
Chapter 13

Differential Evolution

Differential evolution (DE) is a stochastic, population-based search strategy developed
by Storn and Price [696, 813] in 1995. While DE shares similarities with other evolu-
tionary algorithms (EA), it differs significantly in the sense that distance and direction
information from the current population is used to guide the search process. Further-
more, the original DE strategies were developed to be applied to continuous-valued
landscapes.

This chapter provides an overview of DE, organized as follows: Section 13.1 discusses
the most basic DE strategy and illustrates the method of adaptation. Alternative DE
strategies are described in Sections 13.2 and 13.3. Section 13.4 shows how the original
DE can be applied to discrete-valued and binary-valued landscapes. A number of
advanced topics are covered in Section 13.5, including multi-objective optimization
(MOO), constraint handling, and dynamic environments. Some applications of DE
are summarized in Section 13.6.

13.1 Basic Differential Evolution

For the EAs covered in the previous chapters, variation from one generation to the next
is achieved by applying crossover and/or mutation operators. If both these operators
are used, crossover is usually applied first, after which the generated offspring are
mutated. For these algorithms, mutation step sizes are sampled from some probability
distribution function. DE differs from these evolutionary algorithms in that

• mutation is applied first to generate a trial vector, which is then used within the
crossover operator to produce one offspring, and

• mutation step sizes are not sampled from a prior known probability distribution
function.

In DE, mutation step sizes are influenced by differences between individuals of the
current population.

Section 13.1.1 discusses the concept of difference vectors, used to determine muta-
tion step sizes. The mutation, crossover, and selection operators are described in
Sections 13.1.2 to 13.1.4. Section 13.1.5 summarizes the DE algorithm, and control

Computational Intelligence: An Introduction, Second Edition A.P. Engelbrecht
c©2007 John Wiley & Sons, Ltd

237

238 13. Differential Evolution

parameters are discussed in Section 13.1.6. A geometric illustration of the DE variation
approach is given in Section 13.1.7.

13.1.1 Difference Vectors

The positions of individuals provide valuable information about the fitness landscape.
Provided that a good uniform random initialization method is used to construct the
initial population, the initial individuals will provide a good representation of the
entire search space, with relatively large distances between individuals. Over time,
as the search progresses, the distances between individuals become smaller, with all
individuals converging to the same solution. Keep in mind that the magnitude of the
initial distances between individuals is influenced by the size of the population. The
more individuals in a population, the smaller the magnitude of the distances.

Distances between individuals are a very good indication of the diversity of the current
population, and of the order of magnitude of the step sizes that should be taken
in order for the population to contract to one point. If there are large distances
between individuals, it stands to reason that individuals should make large step sizes
in order to explore as much of the search space as possible. On the other hand,
if the distances between individuals are small, step sizes should be small to exploit
local areas. It is this behaviour that is achieved by DE in calculating mutation step
sizes as weighted differences between randomly selected individuals. The first step of
mutation is therefore to first calculate one or more difference vectors, and then to use
these difference vectors to determine the magnitude and direction of step sizes.

Using vector differentials to achieve variation has a number of advantages. Firstly,
information about the fitness landscape, as represented by the current population, is
used to direct the search. Secondly, due to the central limit theorem [177], mutation
step sizes approaches a Gaussian (Normal) distribution, provided that the population
is sufficiently large to allow for a good number of difference vectors [811].1 The mean
of the distribution formed by the difference vectors are always zero, provided that
individuals used to calculate difference vectors are selected uniformly from the pop-
ulation [695, 164]. Under the condition that individuals are uniformly selected, this
characteristic follows from the fact that difference vectors (xi1 − xi2) and (xi2 − xi1)
occur with equal frequency, where xi1 and xi2 are two randomly selected individuals.
The zero mean of the resulting step sizes ensures that the population will not suffer
from genetic drift. It should also be noted that the deviation of this distribution is
determined by the magnitude of the difference vectors. Eventually, differentials will
become infinitesimal, resulting in very small mutations.

Section 13.2 shows that more than one differential can be used to determine the muta-
tion step size. If nv is the number of differentials used, and ns is the population size,
then the total number of differential perturbations is given by [429]

(

ns

2nv

)

2nv! ≈ O(n2nvs) (13.1)

1The central limit theorem states that the probability distribution governing a random variable
approaches the Normal distribution as the number of samples of that random variable tends to infinity.

13.1 Basic Differential Evolution 239

Equation (13.1) expresses the total number of directions that can be explored per
generation. To increase the exploration power of DE, the number of directions can be
increased by increasing the population size and/or the number of differentials used.

At this point it is important to emphasize that the original DE was developed for
searching through continuous-valued landscapes. The sections that follow will show
that exploration of the search space is achieved using vector algebra, applied to the
individuals of the current population.

13.1.2 Mutation

The DE mutation operator produces a trial vector for each individual of the current
population by mutating a target vector with a weighted differential. This trial vector
will then be used by the crossover operator to produce offspring. For each parent,
xi(t), generate the trial vector, ui(t), as follows: Select a target vector, xi1(t), from
the population, such that i $= i1. Then, randomly select two individuals, xi2 and xi3 ,
from the population such that i $= i1 $= i2 $= i3 and i2, i3 ∼ U(1, ns). Using these
individuals, the trial vector is calculated by perturbing the target vector as follows:

ui(t) = xi1(t) + β(xi2(t)− xi3(t)) (13.2)

where β ∈ (0,∞) is the scale factor, controlling the amplication of the differential
variation.

Different approaches can be used to select the target vector and to calculate differen-
tials as discussed in Section 13.2.

