shape of |f(x)|p(x).

Another thing we need to be careful is that some choices of g can lead to the
estimator having infinite variance. The second moment is (see proof above)∫ f(x)2p(x)2

g(x) dx. If f has thinner tails than g, this might be infinite. Typically,

we want to choose g with thicker tails than p.

Finally, this corollary reveals an important fact about the efficiency of impor-
tance sampling:

Corollary 19.2.1. Let g be the optimal proposal distribution. Then,

Var[Xn] ≤ Varf [
1

n

n∑
i=1

f(Xi)].

Proof.

Varf [f(X)] = Ef [f(X)2]− I2 ≥ Ef [|f(X)|]2 − I2 =

(∫
|f(x)|p(x)dx

)2

− I2

= Var[
f(x)p(x)

goptim(x)
].

�

That is, importance sampling can be more efficient than sampling from the
target distribution. Why? Areas that contribute the most to the integral are
areas which are both probable and where f is large absolutely. The optimal
proposal distribution puts more emphasis on those areas.



Chapter 20

Markov Chain Monte Carlo

20.1 Metropolis-Hastings

We will focus on the continuous state space S = Rn and target density p(x)
which we want to sample from. The main idea of the Metropolis-Hastings
algorithm is to start with some Markov chain with transition function k(x, y)
and then modify it so that it will satisfy detailed balance with p thus making p
the stationary distribution of the modified Markov chain.

We will assume k(x, y) corresponds to an aperiodic and irreducible Markov chain
on S, but no more. If p is not already the stationary distribution of the Markov
chain defined by k, then there must be a pair of states x and y where detailed
balance is not satisfied. Without loss of generality, let’s assume that for those
x and y we have

p(x)k(x, y) > p(y)k(y, x).

We want these to be in balance. The target density p(x) can not be changed,
because the goal is to sample from that density. What remains is to modify the
transition function. There are two ways of looking at this - either we have too
many transitions from x to y or too few transitions from y to y for the two sides
to be equal.

It is much easier to reject transitions than to add transitions in a smart way,
so we opt for the former. That is, we will reject transitions from x to y with
probability α(x, y) such that

p(x)k(x, y)α(x, y) = p(y)k(y, x).

161
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We have not defined α, but both sides are non-negative, so there definitely exists
a factor between 0 and 1, which balances the two sides:

α(x, y) =
p(y)k(y, x)

p(x)k(x, y)
.

So, every time we will propose a transition from x to y, we will only accept the
transition with probability α(x, y), which can be computed from the original
transition function k and target density p. But to be completely general, we also
have to consider the case where the two states are imbalanced so that we have too
few transitions from x to y. In such cases we have p(y)k(y, x) > p(x)k(x, y) and
α(x, y) > 1. This leads to the final form of the Metropolis-Hastings correction:

α(x, y) = min

{
1,
p(y)k(y, x)

p(x)k(x, y)

}
.

If k is symmetric, this reduces to

α(x, y) = min

{
1,
p(y)

p(x)

}
,

which is the original Metropolis correction.

Observe that in order to compute the Metropolis-Hastings correction, we need

only to evaluate the ratio p(y)
p(x) . That is, it is sufficient if we can evaluate p only

up to a multiplicative constant.

Algorithm 20.1.1. Let f(x) ∝ p(x) a function that is proportional to our target
density (trivially, it can be the actual target density), k a transition function,
x0 ∈ S a starting state, and m the number of samples that we want to draw.
The following algorithm returns m (possibly dependent) samples from p:

1: procedure Metropolis-Hastings(f , k, m, x0)
2: for i← 1 : m do . number of samples
3: sample candidate state x∗ ∼ k(xi−1, x

∗)

4: α← min
{

1, p(x∗)k(x∗,xi−1)
p(xi−1)k(xi−1,x∗)

}
5: sample u ∼ U(0, 1)
6: if u ≤ α then
7: xi ← x∗ . accept transition
8: else
9: xi ← xi−1 . transitions to self do not spoil detailed balance

10: end if
11: end for
12: return x1, ..., xm.
13: end procedure
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It is clear that the Metropolis-Hastings algorithm also results in a Markov-Chain
- the distribution of the next state depends only on the current state.

