ARMV7-M Architecture
Reference Manual

ARM

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved.
ARM DDI 0403E.b (ID120114)

ARMvV7-M Architecture Reference Manual

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved.
Release Information

The following changes have been made to this document.

Change history

Date Issue Confidentiality Change

June 2006 A Non-Confidential Initial release

July 2007 B Non-Confidential Second release, errata and changes documented separately

September 2008 C Non-Confidential, Restricted Access ~ Options for additional watchpoint based trace in the DWT, plus errata updates and
clarifications.

12 February 2010 D Non-Confidential Fourth release, adds DSP and Floating-point extensions, and extensive clarifications
and reorganization.

17 April 2014 E.a Non-Confidential, Restricted Access Fifth release. Adds double-precision floating-point, Flash Patch breakpoint version 2
and DWT changes, 64-bit timestamps, cache control, and extensive reformatting.

02 December 2014 Eb Non-Confidential Sixth release. Errata updates and clarifications.

Proprietary Notice

This ARM Architecture Reference Manual is protected by copyright and the practice or implementation of the information herein
may be protected by one or more patents or pending applications. No part of this ARM Architecture Reference Manual may be
reproduced in any form by any means without the express prior written permission of ARM. No license, express or implied, by
estoppel or otherwise to any intellectual property rights is granted by this ARM Architecture Reference Manual.

Your access to the information in this ARM Architecture Reference Manual is conditional upon your acceptance that you will not
use or permit others to use the information for the purposes of determining whether implementations of the ARM architecture
infringe any patents.

This ARM Architecture Reference Manual is provided “as is”. ARM makes no representations or warranties, either express or
implied, included but not limited to, warranties of merchantability, fitness for a particular purpose, or non-infringement, that the
content of this ARM Architecture Reference Manual is suitable for any particular purpose or that any practice or implementation
of the contents of the ARM Architecture Reference Manual will not infringe any third party patents, copyrights, trade secrets, or
other rights.

This ARM Architecture Reference Manual may include technical inaccuracies or typographical errors.

This document may be translated into other languages for convenience, and you agree that if there is any conflict between the
English version of this document and any translation, the terms of the English version shall prevail.

To the extent not prohibited by law, in no event will ARM be liable for any damages, including without limitation any direct loss,
lost revenue, lost profits or data, special, indirect, consequential, incidental or punitive damages, however caused and regardless
of the theory of liability, arising out of or related to any furnishing, practicing, modifying or any use of this ARM Architecture
Reference Manual, even if ARM has been advised of the possibility of such damages.

Words and logos marked with * or ™ are registered trademarks or trademarks of ARM Limited, except as otherwise stated below
in this proprietary notice. Other brands and names mentioned herein may be the trademarks of their respective owners.

Copyright © 2006-2008, 2010, 2014 ARM Limited
110 Fulbourn Road Cambridge, England CB1 9NJ

Restricted Rights Legend: Use, duplication or disclosure by the United States Government is subject to the restrictions set forth
in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19.

This document is Non-Confidential but any disclosure by you is subject to you providing notice to and the acceptance by
the recipient of, the conditions set out above.

In this document, where the term ARM is used to refer to the company it means “ARM or any of its subsidiaries as appropriate”.

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

Note

The term ARM is also used to refer to versions of the ARM architecture, for example ARMv6 refers to version 6 of the ARM
architecture. The context makes it clear when the term is used in this way.

Web Address

http://www.arm.com

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved.
Non-Confidential

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved.
Non-Confidential

ARM DDI 0403E.b
ID120114

Contents

ARMv7-M Architecture Reference Manual

Preface
AbOUL thiS MANUALoeiiiiie e X
USING thiS MANUAIcoeiiiiiiee e e e e e e e e e e e e e ea s Xi
CONVENEIONS ...ttt ettt st ean e ere e Xiii
FUNEr rEadINGeeiiieiie e et Xiv
FEEADACKo e XV
Part A Application Level Architecture
Chapter A1 Introduction
A1 About the ARMv7 architecture, and architecture profilescccccccevviiieiiinnnns A1-20
A1.2 The ARMV7-M architecture profilecccciiiiiiiii e A1-21
A1.3 Architecture eXtENSIONScooiiiiiiii e A1-22
Chapter A2 Application Level Programmers’ Model
A21 About the application level programmers’ modelccccoooiiiiiiiiiiiiiiieee e, A2-24
A2.2 ARM processor data types and arithmetic ... A2-25
A2.3 Registers and execution state ..o A2-30
A2.4 Exceptions, faults and interruptsccoociiiiiiiiie e A2-33
A2.5 The optional floating-point extensioncccccviiiiiiiiii e A2-34
A2.6 (0] o] folerTtTo] gE=TU] o] o o] o R PP PP PSRRI A2-61
Chapter A3 ARM Architecture Memory Model
A3.1 AdArESS SPACE ...eiiuiiiiiiiie ittt ettt A3-64
A3.2 AlIGNMENT SUPPOIT ..t A3-65
A3.3 ENdian SUPPOITooiiieiee et A3-67
A3.4 Synchronization and SEMAPNOIEScocciviiiieiiie e A3-70
A3.5 Memory types and attributes and the memory order modeloccceeennie A3-78
ARM DDI 0403E.b Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. v

ID120114

Non-Confidential

Contents

A3.6 ACCESS MGNES .. e A3-87
A3.7 MEMOIY QCCESS OFUET ...ttt ettt A3-89
A3.8 Caches and memory hi€rarChyccocccveiiieniiee e A3-96

Chapter A4 The ARMv7-M Instruction Set
A4 About the INSruCtion Setccii i A4-100
A4.2 Unified Assembler LanQUageccceeeriieiiiereniieeneeee e eie e seeee e e seeee e A4-102
A4.3 Branch inStrUCHIONSooiiiiiiic e A4-104
A4 4 Data-processing iNSrUCHIONScoiiuiiiiiiiiiiie e A4-105
A4.5 Status register access iNSITUCHONSccciiiiiiiiiiii e A4-112
A4.6 Load and store iNStruCtioNSoeiiiiiiiiiiie e A4-113
A4.7 Load Multiple and Store Multiple inStructionsccccccceveeiieiiiiiiie i A4-115
A4.8 Miscellaneous iNSTrUCIONSc.cooiiiiiiiii e A4-116
A4.9 Exception-generating inStructionscccccooiiiiiiiie e A4-117
A4.10 CoprocessOor iNSITUCHIONScocuiiiiiiiiiiie e A4-118
A4.11 Floating-point load and store inStructionscccoccceiiiieiiiii e A4-119
A4.12 Floating-point register transfer instructionsccooiiiiiii e A4-120
A4.13 Floating-point data-processing inStructionsccccooiiiiiiiiiiiien e A4-121

Chapter A5 The Thumb Instruction Set Encoding
A5.1 Thumb instruction set encodingoociiiiiiii e A5-124
A5.2 16-bit Thumb instruction enNCOdiNgccccueiiiiiiiie e A5-127
AS5.3 32-bit Thumb instruction encodingcooiiiiiiiiie e A5-135

Chapter A6 The Floating-Point Instruction Set Encoding
AB.1 OVEIVIBW ..ttt ettt et b et n et nae e eene AB-158
AB6.2 Floating-point inStruction SYNtaxcccccoiiiiiiiiiei e A6-159
AB.3 RegiSter @NCOAINGviiiiiiiieiii e e A6-162
A6.4 Floating-point data-processing iNStructionsc.ccccovieeiiiie e ABG-163
AB6.5 Extension register load or store instructionsccccoiiiiiiiiii A6-165
A6.6 32-bit transfer between ARM core and extension registerscccccccveveeennee A6-166
AG.7 64-bit transfers between ARM core and extension registerscccccceeuneee. A6-167

Chapter A7 Instruction Details
A7 A1 Format of instruction descriptionsccccciiiiiiiiiie i A7-170
A7.2 Standard assembler syntax fieldS ..o A7-175
A7.3 Conditional @XECULIONoiiiiiiiiiii e A7-176
A7.4 Shifts applied t0 @ register ... A7-180
A7.5 MEMOIY GQCCESSES ..iiiiiiiie ettt e ettt e e et e e e e e nneeeeeeenns A7-182
A7.6 HINt INSTIUCHIONS ... e A7-183
A7.7 Alphabetical list of ARMv7-M Thumb instructionscccccoeeiiiiiiiiiiiinee e, A7-184

Part B System Level Architecture

Chapter B1 System Level Programmers’ Model
B1.1 Introduction to the system level ... B1-566
B1.2 About the ARMv7-M memory mapped architecturecccoooooiiiiiiiiennne B1-567
B1.3 Overview of system level terminology and operationc..cccccoeieiiiiinnnen.n. B1-568
B1.4 REGISIEIS .. B1-572
B1.5 ARMV7-M exception MOdelcoociiiiiiiiiiie e B1-579
B1.6 Floating-point SUPPOItcoooiiiiiie e B1-620

Chapter B2 System Memory Model
B2.1 About the system memory model ...t B2-626
B2.2 Caches and branch predictors ... B2-627
B2.3 Pseudocode details of general memory system operationsccccceeeeennee. B2-638

vi Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b

Non-Confidential ID120114

Chapter B3

Chapter B4

Chapter B5

Part C
Chapter C1

Part D

Appendix D1

Appendix D2

Appendix D3

Appendix D4

Contents

System Address Map

B3.1 The System addreSS MaPcoociiiiiiiiiiee e B3-648
B3.2 System Control SPAce (SCS)ceiuiiiiiiieiiie e B3-651
B3.3 The system timer, SYSTICKccuviiiiiiiie e B3-676
B3.4 Nested Vectored Interrupt Controller, NVICccoooiiiiiieeiiiiieee e B3-680
B3.5 Protected Memory System Architecture, PMSAV7ccccoiiiiriiieieeeee e B3-688

The CPUID Scheme

B4.1 About the CPUID SChEMEccoiiiiiiiii e B4-702
B4.2 Processor Feature ID RegiSters ..o B4-704
B4.3 Debug Feature ID regiSterovi i B4-706
B4.4 Auxiliary Feature ID register ... B4-707
B4.5 Memory Model Feature RegiSterscccoviiiiiiiiiini e B4-708
B4.6 Instruction Set Attribute Registers ..o B4-711
B4.7 Floating-point feature identification registersccccoooviiiiiiniiiiiee B4-720
B4.8 Cache Control Identification RegiStersccoovieviiiiiiiiiiee e B4-723

System Instruction Details

B5.1 About the ARMvV7-M system instructionsccccccooeeiiiiiiiiiiiee e B5-728
B5.2 ARMV7-M system instruction descriptionscccoccceeiiiiiiiiienee e B5-730
Debug Architecture