13.1.3 Crossover

The DE crossover operator implements a discrete recombination of the trial vector,
ui(t), and the parent vector, xi(t), to produce offspring, x

′

i(t). Crossover is imple-
mented as follows:

x
′

ij(t) =

{

uij(t) if j ∈ J
xij(t) otherwise

(13.3)

where xij(t) refers to the j-th element of the vector xi(t), and J is the set of element
indices that will undergo perturbation (or in other words, the set of crossover points).
Different methods can be used to determine the set, J , of which the following two
approaches are the most frequently used [811, 813]:

• Binomial crossover: The crossover points are randomly selected from the set
of possible crossover points, {1, 2, . . . , nx}, where nx is the problem dimension.
Algorithm 13.1 summarizes this process. In this algorithm, pr is the probability
that the considered crossover point will be included. The larger the value of
pr, the more crossover points will be selected compared to a smaller value. This
means that more elements of the trial vector will be used to produce the offspring,
and less of the parent vector. Because a probabilistic decision is made as to the

240 13. Differential Evolution

inclusion of a crossover point, it may happen that no points may be selected, in
which case the offspring will simply be the original parent, xi(t). This problem
becomes more evident for low dimensional search spaces. To enforce that at least
one element of the offspring differs from the parent, the set of crossover points,
J , is initialized to include a randomly selected point, j∗.

• Exponential crossover: From a randomly selected index, the exponential
crossover operator selects a sequence of adjacent crossover points, treating the
list of potential crossover points as a circular array. The pseudocode in Algo-
rithm 13.2 shows that at least one crossover point is selected, and from this
index, selects the next until U(0, 1) ≥ pr or |J | = nx.

Algorithm 13.1 Differential Evolution Binomial Crossover for Selecting Crossover
Points

j∗ ∼ U(1, nx);
J ← J ∪ {j∗};
for each j ∈ {1, . . . , nx} do

if U(0, 1) < pr and j $= j∗ then
J ← J ∪ {j};

end
end

Algorithm 13.2 Differential Evolution Exponential Crossover for Selecting Crossover
Points

J ← {};
j ∼ U(0, nx − 1);
repeat

J ← J ∪ {j + 1};
j = (j + 1) mod nx;

until U(0, 1) ≥ pr or |J | = nx;

13.1.4 Selection

Selection is applied to determine which individuals will take part in the mutation
operation to produce a trial vector, and to determine which of the parent or the
offspring will survive to the next generation. With reference to the mutation operator,
a number of selection methods have been used. Random selection is usually used
to select the individuals from which difference vectors are calculated. For most DE
implementations the target vector is either randomly selected or the best individual is
selected (refer to Section 13.2).

To construct the population for the next generation, deterministic selection is used:
the offspring replaces the parent if the fitness of the offspring is better than its parent;
otherwise the parent survives to the next generation. This ensures that the average
fitness of the population does not deteriorate.

13.1 Basic Differential Evolution 241

13.1.5 General Differential Evolution Algorithm

Algorithm 13.3 provides a generic implementation of the basic DE strategies. Initial-
ization of the population is done by selecting random values for the elements of each
individual from the bounds defined for the problem being solved. That is, for each
individual, xi(t), xij(t) ∼ U(xmin,j , xmax,j), where xmin and xmax define the search
boundaries.

Any of the stopping conditions given in Section 8.7 can be used to terminate the
algorithm.

Algorithm 13.3 General Differential Evolution Algorithm

Set the generation counter, t = 0;
Initialize the control parameters, β and pr;
Create and initialize the population, C(0), of ns individuals;
while stopping condition(s) not true do

for each individual, xi(t) ∈ C(t) do
Evaluate the fitness, f(xi(t));
Create the trial vector, ui(t) by applying the mutation operator;
Create an offspring, x

′

i(t), by applying the crossover operator;

if f(x
′

i(t)) is better than f(xi(t)) then

Add x
′

i(t) to C(t+ 1);
end
else
Add xi(t) to C(t+ 1);

end
end

end
Return the individual with the best fitness as the solution;

13.1.6 Control Parameters

In addition to the population size, ns, the performance of DE is influenced by two
control parameters, the scale factor, β, and the probability of recombination, pr. The
effects of these parameters are discussed below:

• Population size: As indicated in equation (13.1), the size of the population
has a direct influence on the exploration ability of DE algorithms. The more
individuals there are in the population, the more differential vectors are available,
and the more directions can be explored. However, it should be kept in mind
that the computational complexity per generation increases with the size of the
population. Empirical studies provide the guideline that ns ≈ 10nx. The nature
of the mutation process does, however, provide a lower bound on the number of
individuals as ns > 2nv+1, where nv is the number of differentials used. For nv

differentials, 2nv different individuals are required, 2 for each differential. The

242 13. Differential Evolution

additional individual represents the target vector.

• Scaling factor: The scaling factor, β ∈ (0,∞), controls the amplification of the
differential variations, (xi2−xi3). The smaller the value of β, the smaller the mu-
tation step sizes, and the longer it will be for the algorithm to converge. Larger
values for β facilitate exploration, but may cause the algorithm to overshoot
good optima. The value of β should be small enough to allow differentials to
explore tight valleys, and large enough to maintain diversity. As the population
size increases, the scaling factor should decrease. As explained in Section 13.1.1,
the more individuals in the population, the smaller the magnitude of the dif-
ference vectors, and the closer individuals will be to one another. Therefore,
smaller step sizes can be used to explore local areas. More individuals reduce
the need for large mutation step sizes. Empirical results suggest that large val-
ues for both ns and β often result in premature convergence [429, 124], and that
β = 0.5 generally provides good performance [813, 164, 19].

• Recombination probability: The probability of recombination, pr, has a di-
rect influence on the diversity of DE. This parameter controls the number of
elements of the parent, xi(t), that will change. The higher the probability of
recombination, the more variation is introduced in the new population, thereby
increasing diversity and increasing exploration. Increasing pr often results in
faster convergence, while decreasing pr increases search robustness [429, 164].

Most implementations of DE strategies keep the control parameters constant. Al-
though empirical results have shown that DE convergence is relatively insensitive to
different values of these parameters, performance (in terms of accuracy, robustnes, and
speed) can be improved by finding the best values for control parameters for each new
problem. Finding optimal parameter values can be a time consuming exercise, and
for this reason, self-adaptive DE strategies have been developed. These methods are
discussed in Section 13.3.3.