The choice of the transition function k (also known as the proposal or candidate
distribution) is not easy. At a minimum, it must be such that the Markov
chain is aperiodic and irreducible. The former is trivial, as we are guaranteed
aperiodicity if we have a non-zero probability of transitioning to the same state.
Irreducibility is typically also not a practical problem with continuous state
spaces.

In general, we would like our k to be such that the autocovariance of the chain is
as low as possible, resulting in an efficient sampler. For example, k(·, x) ≈ p(x).
However, in practice, we do not understand p well enough - if we did, we would
sample from it directly. Instead, we use some local proposal distribution, such
as a normal distribution centered on the current state to propose the next state.
This leads to a trade-off. If the proposal distribution is too broad, we will
propose states far away which are likely to have low p(x) and will be rejected
most of the time, resulting in a very autocorrelated chain. On the other hand,
if the proposal distribution is too narrow, we will propose states that are close
(have similar p(x)) and will be accepted with high probability, however, the
moves will be very short, again resulting in a very autocorrelated chain. The
main challenge is to construct a MCMC algorithm that proposes states that are
far away but still likely to be accepted - this is addressed by some of the more
advanced MCMC algorithms, such as Hamiltonian Monte Carlo (HMC), which
is the basis for modern inference software.

20.2 Practicalities of MCMC

Estimating the variance of MCMC estimates

Naively estimating lag-k autocovariances with empirical covariances is compu-
tationally intensive and will not lead to a consistent estimator - a re-weighting
is required. For further details and a discussion of the most common approaches
to estimating variance see (Geyer, 1992, Section 3).

How many MCMC samples to take?

A longer chain is always preferred to a shorter chain for several reasons. First,
if we have chosen a poor starting value (a value that is not really typical in
our target distribution; that is, a value that has low probability/density), a
longer chain is more likely to move into the typical set and deflate the impact
of the atypical starting values. Second, a longer chain is more likely to reveal
problematic behavior (see Section 20.2). And third, every additional sample
reduces our MCMC approximation error.

We can gather from the above that the chain should always we as long as our
time and resource constraints permit. Or at least as long as necessary to reduce
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the MCMC approximation error to less than the precision at which we want to
interpret the quantities of interest. As a rule of thumb, ESS (see Section 20.2)
of the order of 100 are good enough for means but ESS of the order of 10000
are required for more extreme quantities such as 95% intervals.

Two techniques are often used when dealing with MCMC samples - thinning and
burn-in. Thinning is discarding some of the MCMC samples, typically keeping
only samples at multiples of some integer, for example, every second or every
fifth sample. In terms of the quality of our estimates this is strictly worse than
keeping all the samples, however, it might sometimes be useful when we have
memory constraints and a highly autocorrelated chain. Thinning will result
in a shorter but less autororrelated chain where the information lost might be
negligible relative to the gain in memory used.

Burn-in is the process of discarding some number of samples from the start of
our chain. The motivation behind this is to deal with the effects of a poorly
chosen starting value. If our starting value is far from the typical values in the
distribution and our chain is not long enough, this value and possibly several
subsequent samples, until we get to the typical set of the distribution, will skew
our estimates. Therefore, we will benefit from discarding them. However, this is
just an elaborate approach to choosing the starting value as effectively that is all
we do at the expense of the number of samples that we discard. If our starting
value is chosen sensibly, burn-in will not be necessary. Note that burn-in should
not be confused with warmup phases that many MCMC samplers have to tune
their proposal distributions and other MCMC parameters. Warmup samples
have to be discarded because they are not from the same Markov Chain.

How many MCMC chains to run?