ARMv7-M Debug

C11 Introduction to ARMV7-M debugcceviiiieiiiieee e C1-740
Cc1.2 The Debug ACCESS POtoooiieee e C1-744
C1.3 ARMV7-M debug fEaturesoooeiiiiiiiii e C1-746
Cc14 Debug and reSeteeiiiiiii s C1-751
C15 Debug event BENAVIOreeiiii e C1-752
C1.6 Debug SYStem rEQISLEISeiiiiie e C1-758
C1.7 The Instrumentation Trace Macrocellcccccveiiiiiiiiii e C1-769
Cc1.8 The Data Watchpoint and Trace unitcccooociieiieiiciiiee e C1-779
Cc1.9 Embedded Trace Macrocell SUPPOTtoovieeiiiiiiiiiieeeecee e C1-809
C1.10 Trace Port Interface UNitcooiiiiiiiiii e C1-810
C1.11 Flash Patch and Breakpoint Unitcccoooiiiiiiiiiee e C1-815
Appendixes

ARMv7-M CoreSight Infrastructure IDs
D1.1 CoreSight infrastructure IDs for an ARMv7-M implementationccccoe... D1-826

Legacy Instruction Mnemonics

D2.1 Thumb iNStruction MNEMONICScooviiiiiiiie e D2-830
D2.2 Pre-UAL pseudo-instruction NOP ... D2-833
D2.3 Pre-UAL floating-point instruction mnemonicscccccceeviiiniccniieeececee D2-834

Deprecated Features in ARMv7-M
D3.1 Deprecated features of the ARMv7-M architecturecccoooeriiiiiiiiinne D3-838

Debug ITM and DWT Packet Protocol

D4.1 About the ITM and DWT packetsoooiiiiiiiiiiiie e D4-840
D4.2 Packet descCriptionsooi e D4-842
D4.3 DWT use of Hardware source packetsccccccovveeieeiiiieeecccciieeee e D4-850
ARM DDI 0403E.b Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. vii

ID120114

Non-Confidential

Contents

Appendix D5

Appendix D6

Appendix D7

Appendix D8

ARMvV7-R Differences

D5.1 About the ARMv7-M and ARMv7-R architecture profilesccccveiininnnnnn D5-858
D5.2 ENdian SUPPOIT ..o D5-859
D5.3 Application 1eVel SUPPOItcoiiiiiiiiiiie e D5-860
D5.4 SyStem 1EVEl SUPPOMToooiiieeii et D5-861
D5.5 (D=1 o0 To =10 o] o Loy PSPPSR D5-862

Pseudocode Definition

D6.1 Instruction encoding diagrams and pseudocodecccceeviiiiiiniiiiiieee e D6-864
D6.2 Limitations of pSeUdOCOdEccoiiiiiiiiiiiiie e D6-866
D6.3 Data tYPES .o e D6-867
D6.4 EXPrESSIONS ..ottt D6-871
D6.5 Operators and built-in fUNCHONSc.cooiiiiii e D6-873
D6.6 Statements and program StrUCIUrecccoiiiiiiiie e D6-878
D6.7 Miscellaneous helper procedures and functionsccccccooeviiiiiiiiiiiin s D6-882

Pseudocode Index
D71 Pseudocode operators and KEYWOrdSccooiiuiiiiiiiiiiiiiee e D7-888
D7.2 Pseudocode functions and proCedurescccveeeieeiiiieeeeecciiee e D7-891

Register Index

D8.1 ARM COTE FEQISIEISvviiiiiiiiii e D8-900
D8.2 Floating-point extension registers ..o D8-901
D8.3 Memory mapped system registers ..o D8-902
D8.4 Memory-mapped debug regiSters ... D8-905
Glossary

viii Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b

Non-Confidential ID120114

Preface

This preface describes the contents of this manual, then lists the conventions and terminology it uses.

About this manual on page X.
Using this manual on page Xi.
Conventions on page Xiii.
Further reading on page xiv.
Feedback on page xv.

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved.
Non-Confidential

Preface
About this manual

About this manual

This manual documents the Microcontroller profile of version 7 of the ARM" Architecture, the ARMv7-M
architecture profile. For short definitions of all the ARMv7 profiles see About the ARMv7 architecture, and
architecture profiles on page A1-20.

The manual has the following parts:

Part A

Part B

Part C

Appendices

The application level programming model and memory model information along with the
instruction set as visible to the application programmer.

This is the information required to program applications or to develop the toolchain components
(compiler, linker, assembler and disassembler) excluding the debugger. For ARMv7-M, this is
almost entirely a subset of material common to the other two profiles. Instruction set details that
differ between profiles are clearly stated.

Note

All ARMV7 profiles support a common procedure calling standard, the ARM Architecture
Procedure Calling Standard (AAPCS).

The system level programming model and system level support instructions required for system
correctness. The system level supports the ARMv7-M exception model. It also provides features for
configuration and control of processor resources and management of memory access rights.

This is the information in addition to Part A required for an operating system (OS) and/or system
support software. It includes details of register banking, the exception model, memory protection
(management of access rights) and cache support.

Part B is profile specific. ARMv7-M introduces a new programmers’ model and as such has some
fundamental differences at the system level from the other profiles. As ARMv7-M is a
memory-mapped architecture, the system memory map is documented here.

The debug features to support the ARMv7-M debug architecture and the programming interface to
the debug environment.

This is the information required in addition to Parts A and B to write a debugger. Part C covers
details of the different types of debug:

. Halting debug and the related Debug state.

. Exception-based monitor debug.

. Non-invasive support for event generation and signalling of the events to an external agent.
This part is profile specific and includes several debug features that are supported only in the

ARMv7-M architecture profile.

The appendices give information that relates to, but is not part of, the ARMv7-M architecture profile
specification.

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

Preface
Using this manual

Using this manual

The information in this manual is organized into four parts as described below.

Part A, Application level architecture
Part A describes the application level view of the architecture. It contains the following chapters:

Chapter A1l Introduction

Introduces the ARMvV7 architecture, the architecture profiles it defines, and the ARMv7-M profile
defined by this manual.

Chapter A2 Application Level Programmers’ Model

Gives an application-level view of the ARMv7-M programmers’ model, including a summary of the
exception model.

Chapter A3 ARM Architecture Memory Model

Gives an application-level view of the ARMv7-M memory model, including the ARM memory
attributes and memory ordering model.

Chapter A4 The ARMv7-M Instruction Set
Describes the ARMv7-M Thumb® instruction set.

Chapter AS The Thumb Instruction Set Encoding

Describes the encoding of the Thumb instruction set.

Chapter A6 The Floating-Point Instruction Set Encoding

Describes the encoding of the floating-point instruction set extension of the Thumb instruction set.
The optional ARMv7-M Floating-point architecture extension provides these additional
instructions.

Chapter A7 Instruction Details

Provides detailed reference material on each Thumb instruction, arranged alphabetically by
instruction mnemonic, including summary information for system-level instructions.

Part B, System level architecture
Part B describes the system level view of the architecture. It contains the following chapters:
Chapter B1 System Level Programmers’ Model
Gives a system-level view of the ARMv7-M programmers’ model, including the exception model.
Chapter B2 System Memory Model

Provides a pseudocode description of the ARMv7-M memory model.

Chapter B3 System Address Map

Describes the ARMv7-M system address map, including the memory-mapped registers and the
optional Protected Memory System Architecture (PMSA).

Chapter B4 The CPUID Scheme

Describes the CPUID scheme. This provides registers that identify the architecture version and
many features of the processor implementation.

Chapter BS System Instruction Details

Provides detailed reference material on the system-level instructions.

ARM DDI 0403E.b Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. Xi
ID120114 Non-Confidential

Preface
Using this manual

Part C, Debug architecture
Part C describes the debug architecture. It contains the following chapter:

Chapter C1 ARMv7-M Debug
Describes the ARMv7-M debug architecture.

Part D, Appendices
This manual contains a glossary and the following appendices:

Appendix D1 ARMv7-M CoreSight Infrastructure IDs

Summarizes the ARM CoreSight™ compatible ID registers used for ARM architecture infrastructure

identification.

Appendix D2 Legacy Instruction Mnemonics

Describes the legacy mnemonics and their Unified Assembler Language (UAL) equivalents.

Appendix D3 Deprecated Features in ARMv7-M

Lists the deprecated architectural features, with references to their descriptions in parts A to C of

the manual where appropriate.

Appendix D4 Debug ITM and DWT Packet Protocol

Describes the debug trace packet protocol used to export ITM and DWT sourced information.

Appendix DS ARMv7-R Differences

Summarizes the differences between the ARMv7-R and ARMv7-M profiles.

Appendix D6 Pseudocode Definition

Provides the formal definition of the pseudocode used in this manual.

Appendix D7 Pseudocode Index

An index to definitions of pseudocode operators, keywords, functions, and procedures.

Appendix D8 Register Index

An index to register descriptions in the manual.

Glossary Glossary of terms used in this manual. The glossary does not include terms associated with the
pseudocode.
Xii Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b

Non-Confidential

ID120114

Conventions

Preface

Typographic conventions

Numbers

Conventions
This following sections describe the conventions that this book can use:
. Typographic conventions.
. Numbers.
. Pseudocode descriptions.
. Assembler syntax descriptions.
The typographical conventions are:
italic Introduces special terminology, denotes internal cross-references and citations, or highlights an

important note.
bold Denotes signal names, and is used for terms in descriptive lists, where appropriate.

monospace Used for assembler syntax descriptions, pseudocode, and source code examples.
Also used in the main text for instruction mnemonics and for references to other items appearing in
assembler syntax descriptions, pseudocode, and source code examples.

SMALL CAPITALS

Used in body text for a few terms that have specific technical meanings, that are defined in the
Glossary. For example IMPLEMENTATION DEFINED, IMPLEMENTATION SPECIFIC, UNKNOWN, and
UNPREDICTABLE.

Colored text Indicates a link. This can be:
. A URL, for example http://infocenter.arm.com.

. A cross-reference, that includes the page number of the referenced information if it is not on
the current page, for example, Pseudocode descriptions.

. A link, to a chapter or appendix, or to a glossary entry, or to the section of the document that
defines the colored term, for example Simple sequential execution or LDRBT.

Numbers are normally written in decimal. Binary numbers are preceded by 0b, and hexadecimal numbers by 0x.
Both are written in a monospace font.

Pseudocode descriptions

This manual uses a form of pseudocode to provide precise descriptions of the specified functionality. This
pseudocode is written in a monospace font, and is described in Appendix D6 Pseudocode Definition.

Assembler syntax descriptions

This manual contains numerous syntax descriptions for assembler instructions and for components of assembler
instructions. These are shown in a monospace font, and use the conventions described in Assembler syntax on
page A7-171.

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. Xiii
Non-Confidential

Preface
Further reading

Further reading

This section lists relevant publications from ARM and third parties.

See the Infocenter http://infocenter.arm.com, for access to ARM documentation.

ARM publications

This document defines the ARMv7-M architecture profile. Other publications relating to this profile, and to the
ARM debug architecture are:

Procedure Call Standard for the ARM Architecture (ARM GENC 003534).

Run-time ABI for the ARM Architecture (ARM THI 0043).

ARM" Debug Interface v5 Architecture Specification (ARM IHI 0031).

ARM® CoreSight™ Architecture Specification (ARM IHI 0029).

ARM* CoreSight™ SoC-400 Technical Reference Manual (ARM DDI 0480).

ARM® Embedded Trace Macrocell Architecture Specification (ARM IHI 0014).

ARM* Embedded Trace Macrocell Architecture Specification, ETMv4 (ARM IHI 0064).