13.1.7 Geometrical Illustration

Figure 13.1(a) illustrates the mutation operator of the DE as described in Sec-
tion 13.1.2. The optimum is indicated by x∗, and it is assumed that β = 1.5. The
crossover operator is illustrated in Figure 13.1(b). For this illustration the offspring
consists of the first element of the trial vector, ui(t), and the second element of the
parent, xi(t).

13.2 DE/x/y/z

A number of variations to the basic DE as discussed in Section 13.1 have been devel-
oped. The different DE strategies differ in the way that the target vector is selected,
the number of difference vectors used, and the way that crossover points are deter-
mined. In order to characterize these variations, a general notation was adopted in
the DE literature, namely DE/x/y/z [811, 813]. Using this notation, x refers to the

13.2 DE/x/y/z 243

x∗

xi2
(t)

ui(t)

xi(t)

xi1
(t)

−xi3
(t)

β(xi2
(t) − xi3

(t))

xi3
(t)

xi2
(t) − xi3

(t)

xi1

xi2

(a) Mutation Operator

x∗

ui(t)

xi(t)
x

′

i
(t)

xi2

xi1

(b) Crossover Operator

Figure 13.1 Differential Evolution Mutation and Crossover Illustrated

244 13. Differential Evolution

method of selecting the target vector, y indicates the number of difference vectors
used, and z indicates the crossover method used. The DE strategy discussed in Sec-
tion 13.1 is referred to as DE/rand/1/bin for binomial crossover, and DE/rand/1/exp
for exponential crossover. Other basic DE strategies include [429, 811, 813]:

• DE/best/1/z: For this strategy, the target vector is selected as the best in-
dividual, x̂(t), from the current population. In this case, the trial vector is
calculated as

ui(t) = x̂(t) + β(xi2(t)− xi3(t)) (13.4)

Any of the crossover methods can be used.

• DE/x/nv/z: For this strategy, more than one difference vector is used. The
trial vector is calculated as

ui(t) = xi1(t) + β

nv
∑

k=1

(xi2,k(t)− xi3,k(t)) (13.5)

where xi2,k(t)−xi3,k(t) indicates the k-th difference vector, xi1(t) can be selected
using any suitable method for selecting the target vector, and any of the crossover
methods can be used. With reference to equation (13.1), the larger the value of
nv, the more directions can be explored per generation.

• DE/rand-to-best/nv/z: This strategy combines the rand and best strategies
to calculate the trial vector as follows:

ui(t) = γx̂(t) + (1− γ)xi1(t) + β

nv
∑

k=1

(xi2,k(t)− xi3,k(t)) (13.6)

where xi1(t) is randomly selected, and γ ∈ [0, 1] controls the greediness of the
mutation operator. The closer γ is to 1, the more greedy the search process
becomes. In other words, γ close to 1 favors exploitation while a value close to 0
favors exploration. A good strategy will be to use an adaptive γ, with γ(0) = 0.
The value of γ(t) increases with each new generation towards the value 1.

Note that if γ = 0, the DE/rand/y/z strategies are obtained, while γ = 1 gives
the DE/best/y/z strategies.

• DE/current-to-best/1+nv/z: With this strategy, the parent is mutated using
at least two difference vectors. One difference vector is calculated from the best
vector and the parent vector, while the rest of the difference vectors are calculated
using randomly selected vectors:

ui(t) = xi(t) + β(x̂(t)− xi(t)) + β

nv
∑

k=1

(xi1,k(t)− xi2,k(t)) (13.7)

Empirical studies have shown that DE/rand/1/bin maintains good diversity, while
DE/current-to-best/2/bin shows good convergence characteristics [698]. Due to this
observation, Qin and Suganthan [698] developed a DE algorithm that dynamically
switch between these two strategies. Each of these strategies is assigned a probability

13.3 Variations to Basic Differential Evolution 245

of being applied. If ps,1 is the probability that DE/rand/1/bin will be applied, then
ps,2 = 1−ps,1 is the probability that DE/current-to-best/2/bin will be applied. Then,

ps,1 =
ns,1(ns,2 + nf,2)

ns,2(ns,1 + nf,1) + ns,1(ns,2 + nf,2)
(13.8)

where ns,1 and ns,2 are respectively the number of offspring that survive to the next
generation for DE/rand/1/bin, and nf,1 and nf,2 represent the number of discarded
offspring for each strategy. The more offspring that survive for a specific strategy, the
higher the probability for selecting that strategy for the next generation.

13.3 Variations to Basic Differential Evolution

The basic DE strategies have been shown to be very efficient and robust [811, 813,
811, 813]. A number of adaptations of the original DE strategies have been developed
in order to further improve performance. This section reviews some of these DE varia-
tions. Section 13.3.1 describe hybrid DE methods, a population-based DE is described
in Section 13.3.2, and self-adaptive DE strategies are discussed in Section 13.3.3.

13.3.1 Hybrid Differential Evolution Strategies

DE has been combined with other EAs, particle swarm optimization (PSO), and
gradient-based techniques. This section summarizes some of these hybrid methods.

Gradient-Based Hybrid Differential Evolution

One of the first DE hybrids was developed by Chiou and Wang [124], referred to
as the hybrid DE. As indicated in Algorithm 13.4, the hybrid DE introduces two
new operations: an acceleration operator to improve convergence speed – without
decreasing diversity – and a migration operator to provide the DE with the improved
ability to escape local optima.

The acceleration operator uses gradient descent to adjust the best individual toward
obtaining a better position if the mutation and crossover operators failed to improve
the fitness of the best individual. Let x̂(t) denote the best individual of the current
population, C(t), before application of the mutation and crossover operators, and let
x̂(t + 1) be the best individual for the next population after mutation and crossover
have been applied to all individuals. Then, assuming a minimization problem, the
acceleration operator computes the vector

x(t) =

{

x̂(t+ 1) if f(x̂(t+ 1)) < f(x̂(t))
x̂(t+ 1)− η(t)∇f otherwise

(13.9)

where η(t) ∈ (0, 1] is the learning rate, or step size; ∇f is the gradient of the objective
function, f . The new vector, x(t), replaces the worst individual in the new population,
C(t).

