1. The system of equations

$$
\begin{aligned}
& x-y+z-w=1 \\
& x+y-z-w=3
\end{aligned}
$$

determines a two-dimensional plane in \mathbb{R}^{4}. Let $T(0,-1,-1,2)$. Our objective is to find the point on the plane which is closest to T.
(a) Write the matrix A and the right-hand side \mathbf{b} of the system above.
(b) Evaluate A^{+}. (This is simple since A has full rank).
(c) Show that $P=I-A^{+} A$ is an orthogonal projection, meaning that $P^{2}=P$ and $P^{\top}=P$. Onto which subspace does it project?
(d) Express and compute the solution using A^{+}.
(e) Write the function $\mathrm{pT}=$ projekcija(A, b, T), which returns the projection of the point T on to the hyperplane defined by the system $A \mathbf{x}=\mathbf{b}$.
2. Eigenvalues of (symmetric) matrices. Suppose that $A \in \mathbb{R}^{n \times n}$ is a matrix with eigenvalues $\lambda_{1}, \ldots, \lambda_{n}$ such that $\left|\lambda_{1}\right| \geq\left|\lambda_{2}\right| \geq \cdots \geq\left|\lambda_{n}\right|$. Write an octave/Matlab function, which determines the largest eigenvalue with respect to absolute value and the corresponding eigenvector using the power iteration:
(0) Pick a nonzero $\mathbf{v} \in \mathbb{R}^{n}$.
(1) Evaluate $\mathbf{w}=A \mathbf{v}$.
(2) Evaluate $\mathbf{v}=\mathbf{w} /\|\mathbf{w}\|$ and repeat step (1).

Iteration is stopped once \mathbf{v} is a good enough approximation to an eigenvector. The corresponding eigenvalue is then $\lambda=\mathbf{v}^{\top} A \mathbf{v}$. (Why?)
Assume now that $A \in \mathbb{R}^{n \times n}$ is a symmetric matrix with above properties. Adapt the power iteration to the 'simultaneous power iteration' (the QR iteration) like this:
(0) Pick linearly independent $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m} \in \mathbb{R}^{n}, m \leq n$, and assemble them into a matrix $V=\left[\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}\right]$.
(0^{\prime}) Determine the QR decomposition of $V ; V=Q R$
(1) Evaluate $W=A Q$.
(2) Determine the QR decomposition of W and repeat step (1).

The iteration is stopped once the columns of $Q=\left[\mathbf{q}_{1}, \ldots, \mathbf{q}_{m}\right]$ are good enough approximations to eigenvectors of A. The corresponding eigenvalues are again obtained from $\lambda_{k}=\mathbf{q}_{k}^{\top} A \mathbf{q}_{k}$. Why did we add the requirement that A is a symmetric matrix?
Test both methods and compare them with the built-in ones on some (not too big) test cases.