For information about the ARMv6-M architecture profile, see the ARMv6-M Architecture Reference Manual
(ARM DDI 0419).

For information about the ARMv7-A and -R profiles, see the ARM™ Architecture Reference Manual, ARMv7-A and
ARMv7-R edition (ARM DDI 0406).

For information about the ARMVS-A architecture profile, see the ARM®™ Architecture Reference Manual, ARMVS,
for ARMvS-A architecture profile (ARM DDI 0487).

Other publications

The following books are referred to in this manual:

ANSI/IEEE Std 754-1985 and ANSI/IEEE Std 754-2008, I[EEE Standard for Binary Floating-Point
Arithmetic. Unless otherwise indicated, references to IEEE 754 refer to either issue of the standard.

Note
This document does not adopt the terminology defined in the 2008 issue of the standard.

JEP106, Standard Manufacturers Identification Code, JEDEC Solid State Technology Association.

Xiv

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

Feedback

Preface
Feedback

ARM welcomes feedback on its documentation.

Feedback on this book

If you have comments on the content of this manual, send e-mail to errata@arm.com. Give:
. The title.

. The number, ARM DDI 0403E.b.

. The page numbers to which your comments apply.

. A concise explanation of your comments.

ARM also welcomes general suggestions for additions and improvements.

Note

ARM tests the PDF only in Adobe Acrobat and Acrobat Reader, and cannot guarantee the quality of the represented
document when used with any other PDF reader.

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. XV
Non-Confidential

Preface
Feedback

XVi Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

Part A

Application Level Architecture

Chapter A1
Introduction

This chapter introduces the ARMv7 architecture, the architecture profiles it defines, and the ARMv7-M profile
defined by this manual. It contains the following sections:

. About the ARMv7 architecture, and architecture profiles on page A1-20.
. The ARMv7-M architecture profile on page Al1-21.

. Architecture extensions on page A1-22.

ARM DDI 0403E.b Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A1-19
ID120114 Non-Confidential

A1 Introduction
A1.1 About the ARMv7 architecture, and architecture profiles

A1 About the ARMv7 architecture, and architecture profiles
ARMV7 is documented as a set of architecture profiles. The profiles are defined as follows:

ARMvV7-A The application profile for systems supporting the ARM and Thumb instruction sets, and requiring
virtual address support in the memory management model.

ARMvV7-R The realtime profile for systems supporting the ARM and Thumb instruction sets, and requiring
physical address only support in the memory management model

ARMvV7-M The microcontroller profile for systems supporting only the Thumb instruction set, and where
overall size and deterministic operation for an implementation are more important than absolute
performance.

While profiles were formally introduced with the ARMv7 development, the A-profile and R-profile have implicitly
existed in earlier versions, associated with the Virtual Memory System Architecture (VMSA) and Protected Memory
System Architecture (PMSA) respectively.

A1-20 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A1 Introduction
A1.2 The ARMv7-M architecture profile

A1.2 The ARMv7-M architecture profile

The ARM architecture has evolved through several major revisions to a point where it supports implementations
across a wide spectrum of performance points, with over a billion parts per annum being produced. The latest
version, ARMv7, formally recognizes this diversity by defining a set of architecture profiles that tailor the
architecture to different market requirements. A key factor is that the application level is consistent across all
profiles, and the bulk of the variation is at the system level.

The introduction of Thumb-2 technology in ARMv6T2 provided a balance to the ARM and Thumb instruction sets,
and the opportunity for the ARM architecture to be extended into new markets, in particular the microcontroller
marketplace. To take maximum advantage of this opportunity, ARM has introduced the ARMv7-M architecture
profile for microcontroller implementations, complementing its strengths in the high performance and real-time
embedded markets. ARMv7-M is a Thumb-only profile with a new system level programmers’ model.

Key criteria for ARMv7-M implementations are as follows:

. Enable implementations with industry leading power, performance, and area constraints:

— Provides opportunities for simple pipeline designs offering leading edge system performance levels in
a broad range of markets and applications.

. Highly deterministic operation:
— Single or low cycle count execution.
— Minimal interrupt latency, with short pipelines.
— Capable of cacheless operation.

. Excellent C/C++ target. This aligns with the ARM programming standards in this area:
— Exception handlers are standard C/C++ functions, entered using standard calling conventions.

. Designed for deeply embedded systems:
— Low pincount devices.
— Enables new entry level opportunities for the ARM architecture.

. Provides debug and software profiling support for event driven systems.

This manual is specific to the ARMv7-M profile.

A1.21 The ARMv7-M instruction set

ARMV7-M only supports execution of Thumb instructions. The Floating-point (FP) extension adds floating-point
instructions to the Thumb instruction set. For more information see Chapter A4 The ARMv7-M Instruction Set.

For details of the instruction encodings, see:
. Chapter AS The Thumb Instruction Set Encoding.
. Chapter A6 The Floating-Point Instruction Set Encoding.

For descriptions of the instructions supported, see:

. Chapter A7 Instruction Details.
. Chapter B5 System Instruction Details.
ARM DDI 0403E.b Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A1-21

ID120114 Non-Confidential

A1 Introduction
A1.3 Architecture extensions

A13

Architecture extensions

This manual describes the following extensions to the ARMv7-M architecture profile:

DSP extension

Floating-point

This optional extension adds the ARM Digital Signal Processing (DSP) instructions to the
ARMv7-M Thumb instruction set. These instructions include saturating and unsigned Single
Instruction Multiple Data (SIMD) instructions.

An ARMv7-M implementation that includes the DSP extension is called an ARMv7E-M
implementation, and Chapter A7 Instruction Details identifies the added instructions as
ARMV7E-M instructions.

extension

This optional extension adds floating-point instructions to the ARMv7-M Thumb instruction set.
Two versions of the Floating-point extension are available:

FPv4-SP This is a single-precision implementation of the VFPv4-D16 extension defined for the
ARMv7-A and ARMvV7-R architecture profiles.

FPv5 This extension adds optional support for double-precision computations and provides
additional instructions.

Note

In the ARMv7-A and ARMv7-R architecture profiles, the optional floating-point extensions are
called VFP extensions. This name is historic, and the abbreviation of the corresponding ARMv7-M
profile extension is FP extension. The instructions introduced in the ARMv7-M FP extension are
identical to the equivalent single-precision floating-point instructions in the ARMv7-A and
ARMV7-R profiles, and use the same instruction mnemonics. These mnemonics start with V.

Based on the VFP implementation options defined for the ARMv7-A and ARMv7-R architecture
profiles, the ARMv7-M floating-point extensions are characterized as shown in Table A1-1. Some
software tools might require these characterizations.

Table A1-1 Floating-point extension full characterizations

Extension Single-precision only Single and double-precision

FPv4-SP FPv4-SP-D16-M Not applicable

FPv5 FPv5-SP-D16-M FPv5-D16-M

A1-22

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

Chapter A2
Application Level Programmers’ Model

This chapter gives an application-level view of the ARMv7-M programmers’ model. It contains the following
sections:

About the application level programmers’ model on page A2-24.
ARM processor data types and arithmetic on page A2-25.
Registers and execution state on page A2-30.

Exceptions, faults and interrupts on page A2-33.

The optional floating-point extension on page A2-34.
Coprocessor support on page A2-61.

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved.
Non-Confidential

A2-23

A2 Application Level Programmers’ Model
A2.1 About the application level programmers’ model

A2.1

A2.1.1

About the application level programmers’ model

This chapter contains the programmers’ model information required for application development.

The information in this chapter is distinct from the system information required to service and support application
execution under an operating system. That information is given in Chapter B1 System Level Programmers’ Model.
System level support requires access to all features and facilities of the architecture, a level of access generally
referred to as privileged operation. System code determines whether an application runs in a privileged or
unprivileged manner. An operating system supports both privileged and unprivileged operation, but an application
usually runs unprivileged.

An application running unprivileged:

. Means the operating system can allocate system resources to the application, as either private or shared
resources.

. Provides a degree of protection from other processes and tasks, and so helps protect the operating system
from malfunctioning applications.

Running unprivileged means the processor is in Thread mode, see Interaction with the system level architecture.

Interaction with the system level architecture

Thread mode is the fundamental mode for application execution in ARMv7-M and is selected on reset. Thread mode
execution can be unprivileged or privileged. Thread mode can raise a supervisor call using the SVC instruction,
generating a Supervisor Call (SVCall) exception that the processor takes in Handler mode. Alternatively, Thread
mode can handle system access and control directly.

All exceptions execute in Handler mode. SVCall handlers manage resources, such as interaction with peripherals,
memory allocation and management of software stacks, on behalf of the application.

This chapter only provides system level information that is needed to understand operation at application level.
Where appropriate it:

. Gives an overview of the system level information.

. Gives references to the system level descriptions in Chapter B1 System Level Programmers’ Model and
elsewhere.

A2-24

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A2 Application Level Programmers’ Model
A2.2 ARM processor data types and arithmetic

A2.2 ARM processor data types and arithmetic

The ARMv7-M architecture supports the following data types in memory:

Byte 8 bits.
Halfword 16 bits.
Word 32 bits.

Registers are 32 bits in size. The instruction set contains instructions supporting the following data types held in
registers:

. 32-bit pointers.

. Unsigned or signed 32-bit integers.

. Unsigned 16-bit or 8-bit integers, held in zero-extended form.
. Signed 16-bit or 8-bit integers, held in sign-extended form.

. Unsigned or signed 64-bit integers held in two registers.

Load and store operations can transfer bytes, halfwords, or words to and from memory. Loads of bytes or halfwords
zero-extend or sign-extend the data as it is loaded, as specified in the appropriate load instruction.

The instruction sets include load and store operations that transfer two or more words to and from memory. You can
load and store 64-bit integers using these instructions.

When any of the data types is described as unsigned, the N-bit data value represents a non-negative integer in the
range 0 to 2N-1, using normal binary format.

When any of these types is described as signed, the N-bit data value represents an integer in the range -2N-1 to
+2N-1-1, using two's complement format.

Direct instruction support for 64-bit integers is limited, and most 64-bit operations require sequences of two or more
instructions to synthesize them.

A2.21 Integer arithmetic

The instruction set provides operations on the values in registers, including bitwise logical operations, shifts,
additions, subtractions, and multiplications. This manual describes these operations using pseudocode, usually in
one of the following ways:

. Direct use of the pseudocode operators and built-in functions defined in Operators and built-in functions on
page D6-873.

. Using pseudocode helper functions defined in the main text.

. Using a sequence of the form:
1. Use of the SInt(), UInt(), and Int() built-in functions to convert the bitstring contents of the

instruction operands to the unbounded integers that they represent as two's complement or unsigned
integers. Converting bitstrings to integers on page D6-875 defines these functions.

2. Use of mathematical operators, built-in functions and helper functions on those unbounded integers to
calculate other two's complement or unsigned integers.

3. Use of one of the following to convert an unbounded integer result into a bitstring result that can be
written to a register:

. The bitstring extraction operator defined in Bitstring extraction on page D6-874.

. The saturation helper functions described in Pseudocode details of saturation on page A2-29.

Appendix D6 Pseudocode Definition gives a general description of the ARM pseudocode.