246 13. Differential Evolution

Algorithm 13.4 Hybrid Differential Evolution with Acceleration and Migration

Set the generation counter, t = 0;
Initialize the control parameters, β and pr;
Create and initialize the population, C(0), of ns individuals;
while stopping condition(s) not true do
Apply the migration operator if necessary;
for each individual, xi(t) ∈ C(t) do
Evaluate the fitness, f(xi(t));
Create the trial vector, ui(t) by applying the mutation operator;
Create an offspring, x

′

i(t) by applying the crossover operator;

if f(x
′

i(t)) is better than f(xi(t)) then

Add x
′

i(t) to C(t+ 1);
end
else
Add xi(t) to C(t+ 1);

end
end
Apply the acceleration operator if necessary;

end
Return the individual with the best fitness as the solution;

The learning rate is initialized to one, i.e. η(0) = 1. If the gradient descent step failed
to create a new vector, x(t), with better fitness, the learning rate is reduced by a
factor. The gradient descent step is then repeated until η(t)∇f is sufficiently close to
zero, or a maximum number of gradient descent steps have been executed.

While use of gradient descent can significantly speed up the search, it has the disad-
vantage that the DE may get stuck in a local minimum, or prematurely converge. The
migration operator addresses this problem by increasing population diversity. This is
done by spawning new individuals from the best individual, and replacing the current
population with these new individuals. Individuals are spawned as follows:

x
′

ij(t) =

{

x̂j(t) + rij(xmin,j − x̂j) if U(0, 1) <
x̂j−xmin,j

xmax,j−xmin,j

x̂j(t) + rij(xmax,j − x̂j) otherwise
(13.10)

where rij ∼ U(0, 1). Spawned individual x
′

i(t) becomes xi(t+ 1).

The migration operator is applied only when the diversity of the current population
becomes too small; that is, when

ns
∑

i=1

xi(t) "=x̂(t)

Iij(t)

/(nx(ns − 1)) < ǫ1 (13.11)

13.3 Variations to Basic Differential Evolution 247

with

Iij(t) =

{

1 if |(xij(t)− x̂j(t))/x̂j(t)| > ǫ2
0 otherwise

(13.12)

where ǫ1 and ǫ2 are respectively the tolerance for the population diversity and gene
diversity with respect to the best individual, x̂(t). If Iij(t) = 0, then the value of
the j-th element of individual i is close to the value of the j-th element of the best
individual.

Magoulas et al. [550] combined a stochastic gradient descent (SGD) [549] and DE in
a sequential manner to train artificial neural networks (NN). Here, SGD is first used
to find a good approximate solution using the process outlined in Algorithm 13.5. A
population of DE individuals is then created, with individuals in the neighborhood of
the solution returned by the SGD step. As outlined in Algorithm 13.6, the task of
DE is to refine the solution obtained from SGD by using then DE to perform a local
search.

Algorithm 13.5 Stochastic Gradient Descent for Neural Network Training

Initialize the NN weight vector, w(0);
Initialize the learning rate, η(0), and the meta-step size, ηm;
Set the pattern presentation number, t = 0;
repeat

for each training pattern, p do
Calculate E(w(t));
Calculate ∇E(w(t));
Update the weights using

w(t+ 1) = w(t) + η(t)∇E(w(t)) (13.13)

Calculate the new step size using

η(t+ 1) = η(t) + ηm < ∇E(w(t− 1)),∇E(w(t)) > (13.14)

t = t+ 1;
end
Return w(t+ 1) as the solution;

until until a termination condition is satisfied;

In Algorithms 13.5 and 13.6, < •, • > denotes the inner product between the two
given vectors, E is the NN training objective function (usually the sum-squared error),
σ is the standard deviation of mutations to w used to create DE individuals in the
neighborhood of w, and DT is the training set. The DE algorithm uses the objective
function, E , to assess the fitness of individuals.

248 13. Differential Evolution

Algorithm 13.6 Differential Evolution with Stochastic Gradient Descent

w = SGD(DT);
Set the individual counter, i = 0;
Set C(0) = {};
repeat

i = i+ 1;
xi(0) = w+N(0, σ);
C(0)← C(0) + {xi(0)};

until i = ns;
Apply any DE strategy;
Return the best solution from the final population;

Evolutionary Algorithm-Based Hybrids

Due to the efficiency of DE, Hrstka and Kucerová [384] used the DE reproduction
process as a crossover operator in a simple GA.

Chang and Chang [113] used standard mutation operators to increase DE population
diversity by adding noise to the created trial vectors. In [113], uniform noise is added
to each component of trial vectors, i.e.

uij(t) = uij(t) + U(umin,j , umax,j) (13.15)

where umin,j and umax,j define the boundaries of the added noise. However, the
approach above should be considered carefully, as the expected mean of the noise
added is

umin,j + umax,j

2
(13.16)

If this mean is not zero, the population may suffer genetic drift. An alternative is to
sample the noise from a Gaussian or Cauchy distribution with zero mean and a small
deviation (refer to Section 11.2.1).

Sarimveis and Nikolakopoulos [758] use rank-based selection to decide which individ-
uals will take part to calculate difference vectors. At each generation, after the fitness
of all individuals have been calculated, individuals are arranged in descending or-
der, x1(t),x2(t), . . . ,xns(t) where xi1(t) precedes xi2(t) if f(xi1(t)) > f(xi2(t)). The
crossover operator is then applied as summarized in Algorithm 13.7 assuming mini-
mization. After application of crossover on all the individuals, the resulting population
is again ranked in descending order. The mutation operator in Algorithm 13.8 is then
applied.

With reference to Algorithm 13.8, pm,i refers to the probability of mutation, with each
individual assigned a different probability based on its rank. The lower the rank of
an individual, the more unfit the individual is, and the higher the probability that
the individual will be mutated. Mutation step sizes are initially large, decreasing over
time due to the exponential term used in equations (13.17) and (13.18). The direction
of the mutation is randomly decided, using the random variable, r2.