In terms of the quality of our MCMC samples a long chain of length nm is
always at least as good if not better than n chains of shorter length m. That
is, it is better to have one chain of length 1000 than 5 chains of length 200. For
example, it is possible than none of the shorter chains even reached the typical
set. There is a benefit to running multiple independent chains from different
starting values - if everything is OK, all the chains should behave the same so
any differences help us diagnose slow mixing, multiple modes, etc. (see Section
20.2).

Note that with the availability of multiple cores or processors it is now easy to
run m independent chains of length n in approximately the same time we would
need to run a single chain of length n. This is of course strictly better than
having a single chain of length n as we get the MCMC diagnostics benefits of
multiple chains and m times as many samples.

MCMC diagnostics

Before we proceed with interpreting any quantities that are the result of MCMC,
we should also diagnose if our samples exhibit any problematic behavior that
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could invalidate any results. Theory informs us that problematic behavior can
arise due to reducibility, periodicity, and strong autocorrelation. In practice we
can add to that a poor choice of starting value that requires us to take many
steps before we reach the typical set.

Before we introduce the most common MCMC diagnostics techniques note that
we rarely diagnose the MCMC samples as the multivariate samples they are.
Instead, we focus on the univariate (marginal) distributions of individual di-
mensions or scalar functions of dimensions. In the context of statistical models,
we focus on one parameter at a time.

If we have a reducible chain, we will have multiple modes in sampling, depending
on where we start. Unless we know what values of the parameter we can expect,
it is impossible to diagnose multiple modes with a single chain as the single mode
of a multi-modal chain is indistinguishable from a uni-modal chain. However,
running multiple independent chains from different starting values will identify
this issue. Often, a simple inspection of a joint traceplot of several chains is
enough to identify multiple modes. Note that a traceplot is just a line plot of
the values of the parameter against the sampling iteration. That is, we observe
how the sample values change over time.

Running multiple chains can also help us identify other issues. If everything is
OK with our chains and they indeed sample from the same target distribution
and indeed the autocorrelation is low enough so that with our samples we have
converged to the target distribution, then the chains in terms of their global
behavior should be indistinguishable from each other. A traceplot can therefore
help us identify not only multiple modes but also when at least some of the
chains have not (yet) exhibit correct limiting behavior. This notion can also be
quantified. The most common such diagnostic is the R̂ (R-hat) diagnostic, also
referred to as the Gelman-Rubin diagnostic. It has many variants, but the basic
principle is that we compare, for a parameter, the between-chain variability with
the average of the within-chain variabilities. If the chains are indeed samples
from the same target distribution, then each chain should be very similar to all
chains combined and the ratio of the between-chain and within-chain variability
will be close to 1. If they are not similar, then the between-chain variability will
be greater than 1 and an indication that something is not OK. Of course, we
need a large enough sample to get a good estimate of these variabilities.

Periodicity does not require much attention, because in practice our MCMC
sampler will always have some nonzero probability of remaining in the current
state and therefore cannot be periodic.

We have already briefly discussed poorly chosen starting values in Section 20.2.
We can identify if a starting value is far from the typical set of values by in-
specting the traceplots. If we did pick our starting values poorly and the total
number of samples is not large enough to deflate the influence of the samples
at beginning of the chain, we can consider discarding these burn-in samples to
improve our estimates.
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The CLT for Markov Chains informs us that approximation error depends not
only on the variance of the samples but also on their covariance/correlation
and that strong (positive) autocorrelation will result in high approximation er-
ror. Assuming that there are no serious issues with our chain, such as multiple
modes or a very poorly chosen starting value, we can in practice estimate the
covariances reasonably well (see Section 20.2). This allows us to estimate the
MCMC approximation error for any quantity of interest and whenever we inter-
pret any such value, we should always interpret it in the context of its MCMC
approximation error.