ARM DDI 0403E.b Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A2-25
ID120114 Non-Confidential

A2 Application Level Programmers’ Model
A2.2 ARM processor data types and arithmetic

Shift and rotate operations

The following types of shift and rotate operations are used in instructions:

Logical Shift Left

(LSL) moves each bit of a bitstring left by a specified number of bits. Zeros are shifted in at the right
end of the bitstring. Bits that are shifted off the left end of the bitstring are discarded, except that the

last such bit can be produced as a carry output.

Logical Shift Right

(LSR) moves each bit of a bitstring right by a specified number of bits. Zeros are shifted in at the left
end of the bitstring. Bits that are shifted off the right end of the bitstring are discarded, except that

the last such bit can be produced as a carry output.

Arithmetic Shift Right

(ASR) moves each bit of a bitstring right by a specified number of bits. Copies of the leftmost bit are
shifted in at the left end of the bitstring. Bits that are shifted off the right end of the bitstring are

discarded, except that the last such bit can be produced as a carry output.

Rotate Right (ROR) moves each bit of a bitstring right by a specified number of bits. Each bit that is shifted off the
right end of the bitstring is re-introduced at the left end. The last bit shifted off the the right end of

the bitstring can be produced as a carry output.

Rotate Right with Extend

(RRX) moves each bit of a bitstring right by one bit. The carry input is shifted in at the left end of the
bitstring. The bit shifted off the right end of the bitstring can be produced as a carry output.

Pseudocode details of shift and rotate operations

These shift and rotate operations are supported in pseudocode by the following functions:

// LSL_C()
J/—

(bits(N), bit) LSL_C(bits(N) x, integer shift)
assert shift > 0;
extended_x = x : Zeros(shift);
result = extended_x<N-1:0>;
carry_out = extended_x<N>;
return (result, carry_out);

// 1SLO)
/] =====

bits(N) LSL(bits(N) x, integer shift)
assert shift >= 0;
if shift == 0 then
result = x;
else
(result, -) = LSL_C(x, shift);
return result;

// LSR_C()
J/—

(bits(N), bit) LSR_C(bits(N) x, integer shift)
assert shift > 0;
extended_x = ZeroExtend(x, shift+N);
result = extended_x<shift+N-1:shift>;
carry_out = extended_x<shift-1>;
return (result, carry_out);

// LSRO
/] =mmmm

A2-26 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved.

Non-Confidential

ARM DDI 0403E.b
ID120114

A2 Application Level Programmers’ Model
A2.2 ARM processor data types and arithmetic

bits(N) LSR(bits(N) x, integer shift)
assert shift >= 0;
if shift == 0 then

(result, -) = LSR_C(x, shift);
return result;

(bits(N), bit) ASR_C(bits(N) x, integer shift)
assert shift > 0;

SignExtend(x, shift+N);

result = extended_x<shift+N-1:shift>;

carry_out = extended_x<shift-1>;

return (result, carry_out);

bits(N) ASR(bits(N) x, integer shift)
assert shift >= 0;
if shift == 0 then

(result, -) = ASR_C(x, shift);
return result;

(bits(N), bit) ROR_C(bits(N) x, integer shift)
assert shift != 0;
m = shift MOD N;
result = LSR(x,m) OR LSL(x,N-m);
carry_out = result<N-1>;
return (result, carry_out);

bits(N) ROR(bits(N) x, integer shift)
if shift == 0 then

(result, -) = ROR_C(x, shift);
return result;

(bits(N), bit) RRX_C(bits(N) x, bit carry_in)
result = carry_in :
carry_out = x<0>;
return (result, carry_out);

bits(N) RRX(bits(N) x, bit carry_in)
(result, -) = RRX_C(x, carry_in);
return result;

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A2-27

Non-Confidential

A2 Application Level Programmers’ Model
A2.2 ARM processor data types and arithmetic

Pseudocode details of addition and subtraction

In pseudocode, addition and subtraction can be performed on any combination of unbounded integers and bitstrings,
provided that if they are performed on two bitstrings, the bitstrings must be identical in length. The result is another
unbounded integer if both operands are unbounded integers, and a bitstring of the same length as the bitstring

operand(s) otherwise. For the precise definition of these operations, see Addition and subtraction on page D6-876.

The main addition and subtraction instructions can produce status information about both unsigned carry and signed
overflow conditions. This status information can be used to synthesize multi-word additions and subtractions. In
pseudocode the AddwithCarry() function provides an addition with a carry input and carry and overflow outputs:

// AddWithCarry()
[/

(bits(N), bit, bit) AddwWithCarry(bits(N) x, bits(N) y, bit carry_in)
unsigned_sum = UInt(x) + UInt(y) + UInt(carry_in);
signed_sum = SInt(x) + SInt(y) + UInt(carry_in);

result = unsigned_sum<N-1:0>; // same value as signed_sum<N-1:0>
carry_out = if UInt(result) == unsigned_sum then ‘0’ else ‘1’;
overflow = if SInt(result) == signed_sum then ‘@’ else ‘1l’;

return (result, carry_out, overflow);
An important property of the AddwithCarry() function is that if:

(result, carry_out, overflow) = AddwithCarry(x, NOT(y), carry_in)

then:

. If carry_in == '1', then result == x-y with overflow == '1' if signed overflow occurred during the
subtraction and carry_out == '1' if unsigned borrow did not occur during the subtraction (that is, if x >= y).

. If carry_in == '0', then result == x-y-1 with overflow == '1' if signed overflow occurred during the
subtraction and carry_out == '1' if unsigned borrow did not occur during the subtraction (that is, if x > y).

Together, these mean that the carry_in and carry_out bits in AddwithCarry() calls can act as NOT borrow flags for
subtractions as well as carry flags for additions.

A2-28

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A2 Application Level Programmers’ Model
A2.2 ARM processor data types and arithmetic

Pseudocode details of saturation

Some instructions perform saturating arithmetic, that is, if the result of the arithmetic overflows the destination
signed or unsigned N-bit integer range, the result produced is the largest or smallest value in that range, rather than
wrapping around modulo 2N. This is supported in pseudocode by the SignedSatQ() and UnsignedSatQ() functions
when a boolean result is wanted saying whether saturation occurred, and by the SignedSat() and UnsignedSat()
functions when only the saturated result is wanted:

// SignedSatQ()
/] ====m=m=m===

(bits(N), boolean) SignedSatQ(integer i, integer N)

if i > 2A(N-1) - 1 then

result = 2A(N-1) - 1; saturated = TRUE;
elsif i < -(2A(N-1)) then

result = -(2A(N-1)); saturated = TRUE;
else

result = i1; saturated = FALSE;
return (result<N-1:0>, saturated);

// UnsignedSatQ()
[/ —

(bits(N), boolean) UnsignedSatQ(integer i, integer N)
if i > 2AN - 1 then
result = 2AN - 1; saturated = TRUE;
elsif i < @ then
result = 0; saturated = TRUE;
else
result = i; saturated = FALSE;
return (result<N-1:0>, saturated);

// SignedSat()
// mmmmmmmmmn=

bits(N) SignedSat(integer i, integer N)
(result, -) = SignedSatQ(i, N);
return result;

// UnsignedSat()
/] ====m==m====

bits(N) UnsignedSat(integer i, integer N)
(result, -) = UnsignedSatQ(i, N);
return result;

SatQ(i, N, unsigned) returns either UnsignedSatQ(i, N) or SignedSatQ(i, N) depending on the value of its third
argument, and Sat(i, N, unsigned) returns either UnsignedSat(i, N) or SignedSat(i, N) depending on the value of
its third argument:

// satQ()
/] —mmmm

(bits(N), boolean) SatQ(integer i, integer N, boolean unsigned)
(result, sat) = if unsigned then UnsignedSatQ(i, N) else SignedSatQ(i, N);
return (result, sat);

// Sat()

/] =====

bits(N) Sat(integer i, integer N, boolean unsigned)
result = if unsigned then UnsignedSat(i, N) else SignedSat(i, N);
return result;

ARM DDI 0403E.b Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A2-29
ID120114 Non-Confidential

A2 Application Level Programmers’ Model
A2.3 Registers and execution state

A2.3

A2.3.1

Registers and execution state

The application level programmers’ model provides details of the general-purpose and special-purpose registers
visible to the application programmer, the ARM memory model, and the instruction set used to load registers from
memory, store registers to memory, or manipulate data (data operations) within the registers.

Applications often interact with external events. A summary of the types of events recognized in the architecture,

along with the mechanisms provided in the architecture to interact with events, is included in Exceptions, faults and
interrupts on page A2-33. How events are handled is a system level topic described in ARMv7-M exception model
on page B1-579.

ARM core registers

There are thirteen general-purpose 32-bit registers, R0-R12, and an additional three 32-bit registers that have special
names and usage models.

SP Stack pointer, used as a pointer to the active stack. For usage restrictions see Use of 0b1101 as a
register specifier on page A5-125. This is preset to the top of the Main stack on reset. See 7The SP
registers on page B1-572 for more information. SP is sometimes referred to as R13.

LR Link register, used to store the Return Link. This is a value that relates to the return address from a
subroutine that is entered using a Branch with Link instruction. A reset sets this register to
OXFFFFFFFF. The reset value causes a fault condition if the processor uses it when attempting a
subroutine return. The LR is also updated on exception entry, see Exception entry behavior on
page B1-587. LR is sometimes referred to as R14.

Note

LR can be used for other purposes when it is not required to support a return from a subroutine.

PC Program counter. For details on the usage model of the PC see Use of 0b1111 as a register specifier
on page A5-124. The PC is loaded with the reset handler start address on reset. PC is sometimes
referred to as R15.

Pseudocode details of ARM core register operations

In pseudocode, the R[] function is used to:
. Read or write RO-R12, SP, and LR, using n == 0-12, 13, and 14 respectively.
. Read the PC, using n == 15.

This function has prototypes:

bits(32) R[integer n]
assert n >= 0 & n <= 15;

R[integer n] = bits(32) value
assert n >= 0 & & n <= 14;

For more information about the R[] function, see Pseudocode details of ARM core register accesses on
page B1-577. Writing an address to the PC causes either a simple branch to that address or an interworking branch
that, in ARMv7-M, must select the Thumb instruction set to execute after the branch.

Note

The following pseudocode defines behavior in ARMv7-M. It is much simpler than the equivalent pseudocode
function definitions that apply to older ARM architecture variants and other ARMv?7 profiles.