13.3 Variations to Basic Differential Evolution 249

Algorithm 13.7 Rank-Based Crossover Operator for Differential Evolution

Rank all individuals in decreasing order of fitness;
for i = 1, . . . , ns do

r ∼ U(0, 1);
x

′

i(t) = xi(t) + r(xi+1(t)− xi(t));

if f(x
′

i(t)) < f(xi+1(t)) then

xi(t) = x
′

i(t);
end

end

Algorithm 13.8 Rank-Based Mutation Operator for Differential Evolution

Rank all individuals in decreasing order of fitness;
for i = 1, . . . , ns do

pm,i =
ns−i+1

ns
;

for j = 1, . . . , nx do
r1 ∼ U(0, 1);
if (r1 > pm,i) then

r2 ∼ {0, 1};
r3 ∼ U(0, 1);
if (r2 = 0) then

x
′

ij(t) = xij(t) + (xmax,j − xij(t))r3e
−2t/nt (13.17)

end
if (r2 = 1) then

x
′

ij(t) = xij(t)− (xij(t)− xmin,j)r3e
−2t/nt (13.18)

end
end

end
if f(x

′

i(t)) < f(xi(t)) then

xi(t) = x
′

i(t);
end

end

250 13. Differential Evolution

Particle Swarm Optimization Hybrids

A few studies have combined DE with particle swarm optimization(PSO) (refer to
Chapter 16).

Hendtlass [360] proposed that the DE reproduction process be applied to the particles
in a PSO swarm at specified intervals. At the specified intervals, the PSO swarm
serves as the population for a DE algorithm, and the DE is executed for a number
of generations. After execution of the DE, the evolved population is then further
optimized using PSO. Kannan et al. [437] apply DE to each particle for a number of
iterations, and replaces the particle with the best individual obtained from the DE
process.

Zhang and Xie [954], and Talbi and Batouche [836] follow a somewhat different ap-
proach. Only the personal best positions are changed using

y
′

ij(t+ 1) =

{

ŷij(t) + δj if j ∈ Ji(t)
yij(t) otherwise

(13.19)

where δ is the general difference vector defined as

δj =
y1j(t)− y2j(t)

2
(13.20)

with y1(t) and y2(t) randomly selected personal best positions; the notations yi(t) and
ŷi(t) are used to indicate a personal best and neighborhood best respectively (refer to
Chapter 16). The offspring, y

′

i(t + 1), replaces the current personal best, yi(t), only
if the offspring has a better fitness.

13.3.2 Population-Based Differential Evolution

In order to improve the exploration ability of DE, Ali and Törn [19] proposed to use
two population sets. The second population, referred to as the auxiliary population,
Ca(t), serves as an archive of those offspring rejected by the DE selection operator.
During the initialization process, ns pairs of vectors are randomly created. The best
of the two vectors is inserted as an individual in the population, C(0), while the other
vector, xa

i (0), is inserted in the auxiliary population, Ca(0). At each generation, for
each offspring created, if the fitness of the offspring is not better than the parent,
instead of discarding the offspring, x

′

i(t), it is considered for inclusion in the auxiliary

population. If f(x
′

i(t)) is better than x
a
i (t), then x

′

i(t) replaces x
a
i (t). The auxiliary set

is periodically used to replace the worst individuals in C(t) with the best individuals
from Ca(t).

13.3.3 Self-Adaptive Differential Evolution

Although empirical studies have shown that DE convergence is relatively insensitive
to control parameter values, performance can be greatly improved if parameter values

13.3 Variations to Basic Differential Evolution 251

are optimized. For the DE strategies discussed thus far, values of control parameters
are static, and do not change over time. These strategies require an additional search
process to find the best values for control parameters for each different problem – a
process that is usually time consuming. It is also the case that different values for a
control parameter are optimal for different stages of the optimization process. As an
alternative, a number of DE strategies have been developed where values for control
parameters adapt dynamically. This section reviews these approaches.

Dynamic Parameters

One of the first proposals for dynamically changing the values of the DE control pa-
rameters was proposed by Chang and Xu [112], where the probability of recombination
is linearly decreased from 1 to 0.7, and the scale factor is linearly increased from 0.3
to 0.5:

pr(t) = pr(t− 1)− (pr(0)− 0.7)/nt (13.21)

β(t) = β(t− 1)− (0.5− β(0))/nt (13.22)

where pr(0) = 1.0 and β(0) = 0.3; nt is the maximum number of iterations.

Abbass et al. [3] proposed an approach where a new value is sampled for the scale
factor for each application of the mutation operator. The scale factor is sampled from
a Gaussian distribution, β ∼ N(0, 1). This approach is also used in [698, 735]. In
[698], the mean of the distribution was changed to 0.5 and the deviation to 0.3 (i.e.
β ∼ N(0.5, 0.3)), due to the empirical results that suggest that β = 0.5 provides on
average good results. Abbass [2] extends this to the probability of recombination, i.e.
pr ∼ N(0, 1). Abbass refers incorrectly to the resulting DE strategy as being self-
adaptive. For self-adaptive strategies, values of control parameters are evolved over
time; this is not the case in [2, 3].

Self-Adaptive Parameters

Self-adaptive strategies usually make use of information about the search space as
obtained from the current population (or a memory of previous populations) to self-
adjust values of control parameters.

Ali and Törn [19] use the fitness of individuals in the current population to determine
a new value for the scale factor. That is,

β(t) =

max
{

βmin, 1−
∣

∣

∣

fmax(t)
fmin(t)

∣

∣

∣

}

if
∣

∣

∣

fmax(t)
fmin(t)

∣

∣

∣ < 1

max
{

βmin, 1−
∣

∣

∣

fmin(t)
fmax(t)

∣

∣

∣

}

otherwise
(13.23)

which ensures that β(t) ∈ [βmin, 1), where βmin is a lower bound on the scaling factor;
fmin(t) and fmax(t) are respectively the minimum and maximum fitness values for the
current population, C(t). As fmin approaches fmax, the diversity of the population
decreases, and the value of β(t) approaches βmin – ensuring smaller step sizes when the

252 13. Differential Evolution

population starts to converge. On the other hand, the smaller the ratio
∣

∣

∣

fmax(t)
fmin(t)

∣

∣

∣ (for

minimization problems) or
∣

∣

∣

fmin(t)
fmax(t)

∣

∣

∣
(for maximization problems), the more diverse

the population and the larger the step sizes will be – favoring exploration.