An often used single-number summary of the quality of a MCMC sample for
some parameter θ is the Effective Sample Size (ESS):

ESSθ = m
σ2

MC

σ2
MCMC

,

where m is the number of samples and σ2
MC and σ2

MCMC are the MC variance and
MCMC variance, respectively. Note that the MCMC variance is just the MC
variance plus all the covariances. If we have little autocorrelation, then MC and
MCMC variance will be similar and ESS will be similar to the actual number of
samples. That is, the effectiveness of our chain is similar to the effectiveness of m
independent samples from the target distribution. In practice, autocorrelation
will be positive and ESS will be less than the number of samples.

Once we have determined that we have very strong autocorrelation, we need to
adjust (increase) the number of samples we take, so that we get an acceptable
approximation error. If computation is very expensive and/or autocorrelation is
very strong, the number of samples required might be infeasible. In such cases
we have to change our sampler or simplify the problem.ite

To summarize, all these diagnostics tools help us identify relatively obvious
issues with our MCMC chains. However, the absence of any issues does not
confirm that the chain is OK. That is, these diagnostics can reveal when some-
thing is wrong but are not proof that everything is OK.

20.3 Hamiltonian Monte Carlo

In this section we will provide a short introduction to Hamiltonian Monte Carlo
(HMC). For a more detailed treatment of this topic, we refer the reader to the
tutorials by Neal (2011) and Betancourt (2017).

HMC is currently the state-of-the-art MCMC method for general-purpose Bayesian
inference and an essential part of statistics and machine learning frameworks
such as Stan, PyMC3, Tensorflow, and Pyro.

HMC deals with the relatively inefficient exploration of the target distribution
and poor scaling to higher dimensions of random walk Metropolis-Hastings and
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its variants. This is achieved by a physics-inspired approach to proposing the
next state and by utilizing the gradient of the target distribution for a better
understanding of its geometry.

Hamiltonian dynamics

Before we introduce the basic ideas of HMC, we will briefly discuss Hamiltonian
dynamics, which are fundamental to understanding HMC and give it its name.

In general, Hamiltonian dynamics consists of a d−dimensional position vector
q and a d−dimensional momentum vector p. The evolution of the system is
determined by the function H(q, p) (the Hamiltonian) and the equations:

dqi
dt

=
∂H

∂pi
,

dpi
dt

= −∂H
∂qi

.

For HMC the Hamiltonian H is typically chosen so that it is separable. That
is, that it can be written as H(q, p) = U(q) +K(p), where U(q) is the potential
energy and K(p) the kinetic energy of the system.

Simulating Hamiltonian dynamics

To simulate Hamiltonian dynamics with a computer, we need to discretize time
with some step size ε. We will introduce the most commonly used approach
- the Leapfrog method. For a more detailed discussion of this topic, see Neal
(2011).

The Leapfrog method involves doing a half-step update of momentum, a full
step update of position, completed by another half-step update of momentum:

pi(t+
ε

2
) = pi(t)−

ε

2

∂U

∂qi
(q(t)),

qi(t+ ε) = qi(t) + ε
∂K

∂pi
(p(t+

ε

2
)),

pi(t+ ε) = pi(t+
ε

2
)− ε

2

∂U

∂qi
(q(t+ ε)).

Most often the kinetic energy is taken to be of the form K(p) = 1
2p
TM−1p,

where M (the mass matrix) is diagonal, with elements m1, ...,md. In that case

the kinetic energy simplifies to K(p) =
∑d
i=1

p2i
2mi

and the second row of the
Leapfrog method simplifies to
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qi(t+ ε) = qi(t) + ε
p(t+ ε

2 )

mi
.

Note that when we simulate the dynamics for several steps, we can combine the
last half-step of an iteration with the first half-step of the previous iteration.
The result is a half-step update for momentum, followed by several pairs of
full-step updates for position and momentum and finally a half-step update for
momentum.

Properties of Hamiltonian dynamics

Hamiltonian dynamics have several properties, which are important for HMC
to work (see Neal (2011) for details):

� They preserve the value of the Hamiltonian. That is, the total energy of
the system remains constant. This is key for HMCs ability to propose
states that are far away but with a high probability of being accepted.