The BranchWritePC() function performs a simple branch:

// BranchWritePC()
/] ====m====m=====

BranchWritePC(bits(32) address)

A2-30

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A2 Application Level Programmers’ Model
A2.3 Registers and execution state

BranchTo(address<31:1>:’0’);
The BXWritePC() and BLXWritePC() functions each perform an interworking branch:

// BXWritePC()
e

BXWritePC(bits(32) address)
if CurrentMode == Mode_Handler && address<31:28> == ‘1111’ then
ExceptionReturn(address<27:0>);
else
EPSR.T = address<@>; // if EPSR.T == 0, a UsageFault(‘Invalid State’)
// is taken on the next instruction
BranchTo(address<31:1>:’0");
// BLXWritePC()
/A

BLXWritePC(bits(32) address)
EPSR.T = address<@>; // if EPSR.T == 0, a UsageFault(‘Invalid State’)
// is taken on the next instruction
BranchTo(address<31:1>:'0");

The LoadWritePC() and ALUWritePC() functions are used for two cases where the behavior was systematically
modified between architecture versions. The functions simplify to aliases of the branch functions in the M-profile
architecture variants:

// LoadWritePC()
/] ==m=m==m=====

LoadwWritePC(bits(32) address)
BXWritePC(address);

// ALUWritePC()
/A

ALUWritePC(bits(32) address)
BranchWritePC(address);

A2.3.2 The Application Program Status Register (APSR)

Program status is reported in the 32-bit Application Program Status Register (APSR). The APSR bit assignments
are:

3130 29 28 27 26 2019 16 15 0

Nfz[C[V]Q Reserved GE[3:0] Reserved

APSR bit fields are in the following categories:

. Reserved bits are allocated to system features or are available for future expansion. Further information on
currently allocated reserved bits is available in The special-purpose program status registers, xPSR on
page B1-572. Application level software must ignore values read from reserved bits, and preserve their value
on a write. The bits are defined as UNK/SBZP.

. Flags that can be updated by many instructions:

N, bit[31] Negative condition code flag. Set to bit[31] of the result of the instruction. If the result is regarded
as a two's complement signed integer, then N == 1 if the result is negative and N == 0 if it is
positive or zero.

Z, bit[30] Zero condition code flag. Set to 1 if the result of the instruction is zero, and to 0 otherwise. A
result of zero often indicates an equal result from a comparison.

C, bit[29] Carry condition code flag. Set to 1 if the instruction results in a carry condition, for example an
unsigned overflow on an addition.

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A2-31
Non-Confidential

A2 Application Level Programmers’ Model
A2.3 Registers and execution state

A2.3.3

A2.3.4

V, bit[28] Overflow condition code flag. Set to 1 if the instruction results in an overflow condition, for
example a signed overflow on an addition.

Q, bit[27] Setto 1 if a SSAT or USAT instruction changes the input value for the signed or unsigned range of
the result. In a processor that implements the DSP extension, the processor sets this bit to 1 to
indicate an overflow on some multiplies. Setting this bit to 1 is called saturation.

GE|3:0], bits[19:16], DSP extension only

Greater than or Equal flags. SIMD instructions update these flags to indicate the results from
individual bytes or halfwords of the operation. Software can use these flags to control a later SEL
instruction. For more information, see SEL on page A7-384.

In a processor that does not implement the DSP extension these bits are reserved.

Execution state support

ARMV7-M only executes Thumb instructions, and therefore always executes instructions in Thumb state. See
Chapter A7 Instruction Details for a list of the instructions supported.

In addition to normal program execution, the processor can operate in Debug state, described in Chapter C1
ARMv7-M Debug.

Privileged execution

Good system design practice requires the application developer to have a degree of knowledge of the underlying
system architecture and the services it offers. System support requires a level of access generally referred to as
privileged operation. The system support code determines whether applications run in a privileged or unprivileged
manner. Where both privileged and unprivileged support is provided by an operating system, applications usually
run unprivileged, permitting the operating system to allocate system resources for private or shared use by the
application, and to provide a degree of protection with respect to other processes and tasks.

Thread mode is the fundamental mode for application execution in ARMv7-M. Thread mode is selected on reset,
and can execute in a privileged or unprivileged manner depending on the system environment. Privileged execution
is required to manage system resources in many cases. When code is executing unprivileged, Thread mode can
execute an SVC instruction to generate a supervisor call exception. Privileged execution in Thread mode can raise a
supervisor call using SVC or handle system access and control directly.

All exceptions execute as privileged code in Handler mode. See ARMv7-M exception model on page B1-579 for
details. Supervisor call handlers manage resources on behalf of the application such as interaction with peripherals,
memory allocation and management of software stacks.

A2-32

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A2 Application Level Programmers’ Model
A2.4 Exceptions, faults and interrupts

A2.4 Exceptions, faults and interrupts

An exception can be caused by the execution of an exception generating instruction or triggered as a response to a
system behavior such as an interrupt, memory management protection violation, alignment or bus fault, or a debug
event. Synchronous and asynchronous exceptions can occur within the architecture.

How events are handled is a system level topic described in ARMv7-M exception model on page B1-579.

A2.41 System-related events

The following types of exception are system-related. Where there is direct correlation with an instruction, reference
to the associated instruction is made.

Supervisor calls are used by application code to request a service from the underlying operating system. Using the
SVC instruction, the application can instigate a supervisor call for a service requiring privileged access to the system.

Several forms of Fault can occur:

. Instruction execution related errors.
. Data memory access errors can occur on any load or store.
. Usage faults from a variety of execution state related errors. Attempting to execute an undefined instruction

is an example cause of a UsageFault exception.
. Debug events can generate a DebugMonitor exception.

Faults in general are synchronous with respect to the associated executing instruction. Some system errors can cause
an imprecise exception where it is reported at a time bearing no fixed relationship to the instruction that caused it.

The processor always treats interrupts as asynchronous to the program flow.
An ARMv7-M implementation includes:
. A system timer, SysTick, and associated interrupt, see The system timer, SysTick on page B3-676.

. A deferred Supervisor call, PendSV. A handler uses this when it requires service from a Supervisor, typically
an underlying operating system. The PendSV handler executes when the processor takes the associated
exception. PendSV is supported by the ICSR, see Interrupt Control and State Register, ICSR on page B3-655.
For more information see Use of SVCall and PendSV to avoid critical code regions on page B1-586.

Note
— The name of this exception, PendSV, indicates that the processor must set the ICSR.PENDSVSET bit
to 1 to make the associated exception pending. The exception priority model then determines when the

processor takes the exception. This is the only way a processor can enter the PendSV exception
handler.

— For the definition of a Pending exception, see Exceptions on page B1-569.

— Anapplication uses the SVC instruction if it requires a Supervisor call that executes synchronously with
the program execution.

. A controller for external interrupts, see Nested Vectored Interrupt Controller, NVIC on page B3-680.
. A BKPT instruction, that generates a debug event, see Debug event behavior on page C1-752.

For power or performance reasons, software might want to notify the system that an action is complete, or provide
a hint to the system that it can suspend operation of the current task. The ARMv7-M architecture provides
instruction support for the following:

. Send Event and Wait for Event instructions, see SEV on page A7-385 and WFE on page A7-560.

. A Wait For Interrupt instruction,. see WFI on page A7-561.

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A2-33
Non-Confidential

A2 Application Level Programmers’ Model
A2.5 The optional floating-point extension

A2.5 The optional floating-point extension

The Floating Point (FP) extension is an optional extension to ARMv7-M. Two versions are available, described as

FPv4-SP and FPv5. Both versions define a Floating Point Unit (FPU) that supports single-precision (32-bit)

arithmetic, while FPv5 also provides additional instructions and optional support for double-precision (64-bit)

arithmetic.

The FPv4-SP FPU supports:

. FP extension registers that software can view as either 32 single-precision or 16 double-precision registers.

. Single-precision floating-point arithmetic.

. Conversions between integer, single-precision floating-point, and half-precision floating-point formats.

. Data transfers of single-precision and double-precision registers.

The FPv5 FPU includes all the functionality of FPv4-SP, and adds:

. Optional double-precision floating-point arithmetic.

. Conversions between integer, single-precision floating-point, double-precision floating-point and
half-precision floating-point formats.

. New instructions:

— Floating-point selection, see V'SEL on page A7-551.
— Floating-point maximum and minimum numbers, see VMAXNM, VMINNM on page A7-523.
— Floating-point integer conversions with directed rounding modes, see VCVTA, VCVTN, VCVTP, and
VCVTM on page A7-505.
— Floating-point round to integral floating-point, see VRINTA, VRINTN, VRINTP, and VRINTM on
page A7-545 and VRINTZ, VRINTR on page A7-549.
Note

. FPv4-SP is a single-precision only variant of the VFPv4-D16 extension of the ARMv7-A and ARMv7-R
architecture profiles, see the ARM Architecture Reference Manual, ARMv7-A and ARMv7-R edition.

. In the ARMv7-A and ARMv7-R architecture profiles, floating-point instructions are called VFP instructions
and have mnemonics starting with V. Because ARM assembler is highly consistent across architecture
versions and profiles, ARMv7-M retains these mnemonics, but normally describes the instructions as
floating-point instructions, or FP instructions.

. Much of the pseudocode describing floating-point operation is common with the ARMv7-A and ARMv7-R
architecture profiles, and therefore uses VFP to refer to floating-point operations.

The extension supports untrapped handling of floating-point exceptions, such as overflow or division by zero. When

handled in this way, the floating-point exception sets a cumulative status register bit to 1, and the FP operation

returns a defined result. Where appropriate, for example with the inexact and underflow exceptions, the defined
result is a valid result with reduced precision.

For system-level information about the FP extension see:

. FP extension system register on page B1-620.

. Floating-point support on page B1-620.

A2.5.1 Floating-point standards, and terminology

The original ARM floating-point implementation was based on the 1985 version of the /EEE Standard for Binary

Floating-Point Arithmetic. As such, some terms in this manual are based on the 1985 version of this standard:

. ARM floating-point terminology generally uses the IEEE 754-1985 terms. This section summarizes how
IEEE 754-2008 changes these terms.

. References to IEEE 754 that do not include the issue year apply to either issue of the standard.

A2-34 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b

Non-Confidential ID120114

A2 Application Level Programmers’ Model
A2.5 The optional floating-point extension

Table A2-1 shows how the terminology in this manual differs from that used in IEEE 754-2008.

Table A2-1 Default NaN encoding

This manual IEEE 754-2008
Normalized?2 Normal
Denormal, or denormalized Subnormal

Round towards Minus Infinity (RM) roundTowardsNegative

Round towards Plus Infinity (RP) roundTowardsPositive
Round towards Zero (RZ) roundTowardZero
Round to Nearest (RN) roundTiesToEven

Round to Nearest with Ties to Away roundTiesToAway

Rounding mode Rounding-direction attribute

a. Normalized number is used in preference to normal number,
because of the other specific uses of normal in this manual.

A2.5.2 The FP extension registers

Software can access the FP extension register bank as:
. Thirty-two 32-bit single-precision registers, S0-S31.
. Sixteen 64-bit double-precision registers, D0-D15.

The extension can use the two views simultaneously. Figure A2-1 shows the relationship between the two views.
After a reset, the values of the FP extension registers are UNKNOWN.

After a save of FP context, the values of registers S0-S15 are unknown, see Context state stacking on exception entry
with the FP extension on page B1-593. Saving the FP context does not save the values of registers S16-531, and does
not affect the values of those registers.

S0-S31 D0-D15
s — b0 —
s - b1 —
s — b2 —
s - b3 —
o
S30

s | —— D15 —

Figure A2-1 Alternative views of the FP extension register bank

The FP extension provides single-precision floating-point data-processing instructions, that operate on registers
S0-S31 and, optionally, double-precision floating-point data-processing instructions, that operate on registers D8-D15.
This manual describes these registers as the floating-point registers. It also provides data transfer instructions that
operate on registers S0-S31 or on registers D@-D15.

