

Retrieval in multimedia

Image retrieval systems

- Images can be queried using
 - Metadata (text)
 - User annotations
 - Image features (content)
- Problems
 - Metadata is not complete/informative/available
 - User annotations not supported, unreliable

Images and text queries

- Images in web documents
 - Use text around image (URL element name, neighborhood)
 - Same principles as in text retrieval systems
- Example of searching for images with word »Sunset«

Sunset at Rocky Point

Frank Smiles at Sunset

Sunset Beach

Images and text queries

Query: »tiger in woods«

Desired result

Obtained result

Problems with text queries

- Avoid using image content
 - Annotation bias
 - Metadata ambiguity
- Perceptual relevance
 - Impossible to describe composition
 - Abstract shapes

Development of retrieval systems that encode image content directly

Image retrieval systems

Wengang Zhou, Houqiang Li, Qi Tian, Recent Advance in Content-based Image Retrieval: A Literature Survey, 2017

Querying image content

- Extract image content
 - Detecting object and categories
 - Describing relations, actions
 - Ambiguous problem
- Low-level features
 - Color
 - Texture
 - Shape
 - Structural elements

Image retrieval system

Querying by color

Average color – no information about the distribution around average

 (μ_1, σ_1)

$$\mu_1$$
 $d = \mu_1 - \mu_2$ μ_2

Parametric distribution (Gaussian)

 (μ_2, σ_2)

Bhattacharryya distance: $d = \frac{1}{8}(\mu_1 - \mu_2)^T \Sigma^{-1}(\mu_1 - \mu_2) + \frac{1}{2}(\frac{|\Sigma|}{\sqrt{|\Sigma_1||\Sigma_2|}}) \qquad \Sigma = \frac{1}{2}(\Sigma_1 + \Sigma_2)$

Color histograms

- General non-parametric model
 - Gaussian distribution is single-modal
 - Images are usually multi-modal

Histogram properties

- Robustness
 - Scale change, rotation
 - Resolution change
 - Partial occlusions
- No spatial information
- Sensitivity to illumination variation
 - Remove the value part

What is a texture?

• No exact definition

»Texture is a description of the spatial arrangement of color or intensities in an image or a selected region of an image.«

- Shape and texture
- Level of detail

Querying using texture

- Low-level description
 - Spatial properties
 - Frequency properties
- Perceptual properties
 - periodicity, coarseness, dominant orientation, complexity

repeatability

stochasticity

combination

fractals

Coocurrence matrix

- How many times does pixel of value V1 appear next to pixel of value V2?
 - Displacement vector d=[dy,dx]
 - C(i,j) contains number of times values i an j appear on image in relation d
 - Cooccurence matrix is normalized

Extracting features

Various features can be computed from cooccurence matrix

 $Energy = \sum_{i,j} C_A(i,j)^2$ $Entropy = -\sum_{i,j} C_A(i,j) \log_2 C(i,j)$ $Contrast = \sum_{i,j} C_A(i,j)(i-j)^2$ Homogenity = $\sum_{i,j} \frac{C_A(i,j)}{1+|i-j|}$ Correlation = $\frac{\sum_{i,j} (i - \mu_i) (j - \mu_j) C_A(i,j)}{\sigma_i \sigma_j}$

Comparison: Euclidean distance

Local Binary Pattern

- Describe global texture with local descriptors
- For each pixel p compute 8-bit number
- Texture represented as histogram of these local numbers

Histogram

Auto-correlation

- Normalized scalar product between image and its shifted version
- Shape of response function describes
 - Texture regularity
 - Texture coarseness

$$\rho(x,y) = \frac{\sum_{u,v} I(u,v) I(u+x,v+y)}{\sum_{u,v} I(u,v)^2}$$

Fourier transform

- Description of image with complex basis functions
 - Energy of spectrum: |F(u,v)|
 - If I is WxH, then F is WxH

$$F(u,v) = \mathcal{F}\{I(x,y)\}(u,v) = \frac{1}{WH} \sum_{m=0}^{M-1} \sum_{n=0}^{N-1} I(x,y) e^{-i2\pi(\frac{ux}{W} + \frac{vy}{H})}$$

Examples

Spectrum features

How much energy is contained in various parts of spectrum

Query by shape

- Edge detection, threshold
- Vector of features
 - Region moments
 - Freeman differential codes
- Transformation distance
 - Amount of transformation

Comparing histograms

- Euclidean distance $D = \sqrt{\sum (h_1(i) h_2(i))^2}$
- Hellinger distance $H = (\frac{1}{2} \sum_{i=1:N_{bind}} (h_1(i)^{\frac{1}{2}} h_2(i)^{\frac{1}{2}})^2)^{\frac{1}{2}}$

• Chi-square distance
$$\chi^2 = \frac{1}{2} \sum_{i=1:N_{bins}} \frac{(h_1(i)-h_2(i))^2}{h_1(i)+h_2(i)+\varepsilon_0}$$

• Histogram intersection $I = 1 - \sum_{i=1:N_{bins}} \min(h_1(i), h_2(i))$

Including spatial information

- Divide image into subregions
- Stack histograms

Bag of words

- Inspired by text retrieval systems
- General object categories
 - No clear spatial consistency
 - Objects composed of important parts words
- Ignoring relationships between parts
 - Dictionary list of known parts
 - Descriptor histogram of part occurrences

Visual words

Local regions

- Detecting stable regions
 - Robustness
 - Corners, blobs
- Describing neighborhood
 - Invariance (illumination, rotation, scale)