� They are reversible. That is, running the dynamics from a state for some
time s has an inverse. For the separable Hamiltonian and kinetic en-
ergy such that K(p) = K(−p) (holds for the most typical choice K(p) =
1
2p
TM−1p), the inverse dynamics are obtained by negating the momen-

tum, running the dynamics for the same number of steps and negating the
momentum again.

� They are symplectic and, as a consequence, volume preserving. These,
together with reversibility, are key for proving that HMC leaves the target
distribution invariant.

The HMC algorithm

The main idea of HMC is to introduce the distribution we want to sample from
as the potential energy of the Hamiltonian dynamics. First, let’s introduce the
joint density of position and momentum, which is determined by the value of the
Hamiltonian (the second equality is assuming that the Hamiltonian is separable,
as is most often the choice with HMC):

p(q, p) ∝ e−H(q,p) = e−U(q)e−K(p)

Now we take U(q) = − log f(q), where f is proportional to the distribution we
want to sample from, and use the most typical kinetic energy:

p(q, p) ∝ f(q)e−
1
2p
TM−1p.

The resulting joint distribution p(q, p) can be seen as the target distribution
over the position vector q augmented by an independent multivariate Gaussian
for the momentum vector p, with mean 0 and covariance M .
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Hamiltonian dynamics conserves the Hamiltonian, so all states on a trajectory
will have the same density p(·, ·). That makes Hamiltonian dynamics very suit-
able for proposing the next state in a MCMC algorithm, because a trajectory
can propose a state very far away in position q from the current state, but still
with acceptance probability 1.

Starting at some state (q, p), selecting the next state by running a trajectory
for L steps and step size ε from the current state, and repeating that process,
will only be able to produce states on a part of the density p. All (infinitely
many) other states in (q, p) won’t be visited (the chain is not irreducible), so the
stationary distribution of such a Markov chain will not be the desired p(q, p).
To reach every possible state, we instead sample a new momentum from the
multivariate Gaussian implied by our choice of mass matrix. Because the kinetic
and potential energy parts of the joint density are independent and we are
sampling from the actual distribution of momentum p, this sampling leaves the
target distribution invariant. That is, p(q, p) remains the stationary distribution
of the Markov chain.

In practice, however, the Leapfrog method, while being a stable simulation of
Hamiltonian dynamics, will not conserve the Hamiltonian exactly - there will
be relatively small fluctuations. That is why we still have to apply a Metropolis
correction when considering the proposed state.

Putting it all together, we get the basic HMC algorithm:

Algorithm 20.3.1. Let f(x) a function that is proportional to our target den-
sity, q0 ∈ Rd the starting value, ε > 0 a step size, L the number of steps, M a
diagonal mass matrix with diagonal elements mi, and m the number of samples
that we want to draw. Note that H(q, p) = − log f(x) + 1

2p
TM−1p.

1: procedure HMC(f , q0, ε, L, m)
2: for i← 1 : m do . number of samples
3: p ∼ N(0,M) . sample new momentum
4: get (q∗, p∗) by running L Leapfrog steps with step size ε from (qi−1, p)

5: α← min
{

1, e
−H(q∗,p∗)

e−H(qi−1,p)
= e−H(q∗,p∗)+H(qi−1,p)

}
. Metropolis corr.

6: sample u ∼ U(0, 1)
7: if u ≤ α then
8: qi ← q∗ . accept transition
9: else

10: qi ← qi−1

11: end if
12: end for
13: return q1, ..., qm.
14: end procedure
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Practicalities of HMC

First, note that HMC only works for continuous (differentiable) distributions.
There is currently no generalization to discrete parameters that is stable and
efficient enough for general purpose use. The most common approach to dealing
with discrete parameters is to marginalize over them or to use a more specific
algorithm.