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A2-35
Non-Confidential

A2 Application Level Programmers’ Model
A2.5 The optional floating-point extension

Note
. Registers S0-531 are sometimes described as the single-word registers.
. Registers D0-D15 are sometimes described as the double-precision registers.

Other ARM floating-point implementations can support 32 double-precision registers, D@-D31. In the ARMv7-M FP
extension, and other implementations that support only D@-D15, any instruction that attempts to access any register
in the range D16-D31 is UNDEFINED.

Note

Some of the FP pseudocode functions are common to all ARMv7 implementations. Therefore, they can include
cases that cannot occur in the ARMv7-M FP extension.

Pseudocode details of the FP extension registers

The pseudocode function VFPSmalT1RegisterBank() returns TRUE if an FP implementation provides access only to
double-precision registers D8-D15. In an ARMv7-M implementation this function always returns TRUE.

The following functions provide the S0-S31 and D0-D15 views of the registers:

// The 32-bit extension register bank for the FP extension.

array bits(64) _D[0..15];

// S[] - non-assignment form

//

bits(32) S[integer n]
assert n >= 0 & n <= 31;
if (n MOD 2) == 0 then
result = D[n DIV 2]<31:0>;
else
result = D[n DIV 2]<63:32>;
return result;

// S[] - assignment form
//

S[integer n] = bits(32) value
assert n >= 0 & n <= 31;
if (n MOD 2) == 0 then
D[n DIV 2]1<31:0> = value;
else
D[n DIV 2]<63:32> = value;
return;

// D[] - non-assignment form

//

bits(64) D[integer n]
assert n >= 0 & & n <= 31;
if n >= 16 && VFPSmallRegisterBank() then UNDEFINED;
return _D[n];

// D[] - assignment form
//

D[integer n] = bits(64) value
assert n >= 0 & n <= 31;
if n >= 16 & VFPSmallRegisterBank() then UNDEFINED;
_D[n] = value;
return;

A2-36 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A2 Application Level Programmers’ Model
A2.5 The optional floating-point extension

A2.5.3 Floating-point Status and Control Register, FPSCR

The FPSCR characteristics are:

Purpose

Usage constraints

Configurations

Attributes

Provides application-level control of the floating-point system.

Accessible only when software has enabled access to CP10 and CP11, see Coprocessor
Access Control Register, CPACR on page B3-670.

Creating a new floating-point context sets the AHP, DN, FZ, and RMode fields of the
FPSCR to the values specified in the FPDSCR, see Floating Point Default Status Control
Register, FPDSCR on page B3-674. For more information, see Context state stacking on
exception entry with the FP extension on page B1-593.

Implemented only when an implementation includes the FP extension.

A 32-bit read/write register, accessible by unprivileged and privileged software. The
FPSCR reset value is UNKNOWN.

The FPSCR bit assignments are:

3130 29 28 27 26 25 24 23 22 21 876543210

N|zZ|C|V

Reserved

Reserved -/ L— RMode IDC — L-1oc
AHP Reserved DzC

N, bit[31]
Z, bit[30]
C, bit[29]
V, bit[28]
Bit[27]

AHP, bit[26]

DN, bit[25]

FZ, bit[24]

RMode, bits[23:22]

Fz
DN IXC OFC

UFC

Negative condition code flag. Floating-point comparison operations update this flag.
Zero condition code flag. Floating-point comparison operations update this flag.
Carry condition code flag. Floating-point comparison operations update this flag.
Overflow condition code flag. Floating-point comparison operations update this flag.
Reserved.

Alternative half-precision control bit:
0 IEEE 754-2008 half-precision format selected.
1 Alternative half-precision format selected.

For more information see Floating-point half-precision formats on page A2-42.

Default NaN mode control bit:
0 NaN operands propagate through to the output of a floating-point operation.
1 Any operation involving one or more NaNs returns the Default NaN.

For more information, see NaN handling and the Default NaN on page A2-44.

Flush-to-zero mode control bit:

0 Flush-to-zero mode disabled. Behavior of the floating-point system is fully
compliant with the IEEE 754 standard.

1 Flush-to-zero mode enabled.

For more information, see Flush-to-zero on page A2-43.

Rounding Mode control field. The encoding of this field is:

0b00 Round to Nearest (RN) mode.
0b01 Round towards Plus Infinity (RP) mode.
0b10 Round towards Minus Infinity (RM) mode.
Ob11 Round towards Zero (RZ) mode.
ARM DDI 0403E.b Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A2-37

ID120114

Non-Confidential

A2 Application Level Programmers’ Model
A2.5 The optional floating-point extension

The specified rounding mode is used by almost all floating-point instructions.
Bits[21:8] Reserved.

IDC, bit[7] Input Denormal cumulative exception bit.

This bit is set to 1 to indicate that the corresponding exception has occurred since 0 was last
written to it. For more information about the exception indicated by this bit see
Floating-point exceptions on page A2-44.

Bits[6:5] Reserved.

IXC, bit[4] Inexact cumulative exception bit.

This bit is set to 1 to indicate that the corresponding exception has occurred since 0 was last
written to it. For more information about the exceptions indicated by this bit see
Floating-point exceptions on page A2-44.

UFC, bit[3] Underflow cumulative exception bit.

This bitis set to 1 to indicate that the corresponding exception has occurred since 0 was last
written to it. For more information about the exceptions indicated by this bit see
Floating-point exceptions on page A2-44.

OFC, bit[2] Overflow cumulative exception bit.

This bit is set to 1 to indicate that the corresponding exception has occurred since 0 was last
written to it. For more information about the exceptions indicated by this bit see
Floating-point exceptions on page A2-44.

DZC, bit[1] Division by Zero cumulative exception bit.

This bit is set to 1 to indicate that the corresponding exception has occurred since 0 was last
written to it. For more information about the exceptions indicated by this bit see
Floating-point exceptions on page A2-44.

10C, bit[0] Invalid Operation cumulative exception bit.

This bit is set to 1 to indicate that the corresponding exception has occurred since 0 was last
written to it. For more information about the exceptions indicated by this bit see
Floating-point exceptions on page A2-44.

Writes to the FPSCR can have side-effects on various aspects of processor operation. All of these side-effects are
synchronous to the FPSCR write. This means they are guaranteed not to be visible to earlier instructions in the
execution stream, and they are guaranteed to be visible to later instructions in the execution stream.

Accessing the FPSCR

You read or write the FPSCR, or transfer the FPSCR flags to the corresponding APSR flags, using the VMRS and VMSR
instructions. For more information, see VMRS on page A7-534 and VMSR on page A7-535. For example:

VMRS <Rt>, FPSCR ; Read Floating-point System Control Register
VMSR FPSCR, <Rt> ; Write Floating-point System Control Register
A2.54 Floating-point data types and arithmetic

The FP extension supports single-precision (32-bit) and double-precision (64-bit) floating-point data types and
arithmetic as defined by the IEEE 754 floating-point standard. It also supports the ARM standard modifications to
that arithmetic described in Flush-to-zero on page A2-43 and NaN handling and the Default NaN on page A2-44.

ARM standard floating-point arithmetic means IEEE 754 floating-point arithmetic with the ARM standard
modifications and the Round to Nearest rounding mode selected.

A2-38 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A2 Application Level Programmers’ Model
A2.5 The optional floating-point extension

ARM standard floating-point input and output values

ARM standard floating-point arithmetic supports the following input formats defined by the IEEE 754
floating-point standard:

. Zeros.
. Normalized numbers.
. Denormalized numbers are flushed to 0 before floating-point operations. For more information see

Flush-to-zero on page A2-43.
. NaNs.
. Infinities.

ARM standard floating-point arithmetic supports the Round to Nearest rounding mode defined by the IEEE 754
standard.

ARM standard floating-point arithmetic supports the following output result formats defined by the IEEE 754
standard:

. Zeros.

. Normalized numbers.

. Results that are less than the minimum normalized number are flushed to zero, see Flush-to-zero on
page A2-43.

. NaNs produced in floating-point operations are always the default NaN, see NaN handling and the Default
NaN on page A2-44.

. Infinities.

Floating-point single-precision format
The single-precision floating-point format used by the FP extension is as defined by the IEEE 754 standard.

This description includes ARM-specific details that are left open by the standard. It is only intended as an
introduction to the formats and to the values they can contain. For full details, especially of the handling of infinities,
NaNs and signed zeros, see the IEEE 754 standard.

A single-precision value is a 32-bit word, and must be word-aligned when held in memory. It has the format:

3130 23 22 0

S exponent fraction

The interpretation of the format depends on the value of the exponent field, bits[30:23]:

0 < exponent < OxFF

The value is a normalized number and is equal to:

—1S x 2(exponent —127) x (] fraction)

The minimum positive normalized number is 2-126, or approximately 1.175 x10-38,

The maximum positive normalized number is (2 — 2-23) x 2127 or approximately 3.403 x1038.
exponent ==

The value is either a zero or a denormalized number, depending on the fraction bits:

fraction ==
The value is a zero. There are two distinct zeros:
+0 When S==0.
ARM DDI 0403E.b Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A2-39

ID120114

Non-Confidential

A2 Application Level Programmers’ Model
A2.5 The optional floating-point extension

-0 When S==1.

These usually behave identically. In particular, the result is equal if +0 and —0 are
compared as floating-point numbers. However, they yield different results in some
circumstances. For example, the sign of the infinity produced as the result of dividing
by zero depends on the sign of the zero. The two zeros can be distinguished from each
other by performing an integer comparison of the two words.

fraction !=0
The value is a denormalized number and is equal to:
—18 x 27126 x (0.fraction)
The minimum positive denormalized number is 2-149, or approximately 1.401 x 1045,

Denormalized numbers are optionally flushed to zero in the FP extension. For details see
Flush-to-zero on page A2-43.

exponent == OxFF
The value is either an infinity or a Not a Number (NaN), depending on the fraction bits:
fraction ==
The value is an infinity. There are two distinct infinities:

+o0 When S==0. This represents all positive numbers that are too big to be
represented accurately as a normalized number.

-0 When S==1. This represents all negative numbers with an absolute value

that is too big to be represented accurately as a normalized number.
fraction !=0

The value is a NaN, and is either a quiet NaN or a signaling NaN.

In the FP architecture, the two types of NaN are distinguished on the basis of their most

significant fraction bit, bit[22]:

bit[22] ==
The NaN is a signaling NaN. The sign bit can take any value, and the
remaining fraction bits can take any value except all zeros.

bit[22] ==
The NaN is a quiet NaN. The sign bit and remaining fraction bits can take
any value.

For details of the default NaN see NaN handling and the Default NaN on page A2-44.

Note

NaNs with different sign or fraction bits are distinct NaNs, but this does not mean you can use floating-point
comparison instructions to distinguish them. This is because the IEEE 754 standard specifies that a NaN compares
as unordered with everything, including itself. However, you can use integer comparisons to distinguish different
NaNs.

Floating-point double-precision format

The double-precision floating-point format used by the Floating-point Extension is as defined by the IEEE 754
standard.