Qin and Suganthan [698] propose that the probability of recombination be self-adapted
as follows:

pr(t) ∼ N(µpr (t), 0.1) (13.24)

where µpr (0) = 0.5, and µpr (t) is calculated as the average over successful values of
pr(t). A pr(t) value can be considered as being successful if the fitness of the best
individual improved under that value of pr(t). It is not clear if one probability is used
in [698] for the entire population, or if each individual has its own probability, pr,i(t).
This approach to self-adaptation can, however, be applied for both scenarios.

For the self-adaptive Pareto DE, Abbass [2] adapts the probability of recombination
dynamically as

pr,i(t) = pr,i1(t) +N(0, 1)[pr,i2(t)− pr,i3(t)] (13.25)

where i1 $= i2 $= i3 $= i ∼ U(1, . . . , ns), while sampling the scale factor from N(0, 1).
Note that equation (13.25) implies that each individual has its own, learned probability
of recombination.

Omran et al. [641] propose a self-adaptive DE strategy that makes use of the approach
in equation (13.25) to dynamically adapt the scale factor. That is, for each individual,

βi(t) = βi4(t) +N(0, 0.5)[βi5(t)− βi6(t)] (13.26)

where i4 $= i5 $= i6 $= i ∼ U(1, . . . , ns). The mutation operator as given in equation
(13.2) changes to

ui(t) = xi1(t) + βi(t)[xi2(t) + xi3(t)] (13.27)

The crossover probability can be sampled from a Gaussian distribution as discussed
above, or adapted according to equation (13.25).

13.4 Differential Evolution for Discrete-Valued

Problems

Differential evolution has been developed for optimizing continuous-valued parameters.
However, a simple discretization procedure can be used to convert the floating-point
solution vectors into discrete-valued vectors. Such a procedure has been used by a
number of researchers in order to apply DE to integer and mixed-integer programming
[258, 390, 499, 531, 764, 817]. The approach is quite simple: each floating-point value
of a solution vector is simply rounded to the nearest integer. For a discrete-valued
parameter where an ordering exists among the values of the parameter, Lampinen and
Zelinka [499] and Feoktistov and Janaqi [258] take the index number in the ordered
sequence as the discretized value.

13.4 Differential Evolution for Discrete-Valued Problems 253

Pampará et al. [653] proposed an approach to apply DE to binary-valued search spaces:
The angle modulated DE (AMDE) [653] uses the standard DE to evolve a generating
function to produce bitstring solutions. This chapter proposes an alternative, the
binary DE (binDE) which treats each floating-point element of solution vectors as a
probability of producing either a bit 0 or a bit 1. These approaches are respectively
discussed in Sections 13.4.1 and 13.4.2.

13.4.1 Angle Modulated Differential Evolution

Pampará et al. [653] proposed a DE algorithm to evolve solutions to binary-valued
optimization problems, without having to change the operation of the original DE. This
is achieved by using a homomorphous mapping [487] to abstract a problem (defined
in binary-valued space) into a simpler problem (defined in continuous-valued space),
and then to solve the problem in the abstracted space. The solution obtained in the
abstracted space is then transformed back into the original space in order to solve the
problem. The angle modulated DE (AMDE) makes use of angle modulation (AM),
a technique derived from the telecommunications industry [697], to implement such a
homomorphous mapping between binary-valued and continuous-valued space.

The objective is to evolve, in the abstracted space, a bitstring generating function,
which will be used in the original space to produce bit-vector solutions. The generating
function as used in AM is

g(x) = sin(2π(x− a)× b× cos(2π(x− a)× c)) + d (13.28)

where x is a single element from a set of evenly separated intervals determined by the
required number of bits that need to be generated (i.e. the dimension of the original,
binary-valued space).

The coefficients in equation (13.28) determine the shape of the generating function: a
represents the horizontal shift of the generating function, b represents the maximum
frequency of the sin function, c represents the frequency of the cos function, and d
represents the vertical shift of the generating function. Figure 13.2 illustrates the
function for a = 0, b = 1, c = 1, and d = 0, with x ∈ [−2, 2]. The AMDE evolves
values for the four coefficients, a, b, c, and d. Solving a binary-valued problem thus
reverts to solving a 4-dimensional problem in a continuous-valued space. After each
iteration of the AMDE, the fitness of each individual in the population is determined by
substituting the evolved values for the coefficients (as represented by the individual)
into equation (13.28). The resulting function is sampled at evenly spaced intervals
and a bit value is recorded for each interval. If the output of the function in equation
(13.28) is positive, a bit-value of 1 is recorded; otherwise, a bit-value of 0 is recorded.
The resulting bit string is then evaluated by the fitness function defined in the original
binary-valued space in order to determine the quality of the solution.

The AMDE is summarized in Algorithm 13.9.

Pampará et al. [653] show that the AMDE is very efficient and provides accurate
solutions to binary-valued problems. Furthermore, the AMDE has the advantage that

254 13. Differential Evolution

-1

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

-2 -1.6 -1.2 -0.8 -0.4 0 0.4 0.8 1.2 1.6 2

g(
x)

x

Figure 13.2 Angle Modulation Illustrated

Algorithm 13.9 Angle Modulated Differential Evolution

Generate a population of 4-dimensional individuals;
repeat
Apply any DE strategy for one iteration;
for each individual do
Substitute evolved values for coefficients a, b, c and d into equation (13.28);
Produce nx bit-values to form a bit-vector solution;
Calculate the fitness of the bit-vector solution in the original bit-valued space;

end
until a convergence criterion is satisfied;

an nx-dimensional binary-valued problem is transformed into a smaller 4-dimensional
continuous-valued problem.