The basic HMC algorithm is relatively simple to implement. Most of the com-
plexity of a flexible general-purpose practical implementation is not in HMC
itself but in the tuning of HMC parameters and the computation of the gradi-
ents. The latter is typically done using auto-differentiation. Popular tools like
Stan, Pyro, and Tensorflow are all equipped with a mathematics library which
fully supports auto-differentiation.

In order to use HMC, we have to determine step size, number of steps, and the
mass matrix M . HMC is very sensitive to the values of these parameters. If
the step size is too small, the exploration will be too slow, if it is too large,
the simulation of Hamiltonian dynamics will be inaccurate. If the number of
steps is too small, the trajectories will be too short and HMC will resemble
random walk Metropolis Hastings. But if it is too large, we will be doing a lot
of unnecessary computation and potentially returning close to the origin of the
trajectory. Finally, if the inverse of the mass matrix is a poor estimate of the
scale/covariance in the target distribution, lower step sizes will be required to
maintain stability. In general purpose tools HMC parameters are tuned during
a warmup phase1.

HMC also allows some additional diagnostics to complement the usual MCMC
diagnostics like the traceplot, ESS, and observing the agreement of multiple
independent chains. The most commonly used is the number of divergent tran-
sitions (trajectories) - more

1For an example, this is how tuning is done in Stan: https://mc-stan.org/docs/2_29/

reference-manual/hmc-algorithm-parameters.html
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Appendix A

Mathematics refresher

A.1 Set theory

Definition A.1.1. (Informal definition of a set) A set is an unordered collection
of distinct objects. Note that a set is also an object, so we can have sets of sets.

We can define a set by enumerating all of its elements, for example, A =
{1, 3, 7, 8}, or by stating the property that the set’s elements must satisfy, for
example, {x | x ∈ N ∧ x is even}.

Definition A.1.2. (Set membership) If object x is in set A, we say that x is
an element of A and write x ∈ A. If x is not an element of A, we write x /∈ A.

Definition A.1.3. (Empty set) An empty set is a set that contains no objects.
We write it as {} or ∅.

Definition A.1.4. We say that two sets A and B are equal if they have exactly
the same elements. We write A = B.

Definition A.1.5. (Cardinality) The cardinality of a set A is the number of
its elements. We write the cardinality of set A as |A|.

Definition A.1.6. (Intersection) The intersection of two sets A and B is a set
of all objects that are elements of A and elements of B:

A ∩B = {x | x ∈ A ∧ x ∈ B}.

If A ∩B = ∅, we say that A and B are disjoint.

Definition A.1.7. (Union) The union of two sets A and B is a set of all objects
that are elements of A or elements of B:

A ∪B = {x | x ∈ A ∨ x ∈ B}.
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Definition A.1.8. (Difference) The difference of two sets A and B is a set of
all objects that are elements of A and not elements of B:

A \B , {x | x ∈ A ∧ x /∈ B}.

Definition A.1.9. (Universal set) The universal set is the set of all objects (in
the given context). We often write it as U .

Definition A.1.10. (Complement) The complement of a set Ac is the set of
all objects not in A:

Ac , {x | x ∈ U ∧ x /∈ A}.

Definition A.1.11. (Subset) For two sets A and B we say that A is a subset
of B (or A ⊆ B) if every element of A is also an element of B.

If A ⊆ B and A 6= B, we say A is a proper subset of B and write A ⊂ B.

Definition A.1.12. (Power set) The power set P(A) of set A is defined as the
set of all subsets of A:

P(A) , {x | x is a subset of A}.

We also use 2A to denote the power set.

Some useful properties of sets:

Proposition A.1.1. Let A, B and C be sets.

(a) A ∪ ∅ = A and A ∩ ∅ = ∅.

(b) A ∪ U = U and A ∩ U = A.

(c) A ∩A = A and A ∪A = A.