This description includes Floating-point Extension-specific details that are left open by the standard. It is only
intended as an introduction to the formats and to the values they can contain. For full details, especially of the
handling of infinities, NaNs and signed zeros, see the IEEE 754 standard.

A2-40 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A2 Application Level Programmers’ Model
A2.5 The optional floating-point extension

A double-precision value is a 64-bit doubleword, with the format:

6362 5251 . 32 31 . 0

S exponent fraction

Itd ((Itd
t)T)T

Double-precision values represent numbers, infinities and NaNs in a similar way to single-precision values, with
the interpretation of the format depending on the value of the exponent:

0 < exponent < 0x7FF
The value is a normalized number and is equal to:
(=1)S x 2(exponent-1023) x (1.fraction)
The minimum positive normalized number is 2-1022, or approximately 2.225 x 10-308,

The maximum positive normalized number is (2 — 2-52) x 21023 or approximately 1.798 x 10308,

exponent ==
The value is either a zero or a denormalized number, depending on the fraction bits:
fraction ==

The value is a zero. There are two distinct zeros that behave analogously to the two
single-precision zeros:

+0 When S==0.
-0 When S==1.
fraction !=0
The value is a denormalized number and is equal to:
(-1)8 x 271022 x (0.fraction)
The minimum positive denormalized number is 2-1074, or approximately 4.941 x 10324,

Optionally, denormalized numbers are flushed to zero in the Floating-point Extension. For details
see Flush-to-zero on page A2-43.

exponent == Ox7FF
The value is either an infinity or a NaN, depending on the fraction bits:
fraction ==
The value is an infinity. As for single-precision, there are two infinities:
+infinity When S==0.
-infinity When S==1.
fraction !=0
The value is a NaN, and is either a quiet NaN or a signaling NaN.
In the Floating-point Extension, the two types of NaN are distinguished on the basis of
their most significant fraction bit, bit[19] of the most significant word:
bit[19] ==
The NaN is a signaling NaN. The sign bit can take any value, and the
remaining fraction bits can take any value except all zeros.
bit[19] ==
The NaN is a quiet NaN. The sign bit and the remaining fraction bits can
take any value.

For details of the default NaN see NaN handling and the Default NaN on page A2-44.

Note

NaNs with different sign or fraction bits are distinct NaNs, but this does not mean software can use floating-point
comparison instructions to distinguish them. This is because the IEEE 754 standard specifies that a NaN compares
as unordered with everything, including itself.

ARM DDI 0403E.b Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A2-41
ID120114 Non-Confidential

A2 Application Level Programmers’ Model
A2.5 The optional floating-point extension

Floating-point half-precision formats

The ARM half-precision floating-point implementation uses two half-precision floating-point formats:
. IEEE half-precision, as described in the IEEE 754-2008 standard.
. Alternative half-precision.

The description of IEEE half-precision includes ARM-specific details that are left open by the standard, and is only
an introduction to the formats and to the values they can contain. For more information, especially on the handling
of infinities, NaNs and signed zeros, see the [IEEE 754-2008 standard.

For both half-precision floating-point formats, the layout of the 16-bit number is the same. The format is:

1514 10 9 0

S exponent fraction

The interpretation of the format depends on the value of the exponent field, bits[14:10] and on which half-precision
format is being used.
0 < exponent < 0x1F
The value is a normalized number and is equal to:
—1S x 2(exponent-15) x (1 fraction)
The minimum positive normalized number is 2-14, or approximately 6.104 x10-5.
The maximum positive normalized number is (2 — 2-10) x 215 or 65504.
Larger normalized numbers can be expressed using the alternative format when the exponent ==
OX1F.
exponent ==
The value is either a zero or a denormalized number, depending on the fraction bits:
fraction ==
The value is a zero. There are two distinct zeros:
+0 When S==0.
-0 When S==1.
fraction !=0
The value is a denormalized number and is equal to:
—18 x 2714 x (0.fraction)

The minimum positive denormalized number is 224, or approximately 5.960 x 1078,

exponent == 0x1F
The value depends on which half-precision format is being used:

IEEE Half-precision
The value is either an infinity or a Not a Number (NaN), depending on the fraction bits:

fraction ==

The value is an infinity. There are two distinct infinities:

+infinity When S==0. This represents all positive numbers
that are too big to be represented accurately as a
normalized number.

-infinity When S==1. This represents all negative numbers
with an absolute value that is too big to be
represented accurately as a normalized number.

A2-42 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b

Non-Confidential ID120114

A2 Application Level Programmers’ Model
A2.5 The optional floating-point extension

fraction !=0
The value is a NaN, and is either a quiet NaN or a signaling NaN. The two
types of NaN are distinguished by their most significant fraction bit, bit[9]:

bit[9] == The NaN is a signaling NaN. The sign bit can take
any value, and the remaining fraction bits can take
any value except all zeros.

bit[9] == The NaN is a quiet NaN. The sign bit and remaining
fraction bits can take any value.

Alternative Half-precision
The value is a normalized number and is equal to:
-18 x 216 x (1 .fraction)

The maximum positive normalized number is (2-2-10) x 216 or 131008.

Flush-to-zero

Behavior in Flush-to-zero mode differs from normal IEEE 754 arithmetic in the following ways:

All inputs to floating-point operations that are single-precision de-normalized numbers are treated as though
they were zero. This causes an Input Denormal exception, but does not cause an Inexact exception. The Input
Denormal exception occurs only in Flush-to-zero mode.

The FPSCR contains a cumulative exception bit FPSCR.IDC corresponding to the Input Denormal
exception. For more information see Floating-point Status and Control Register, FPSCR on page A2-37.

The occurrence of all exceptions except Input Denormal is determined using the input values after
flush-to-zero processing has occurred.

The result of a floating-point operation is flushed to zero if the result of the operation before rounding
satisfies the condition:

0 < Abs(result) < MinNorm, where MinNorm is 2-126 for single-precision arithmetic.

This causes the FPSCR.UFC bit to be set to 1, and prevents any Inexact exception from occurring for the
operation.

Underflow exceptions occur only when a result is flushed to zero.
An Inexact exception does not occur if the result is flushed to zero, even though the final result of zero is not

equivalent to the value that would be produced if the operation were performed with unbounded precision
and exponent range.

For information on the FPSCR bits see Floating-point Status and Control Register, FPSCR on page A2-37.

When an input or a result is flushed to zero the value of the sign bit of the zero is preserved. That is, the sign bit of
the zero matches the sign bit of the input or result that is being flushed to zero.

Flush-to-zero mode has no effect on half-precision numbers that are inputs to floating-point operations, or results
from floating-point operations.

Note

Flush-to-zero mode is incompatible with the IEEE 754 standard, and must not be used when IEEE 754 compatibility
is a requirement. Flush-to-zero mode must be treated with care. Although it can lead to a major performance
increase on many algorithms, there are significant limitations on its use. These are application dependent:

On many algorithms, it has no noticeable effect, because the algorithm does not normally use denormalized
numbers.

On other algorithms, it can cause exceptions to occur or seriously reduce the accuracy of the results of the
algorithm.

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A2-43
Non-Confidential

A2 Application Level Programmers’ Model
A2.5 The optional floating-point extension

NaN handling and the Default NaN

The IEEE 754 standard specifies that:

. An operation that produces an Invalid Operation floating-point exception generates a quiet NaN as its result.
. An operation involving a quiet NaN operand, but not a signaling NaN operand, returns an input NaN as its
result.

The FP behavior when Default NaN mode is disabled adheres to this with the following extra details, where the first
operand means the first argument to the pseudocode function call that describes the operation:

. If an Invalid Operation floating-point exception is produced because one of the operands is a signaling NaN,
the quiet NaN result is equal to the signaling NaN with its most significant fraction bit changed to 1. If both
operands are signaling NaNs, the result is produced in this way from the first operand.

. If an Invalid Operation floating-point exception is produced for other reasons, the quiet NaN result is the
Default NaN.

. If both operands are quiet NaNs, the result is the first operand.

The FP behavior when Default NaN mode is enabled is that the Default NaN is the result of all floating-point
operations that:

. Generate Invalid Operation floating-point exceptions.

. Have one or more quiet NaN inputs.

Table A2-2 shows the format of the default NaN for ARM floating-point processors.

Default NaN mode is selected for FP by setting the FPSCR.DN bit to 1, see Floating-point Status and Control
Register, FPSCR on page A2-37.

The Invalid Operation exception causes the FPSCR.IOC bit be set to 1. This is not affected by Default NaN mode.

Table A2-2 Default NaN encoding

Half-precision, IEEE Format Single-precision Double-precision
Sign bit 0 0 0
Exponent 0x1F OxFF Ox7FF
Fraction Bit[9] == 1, bits[8:0] == bit[22] == 1, bits[21:0] == bit[51] == 1, bits[50:0] ==

Floating-point exceptions

The FP extension records the following floating-point exceptions in the FPSCR cumulative bits, see Floating-point
Status and Control Register, FPSCR on page A2-37:

10C Invalid Operation. The bit is set to 1 if the result of an operation has no mathematical value or cannot
be represented. Cases include infinity * 0, +infinity + (—infinity), for example. These tests are made
after flush-to-zero processing. For example, if flush-to-zero mode is selected, multiplying a
denormalized number and an infinity is treated as 0 * infinity and causes an Invalid Operation
floating-point exception.

I0C is also set on any floating-point operation with one or more signaling NaNs as operands, except
for negation and absolute value, as described in FP negation and absolute value on page A2-47.

DZC Division by Zero. The bit is set to 1 if a divide operation has a zero divisor and a dividend that is
not zero, an infinity or a NaN. These tests are made after flush-to-zero processing, so if flush-to-zero
processing is selected, a denormalized dividend is treated as zero and prevents Division by Zero
from occurring, and a denormalized divisor is treated as zero and causes Division by Zero to occur
if the dividend is a normalized number.

A2-44

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

OFC

UFC

IXC

IDC

A2 Application Level Programmers’ Model
A2.5 The optional floating-point extension

For the reciprocal and reciprocal square root estimate functions the dividend is assumed to be +1.0.
This means that a zero or denormalized operand to these functions sets the DZC bit.

Overflow. The bit is set to 1 if the absolute value of the result of an operation, produced after
rounding, is greater than the maximum positive normalized number for the destination precision.

Underflow. The bit is set to 1 if the absolute value of the result of an operation, produced before
rounding, is less than the minimum positive normalized number for the destination precision, and
the rounded result is inexact.

The criteria for the Underflow exception to occur are different in Flush-to-zero mode. For details,
see Flush-to-zero on page A2-43.

Inexact. The bit is set to 1 if the result of an operation is not equivalent to the value that would be
produced if the operation were performed with unbounded precision and exponent range.

The criteria for the Inexact exception to occur are different in Flush-to-zero mode. For details, see

Flush-to-zero on page A2-43.

Input Denormal. The bit is set to 1 if a denormalized input operand is replaced in the computation
by a zero, as described in Flush-to-zero on page A2-43.