13.4.2 Binary Differential Evolution

The binary DE (binDE) borrows concepts from the binary particle swarm optimizer
(binPSO), developed by Kennedy and Eberhart [450] (also refer to Section 16.5.7). As
with DE, particle swarm optimization (PSO; refer to Chapter 16) uses vector algebra
to calculate new search positions, and was therefore developed for continuous-valued
problems. In PSO, a velocity vector represents the mutation step sizes as stochastically
weighted difference vectors (i.e. the social and cognitive components). The binPSO
does not interpret the velocity as a step size vector. Rather, each component of the
velocity vector is used to compute the probability that the corresponding component
of the solution vector is bit 0 or bit 1.

13.5 Advanced Topics 255

In a similar way, the binDE uses the floating-point DE individuals to determine a
probability for each component. These probabilities are then used to generate a bit-
string solution from the floating-point vector. This bitstring is used by the fitness
function to determine its quality. The resulting fitness is then associated with the
floating-point representation of the individual.

Let xi(t) represent a DE individual, with each xij(t) (j = 1, . . . , nx, where nx is
the dimension of the binary-valued problem) floating-point number. Then, the corre-
sponding bitstring solution, yi(t), is calcualted using

yij =

{

0 if f(xij(t)) ≥ 0.5
1 if f(xij(t)) < 0.5

(13.29)

where f is the sigmoid function,

f(x) =
1

1 + e−x
(13.30)

The fitness of the individual xi(t) is then simply the fitness obtained using the binary
representation, yi(t).

The binDE algorithm is summarized in Algorithm 13.10.

Algorithm 13.10 Binary Differential Evolution Algorithm

Initialize a population and set control parameter values;
t = 0;
while stopping condition(s) not true do

t = t+ 1;
Select parent xi(t);
Select individuals for reproduction;
Produce one offspring, x

′

(t);
yi(t) = generated bitstring from xi(t);
y

′

i(t) = generated bitstring from x
′

i(t);

if f(y
′

i(t)) is better than f(x
′

i(t)) then

Replace parent, xi(t), with offspring, x
′

i(t);
end
else
Retain parent, xi(t);

end
end

13.5 Advanced Topics

The discussions in the previous sections considered application of DE to unconstrained,
single-objective optimization problems, where the fitness landscape remains static.
This section provides a compact overview of adaptations to the DE such that different
types of optimization problems as summarized in Appendix A can be solved using DE.

256 13. Differential Evolution

13.5.1 Constraint Handling Approaches

With reference to Section A.6, the following methods have been used to apply DE to
solve constrained optimization problems as defined in Definition A.5:

• Penalty methods (refer to Section A.6.2), where the objective function is adapted
by adding a function to penalize solutions that violate constraints [113, 394, 499,
810, 884].

• Converting the constrained problem to an unconstrained problem by embedding
constraints in an augmented Lagrangian (refer to Section A.6.2) [125, 390, 528,
758]. Lin et al. [529] combines both the penalty and the augmented Lagrangian
functions to convert a constrained problem to an unconstrained one.

• In order to preserve the feasibility of initial solutions, Chang and Wu [114] used
feasible directions to determine step sizes and search directions.

• By changing the selection operator of DE, infeasible solutions can be rejected,
and the repair of infeasible solutions facilitated. In order to achieve this, the
selection operator accepts an offspring, x

′

i, under the following conditions [34,
56, 498]:

– if x
′

i satisfies all the constraints, and f(x
′

i) ≤ f(xi), then x
′

i replaces the
parent, xi (assuming minimization);

– if x
′

i is feasible and xi is infeasible, then x
′

i replaces xi;

– if both x
′

i and xi are infeasible, then if the number of constraints violated

by x
′

i is less than or equal to the number of constraints violated by xi, then

x
′

i replaces xi.

In the case that both the parent and the offspring represent infeasible solutions,
there is no selection pressure towards better parts of the fitness landscape; rather,
towards solutions with the smallest number of violated constraints.

Boundary constraints are easily enforced by clamping offspring to remain within the
given boundaries [34, 164, 498, 499]:

x
′

ij(t) =

{

xmin,j + U(0, 1)(xmax,j − xmin,j) if x
′

ij(t) < xmin,j or x
′

ij > xmax,j

x
′

ij(t) otherwise

(13.31)
This restarts the offspring to a random position within the boundaries of the search
space.

13.5.2 Multi-Objective Optimization

As defined in Definition A.10, multi-objective optimization requires multiple, conflict-
ing objectives to be simultaneously optimized. A number of adaptations have been
made to DE in order to solve multiple objectives, most of which make use of the
concept of dominance as defined in Definition A.11.

Multi-objective DE approaches include:

13.5 Advanced Topics 257

• Converting the problem into a minimax problem [390, 925].

• Weight aggregation methods [35].

• Population-based methods, such as the vector evaluated DE (VEDE) [659],
based on the vector evaluated GA (VEGA) [761] (also refer to Section 9.6.3). If
K objectives have to be optimized, K sub-populations are used, where each sub-
population optimizes one of the objectives. These sub-populations are organized
in a ring topology (as illustrated in Figure 16.4(b)). At each iteration, before
application of the DE reproduction operators, the best individual, Ck.x̂(t), of
population Ck migrates to population Ck+1 (that of Ck+1 migrates to C0), and is
used in population Ck+1 to produce the trial vectors for that population.

• Pareto-based methods, which change the DE operators to include the dominance
concept.

Mutation: Abbass et al. [2, 3] applied mutation only on non-dominated solu-
tions within the current generation. Xue et al. [928] computed the differential
as the difference between a randomly selected individual, xi1 , and a randomly
selected vector, xi2 , that dominates xi1 ; that is, xi1 5 xi2 . If xi1 is not domi-
nated by any other individual of the current generation, the differential is set to
zero.