(d) A ∪B = B ∪A and A ∩B = B ∩A. (commutativity)

(e) (A∪B)∪C = A∪ (B ∪C) and (A∩B)∩C = A∩ (B ∩C). (associativity)

(f) A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) and A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).
(distributivity)

(g) (A ∪B)c = Ac ∩Bc and (A ∩B)c = Ac ∪Bc. (De Morgan’s laws)

Definition A.1.13. (Cartesian product) The Cartesian product of sets A and
B is defined as the set of all possible pairs of elements:

A×B = {(x, y) | x ∈ A ∧ y ∈ B}.
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A.2 Real analysis

In this text we are primarily interested in the set of real numbers R, its subsets
(naturals, integers and rationals), and Euclidean space Rn.

Functions

Definition A.2.1. A function f from set X to set Y is a collection of ordered
pairs (x, y), x ∈ X, y ∈ Y , such that every element of X appears exactly once.

Typically, we use the notation f(x) = y to indicate that the pair (x, y) is in
the collection. We refer to y as the image of x under f . Conversely, x is the
preimage of y under the function.

The shorthand for f being a function from X to Y is f : X −→ Y . X and Y
are the domain and codomain of the function.

Definition A.2.2. Let f : X −→ Y . If every element of Y is paired with at
least one element of X, we say that the function f is surjective (onto). If no two
elements of X is paired with the same element of Y , we say that the function
f is injective (one-to-one). If a function is both surjective and injective, we call
it a bijective function or bijection.

Cardinality

Cardinality of finite sets can be established and compared by counting the num-
ber of elements in the sets. However, to support infinite sets, we need to extend
the definition of cardinality:

Definition A.2.3. Sets A and B have the same cardinality if there exists a
bijective function between A and B.

If there exists an injective function from A to B, but not a bijective function
from A to B, then set B has strictly higher cardinality than set A.

There are different degrees of infinity. In particular, we distinguish between sets
that are infinite but enumerable (countable), such as the set of natural numbers
N, and sets that have strictly higher cardinality than N.

Definition A.2.4. (Countably infinite) Set A is countably infinite if it has the
same cardinality as N.

Proposition A.2.1. Natural numbers (N), integers (Z) and rationals (Q) are
countably infinite.

Definition A.2.5. (Countability) A set is countable if it is finite or countably
infinite. Otherwise, it is uncountable.

Proposition A.2.2. Reals (R) and power sets of countable sets are uncount-
able.

Proposition A.2.3. A countable union of countable sets is countable.
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A.3 Homogeneous relations

Definition A.3.1. A homogeneous relation R (sometimes binary relation and
henceforth just relation) on a set A is a subset of the Cartesian product of
A: R ⊆ A × A. If elements x, y ∈ A are related under relation R (that is, if
(a, b) ∈ R), we write x ∼ y.

In words, a relation says which pairs of elements are related and which are not.

A relation may or may not have certain properties that are relevant for classi-
fying relations:

Proposition A.3.1. A relation R on A is said to be:

(a) Reflexive: if x ∼ x, for all x ∈ A.

(b) Symmetric: if x ∼ y ⇐⇒ y ∼ x.

(c) Antisymmetric: x ∼ y ∧ y ∼ x =⇒ x = y.

(d) Transitive: x ∼ y ∧ y ∼ z =⇒ x ∼ z.

Definition 20.3.2. (Equivalence relation) A relation is called an equivalence
relation if it is reflexive, symmetric and transitive.

Proposition 20.3.2. (Equivalence classes) An equivalence relation on A par-
titions the set A in such a way that all elements in a subset are related and no
two elements from different subsets are related. We refer to these subsets as
equivalence classes.

An example of an equivalence relation is ’=’ (equals) on, for example, N. Clearly,
it is reflexive (a = a), symmetric (if a = b then b = a) and transitive (if a = b
and b = c then a = c). This relation partitions the natural numbers - every
natural number is its own equivalence class.

Another example is ’≤’, which is a reflexive, transitive, and antisymmetric (a ≤ b
and b ≤ a implies a = b) relation on N. Relations with these three properties
determine a partial or total ordering on the set. The ’⊆’ relation also has these
three properties and it is a partial ordering on the set.
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