SIFT features

- Scale invariant feature transform
 - Divide region into 4x4 sub-regions: 16 cells
 - Compute gradients in each subregion
 - Discretize orientation (8 directions)
 - Compute orientation histogram based on magnitude
 - Stack histograms and normalize: 4x4x8 = 128

Building a dictionary

- Unsupervised learning
 - Large number of different local descriptors
 - Finite amount of words

Fei-Fei Li; Perona, P. "A Bayesian Hierarchical Model for Learning Natural Scene Categories". IEEE CVPR 2005

Example of visual words

Sivic, Josef, and Andrew Zisserman. "Video Google: A text retrieval approach to object matching in videos." IEEE CVPR, 2003

Hierarchy of parts

- Learn complex shape features
 - Gabor features edges
 - Cooccurence
- Hierarchical composition
- Histogram of parts

Example of a parse tree at detection

Sanja Fidler and Aleš Leonardis: Towards Scalable Representations of Visual Categories: Learning a Hierarchy of parts, CVPR 2007

Towards high-level categories

- Objects in images
- Scanning image
 - Sliding window
 - Region proposals
- Categorization
 - Features + SVM
 - CNN

Deep learning

CNN example – VGG16

Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv 2014

Image retrieval with inverted index

- Multi-object detector (semantic tokens)
- Use Boolean queries to per-process database

A. Popescu, A, Ginsca, H. Le Borgne, "Scale-free content based image retrieval (or nearly so)", ICCV 2017 Workshops

Efficient retrieval of dense descriptors

- Most descriptors are dense
 - Inverted index not efficient
 - Comparison is slow
- Structure the space
 - Hierarhical clustering
 - Traverse a tree (log n)
- Locality-sensitive hashing
 - Similar descriptors have the same hash value

Towards image understanding

- Semantic segmentation
- Spatial relationships
- Describing scene

"man in black shirt is playing quitar."

"construction worker in orange safety vest is working on road."

cs.stanford.edu/people/karpathy/deepimagesent/

"two young girls are playing with lego toy."

"boy is doing backflip on wakeboard."

person ride dog

person on top of traffic light

www.di.ens.fr/willow/research/unrel/

car under elephant

person in cart

Why decompose images?

- Retrieval with specific queries (e.g. horses)
- Describe entire image
 - Which descriptors belong to object?
- Describe only parts of images
 - How many, what shape?

Superpixels

- Over-segmentation
- Describe each pixel in CIE Lab and (x,y): $C_i = [l_i \ a_i \ b_i \ x_i \ y_i]^T$
- Manually set number of clusters (superpixes)
- Modified K-means (fast, spatial restrictions)

R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua, S. Süsstrunk, SLIC Superpixels Compared to State-of-the-art Superpixel Methods, PAMI2012

Automatic decomposition examples

Li et al., Segmentation Using Superpixels: A Bipartite Graph Partitioning Approach, CVPR2012

Texton segmentation

- Texton descriptor learning
 - Each pixel described with responses to a bank of filters (e.g. 24 filters)
 - Find textons by clustering responses of filters
- Assign each pixel a texton
- Describe texture around pixel as a histogram of textons
- Segmentation cluster histograms

Segmentation using texture

Multiclass segmentation using textons

Semantic segmentation

- Segments have semantic meaning
- "Bag-of-textons"
 - Texton features
 - Classifier

- Convolutional neural networks
 - Train network for per-pixel classification
 - Encoding context

Handling subsampling in CNNs

- Pooling/subsampling
 - Reduce parameter count
 - Increase spatial robustness
- Approaches
 - Interpolation
 - MRF
 - Deconvolution

J, Long, E. Shelhamer, T. Darrell, Fully Convolutional Networks for Semantic Segmentation, IEEE TPAMI 2017

vicos sualgnitive ystemslab

Avoiding pooling

Dilated convolution

• MRF

L.C. Chen et al., DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs, IEEE TPAMI 2017

Encoder-decoder

- Deconvolution produces coarse segments
- Skip connections
 - Information from hi-res features

V. Badrinarayanan, A. Kendall, R. Cipolla, SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation, TPAMI 2017

Describing video content

- Structure: frame, shot, scene
- Content
 - Dynamics: still, moving objects, camera movement
 - Activity in a frame interval, e.g. jumping, robbery, horse race
 - Categories, e.g. cats, horses, cars
 - Object instances: e.g. Harry Potter, Jack Sparrow, Han Solo

MPEG-7

- Efficient access and manipulation of multimedia content
- Complementary to MPEG-4
- Standardized text-less object retrieval
 - D Object descriptors (audio and video)
 - DS Description schemes
 - DDL Description definition language (XML)

Examples of descriptors

- Color
 - Color space
 - Color layout
 - Dominant color
 - Color structure
 - GoP color
- Texture
 - Homogenous
 - Non-homogenous

- Shape
 - Shape descriptor
 - Contour
 - 2D-3D shape
- Motion
 - Activity
 - Camera motion
 - Warping parameters
 - Trajectory
 - Parametric motion
- Localization
 - Spatio-temporal
 - Region

Structure description

Describing content at the level of video segment

Example: three moving objects, describe relations ...

Applications

- Digital library (Image/video/music catalogue)
- Broadcast media (Radio channel, TV channel)
- Multimedia authoring
- E-business: Searching for products
- Cultural services (art-galleries, museums)
- Educational applications
- Biomedical applications