Selection: A simple change to the selection operator is to replace the parent, xi,
with the offspring x

′

i, only if x
′

i 5 xi [3, 2, 659]. Alternatively, ideas from non-
dominated sorting genetic algorithms [197] can be used, where non-dominated
sorting and ranking is applied to parents and offspring [545, 928]. The next
population is then selected with preference to those individuals with a higher
rank.

13.5.3 Dynamic Environments

Not much research has been done in applying DE to dynamically changing landscapes
(refer to Section A.9). Chiou and Wang [125] applied the DE with acceleration and
migration (refer to Algorithm 13.4) to dynamic environments, due to the improved
exploration as provided by the migration phase. Magoulas et al. [550] applied the
SGDDE (refer to Algorithm 13.6) to slowly changing fitness landscapes.

Mendes and Mohais [577] develop a DE algorithm, referred to as DynDE, to locate
and maintain multiple solutions in dynamically changing landscapes. Firstly, it is
important to note the following assumptions:

1. It is assumed that the number of peaks, nX , to be found are known, and that
these peaks are evenly distributed through the search space.

2. Changes in the fitness landscape are small and gradual.

DynDE uses multiple populations, with each population maintaining one of the peaks.
To ensure that each peak represents a different solution, an exclusion strategy is fol-
lowed: At each iteration, the best individuals of each pair of sub-populations are com-
pared. If these global best positions are too close to one another, the sub-population

258 13. Differential Evolution

with the worst global best solution is re-initialized. DynDE re-initializes the one sub-
population when

E(Ck1 .x̂(t), Ck2 .x̂(t)) <
X

2n
1/nx
X

(13.32)

where E(Ck1 .x̂(t), Ck2 .x̂(t)) is the Euclidean distance between the best individuals of
sub-populations Ck1 and Ck2 , X represents the extent of the search space, nX is the
number of peaks, and nx is the search space dimension. It is this condition that
requires assumption 1, which suffers from obvious problems. For example, peaks are
not necessarily evenly distributed. It may also be the case that two peaks exist with a
distance less than X

2n
1/nx
X

from one another. Also, it is rarely the case that the number

of peaks is known.

After a change is detected, a strategy is followed to increase diversity. This is done by
assigning a different behavior to some of the individuals of the affected sub-population.
The following diversity increasing strategies have been proposed [577]:

• Re-initialize the sub-populations: While this strategy does maximize diversity,
it also leads to a severe loss of knowledge obtained about the search space.

• Use quantum individuals: Some of the individuals are re-initialized to random
points inside a ball centered at the global best individual, x̂(t), as outlined in
Algorithm 13.11. In this algorithm, Rmax is the maximum radius from x̂(t).

• Use Brownian individuals: Some positions are initialized to random positions
around x̂(t), where the random step sizes from x̂(t) are sampled from a Gaussian
distribution. That is,

xi(t) = x̂(t) +N(0, σ) (13.33)

• Introduce some form of entropy: Some individuals are simply added noise, sam-
pled from a Gaussian distribution. That is,

xi(t) = xi(t) +N(0, σ) (13.34)

Algorithm 13.11 Initialization of Quantum Individuals

for each individual, xi(t), to be re-initialized do
Generate a random vector, ri ∼ N(0, 1);
Compute the distance of ri from the origin, i.e.

E(ri,0) =

√

√

√

√

nx
∑

j=1

rij (13.35)

Find the radius, R ∼ U(0, Rmax);
xi(t) = x̂(t) +Rri/E(ri,0);

end

13.6 Applications 259

13.6 Applications

Differential evolution has mostly been applied to optimize functions defined over
continuous-valued landscapes [695, 811, 813, 876]. Considering an unconstrained op-
timization problem, such as listed in Section A.5.3, each individual, xi, will be repre-
sented by an nx-dimensional vector where each xij ∈ R. For the initial population,
each individual is initialized using

xij ∼ U(xmin,j , xmax,j) (13.36)

The fitness function is simply the function to be optimized.

DE has also been applied to train neural networks (NN) (refer to Table 13.1 for
references). In this case an individual represents a complete NN. Each element of an
individual is one of the weights or biases of the NN, and the fitness function is, for
example, the sum-squared error (SSE).

Table 13.1 summarizes a number of real-world applications of DE. Please note that
this is not meant to be a complete list.

Table 13.1 Applications of Differential Evolution

Application Class Reference

Clustering [640, 667]
Controllers [112, 124, 164, 165, 394, 429, 438, 599]
Filter design [113, 810, 812, 883]
Image analysis [441, 521, 522, 640, 926]
Integer-Programming [390, 499, 500, 528, 530, 817]
Model selection [331, 354, 749]
NN training [1, 122, 550, 551, 598]
Scheduling [528, 531, 699, 748]
System design [36, 493, 496, 848, 839, 885]

13.7 Assignments

1. Show how DE can be used to train a FFNN.

2. Discuss the influence of different values for the population diversity tolerance,
ǫ1, and the gene diversity tolerance, ǫ2, as used in equations (13.11) and (13.12)
for the hybrid DE.

3. Discuss the merits of the following two statements:

(a) If the probability of recombination is very low, then DE exhibits a high
probability of stagnation.

(b) For a small population size, it is sensible to have a high probability of
recombination.

260 13. Differential Evolution

4. For the DE/rand-to-best/y/z strategies, suggest an approach to balance explo-
ration and exploitation.

5. Discuss the consequences of too large and too small values of the standard devi-
ation, σ, used in Algorithm 13.6.

6. Explain in detail why the method for adding noise to trial vectors as given in
equation (13.15) may result in genetic drift.

7. With reference to the DynDE algorithm in Section 13.5.3, explain the effect of
very small and very large values of the standard deviation, σ.

8. Researchers in DE have suggested that the recombination probability should
be sampled from a Gaussian distribution, N(0, 1), while others have suggested
that N(0.5, 0.15) should be used. Compare these two suggestions and provide a
recommendation as to which approach is best.

9. Investigate the performance of a DE strategy if the scale factor is sampled from
a Cauchy distribution.