Table A2-3 shows the default results of the floating-point exceptions:

Table A2-3 Floating-point exception default results

Exception type Default result for positive sign Default result for negative sign

I0C, Invalid Operation ~ Quiet NaN Quiet NaN

DZC, Division by Zero +» (plus infinity) -+ (minus infinity)

OFC, Overflow RN, RP: +¢ (plus infinity) RN, RM: -« (minus infinity)
RM, RZ: +MaxNorm RP, RZ: —MaxNorm

UFC, Underflow Normal rounded result Normal rounded result

IXC, Inexact Normal rounded result Normal rounded result

IDC, Input Denormal Normal rounded result Normal rounded result

In Table A2-3:
MaxNorm The maximum normalized number of the destination precision.

RM
RN
RP
RZ

Round towards Minus Infinity mode, as defined in the IEEE 754 standard.
Round to Nearest mode, as defined in the IEEE 754 standard.

Round towards Plus Infinity mode, as defined in the IEEE 754 standard.
Round towards Zero mode, as defined in the IEEE 754 standard.

For Invalid Operation exceptions, for details of which quiet NaN is produced as the default result see NaN
handling and the Default NaN on page A2-44.

For Division by Zero exceptions, the sign bit of the default result is determined normally for a division. This
means it is the exclusive OR of the sign bits of the two operands.

For Overflow exceptions, the sign bit of the default result is determined normally for the overflowing
operation.

Combinations of exceptions

The following pseudocode functions perform floating-point operations:

FixedToFP()
FPAbs ()

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A2-45
Non-Confidential

A2 Application Level Programmers’ Model
A2.5 The optional floating-point extension

FPAdd()
FPCompare()
FPDiv()
FPDoubleToSingle()
FPHalfToSingle()
FPMuT()

FPMuTAdd()

FPNeg()
FPSingleToDouble()
FPSingleToHalf()
FPSqrt()

FPSub()
FPToFixed()

All of these operations except FPAbs() and FPNeg() can generate floating-point exceptions.

More than one exception can occur on the same operation. The only combinations of exceptions that can occur are:

. Overflow with Inexact.
. Underflow with Inexact.
. Input Denormal with other exceptions.

Any exception that occurs causes the associated cumulative bit in the FPSCR to be set.

Some floating-point instructions specify more than one floating-point operation, as indicated by the pseudocode
descriptions of the instruction. In such cases, an exception on one operation is treated as higher priority than an
exception on another operation if the occurrence of the second exception depends on the result of the first operation.
Otherwise, it is UNPREDICTABLE which exception is treated as higher priority.

For example, a VMLA instruction specifies a floating-point multiplication followed by a floating-point addition. The
addition can generate Overflow, Underflow and Inexact exceptions, all of which depend on both operands to the
addition and so are treated as lower priority than any exception on the multiplication. The same applies to Invalid
Operation exceptions on the addition caused by adding opposite-signed infinities. The addition can also generate an
Input Denormal exception, caused by the addend being a denormalized number while in Flush-to-zero mode. It is
UNPREDICTABLE which of an Input Denormal exception on the addition and an exception on the multiplication is
treated as higher priority, because the occurrence of the Input Denormal exception does not depend on the result of
the multiplication. The same applies to an Invalid Operation exception on the addition caused by the addend being
a signaling NaN.

Pseudocode details of floating-point operations

This section contains pseudocode definitions of the floating-point operations used by the FP extension.

Generation of specific floating-point values

The following functions generate specific floating-point values. The sign argument of FPZero(), FPMaxNormal (), and
FPInfinity() is '0' for the positive version and '1' for the negative version.

// FPZero()
// e

bits(N) FPZero(bit sign, integer N)
assert N IN {16,32,64};

if N == 16 then
E=075;

elsif N == 32 then
E=38;

else E = 11;

F=N-E-1;

exp = Zeros(E);
frac = Zeros(F);
return sign:exp:frac;

// FPInfinity()
/A ——

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A2 Application Level Programmers’ Model
A2.5 The optional floating-point extension

bits(N) FPInfinity(bit sign, integer N)
assert N IN {16,32,64};

if N == 16 then
E=75;

elsif N == 32 then
E=38;

else E = 11;

F=N-E-1;

exp = Ones(E);
frac = Zeros(F);
return sign:exp:frac;

// FPMaxNormal()
/] ===m==m======

bits(N) FPMaxNormal(bit sign, integer N)
assert N IN {16,32,64};

if N == 16 then
E=075;

elsif N == 32 then
E=8;

else E = 11;

F=N-E-1;

exp = Ones(E-1):'0;
frac = Ones(F);
return sign:exp:frac;

// FPDefauTtNaN()
/] ====mmmmmm=m==

bits(N) FPDefaultNaN(integer N)
assert N IN {16,32,64};

if N == 16 then
E=75;

elsif N == 32 then
E=28;

else E = 11;

F=N-E-1;

sign = ‘0’;

exp = Ones(E);
frac = ‘1’:Zeros(F-1);
return sign:exp:frac;

FP negation and absolute value

The floating-point negation and absolute value operations only affect the sign bit. They do not apply any special
treatment:

. To NaN operands.

. When flush-to-zero is selected, to denormalized number operands.
// FPNeg()
/] =======

bits(N) FPNeg(bits(N) operand)

assert N IN {32,64};

return NOT(operand<N-1>) : operand<N-2:0>;
// FPAbs()
/] =======

bits(N) FPAbs(bits(N) operand)
assert N IN {32,64};
return ‘0’ : operand<N-2:0>;

ARM DDI 0403E.b Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A2-47
ID120114 Non-Confidential

A2 Application Level Programmers’ Model
A2.5 The optional floating-point extension

FP value unpacking

The FPUnpack() function determines the type and numerical value of a floating-point number. It also does
flush-to-zero processing on input operands.

enumeration FPType {FPType_Nonzero, FPType_Zero, FPType_Infinity, FPType_QNaN, FPType_SNaN};
// FPUnpack()

/] ==========

/!

// Unpack a floating-point number into its type, sign bit and the real number
// that it represents. The real number result has the correct sign for numbers
// and infinities, is very large in magnitude for infinities, and is 0.0 for
// NaNs. (These values are chosen to simplify the description of comparisons
// and conversions.)

/!

// The ‘fpscr_val’ argument supplies FPSCR control bits. Status information is
// updated directly in the FPSCR where appropriate.

(FPType, bit, real) FPUnpack(bits(N) fpval, bits(32) fpscr_val)
assert N IN {16,32,64};

if N == 16 then
sign = fpval<l5>;
explé fpval<14:10>;
fracle = fpval<9:0>;
if IsZero(expl6) then
// Produce zero if value is zero
if IsZero(fracl6) then
type = FPType_Zero; value = 0.0;
else
type = FPType_Nonzero; value = 2.0A-14 » (UInt(fracl6) = 2.0A-10);
elsif IsOnes(expl6) && fpscr_val<26> == ‘@’ then // Infinity or NaN in IEEE format
if IsZero(fracl6) then
type = FPType_Infinity; value = 2.0A1000000;
else
type = if fracl6<9> == ‘1’ then FPType_QNaN else FPType_SNaN;
value = 0.0

else
type = FPType_Nonzero; value = 2.0A(UInt(expl6)-15) = (1.0 + UInt(fracl6) = 2.0A-10);

elsif N == 32 then

sign fpval<3l>;
exp32 = fpval<30:23>;
frac32 = fpval<22:0>;
if IsZero(exp32) then
// Produce zero if value is zero or flush-to-zero is selected.
if IsZero(frac32) || fpscr_val<24> == ‘1’ then
type = FPType_Zero; value = 0.0;
if 1IsZero(frac32) then // Denormalized input flushed to zero
FPProcessException(FPExc_InputDenorm, fpscr_val);

else
type = FPType_Nonzero; value = 2.0A-126 = (UInt(frac32) = 2.0A-23);
elsif IsOnes(exp32) then
if IsZero(frac32) then
type = FPType_Infinity; value = 2.0A1000000;
else
type = if frac32<22> == ‘1’ then FPType_QNaN else FPType_SNaN;
value = 0.0;
else
type = FPType_Nonzero; value = 2.0A(UInt(exp32)-127) = (1.0 + UInt(frac32) = 2.0A-23);

else // N == 64

sign = fpval<63>;

expb4 = fpval<62:52>;
frac64 = fpval<51:0>;
if IsZero(exp64) then

A2-48 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A2 Application Level Programmers’ Model
A2.5 The optional floating-point extension

// Produce zero if value is zero or flush-to-zero is selected.
if IsZero(frac64) || fpscr_val<24> == ‘1’ then
type = FPType_Zero; value = 0.0;
if 1IsZero(frac64) then // Denormalized input flushed to zero
FPProcessException(FPExc_InputDenorm, fpscr_val);
else
type = FPType_Nonzero; value = 2.0A-1022 « (UInt(frac64) = 2.0A-52);
elsif IsOnes(exp64) then
if IsZero(frac64) then
type = FPType_Infinity; value = 2.0A1000000;
else
type = if frac64<51> == ‘1’ then FPType_QNaN else FPType_SNaN;
value = 0.0;
else
type = FPType_Nonzero; value = 2.0A(UInt(exp64)-1023) = (1.0 + UInt(frac64) = 2.0A-52);

if sign == ‘1’ then value = -value;
return (type, sign, value);

FP exception and NaN handling

The FPProcessException() procedure checks whether a floating-point exception is trapped, and handles it
accordingly:

enumeration FPType {FPType_Nonzero, FPType_Zero, FPType_Infinity, FPType_QNaN, FPType_SNaN};
// FPProcessException()

//
//
// The ‘fpscr_val’ argument supplies FPSCR control bits. Status information is
// updated directly in the FPSCR where appropriate.

FPProcessException(FPExc exception, bits(32) fpscr_val)
// Get appropriate FPSCR bit numbers
case exception of

when FPExc_InvalidOp enable = 8; cumul = 0;
when FPExc_DivideByZero enable = 9; cumul = 1;
when FPExc_Overflow enable = 10; cumul = 2;
when FPExc_Underflow enable = 11; cumul = 3;
when FPExc_Inexact enable = 12; cumul = 4;
when FPExc_InputDenorm enable = 15; cumul = 7;
if fpscr_val<enable> == ‘1’ then
IMPLEMENTATION_DEFINED floating-point trap handling;
else
FPSCR<cumul> = ‘17;
return;

The FPProcessNaN() function processes a NaN operand, producing the correct result value and generating an Invalid
Operation exception if necessary:

// FPProcessNaN()

// The ‘fpscr_val’ argument supplies FPSCR control bits. Status information is
// updated directly in the FPSCR where appropriate.

bits(N) FPProcessNaN(FPType type, bits(N) operand, bits(32) fpscr_val)
assert N IN {32,64};
topfrac = if N == 32 then 22 else 51;
result = operand;
if type == FPType_SNaN then
result<topfrac> = ‘1’;
FPProcessException(FPExc_InvalidOp, fpscr_val);
if fpscr_val<25> == ‘1’ then // DefaultNaN requested
result = FPDefaultNaN(N);
return result;

The FPProcessNaNs() function performs the standard NaN processing for a two-operand operation:

ARM DDI 0403E.b Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A2-49
ID120114 Non-Confidential

A2 Application Level Programmers’ Model
A2.5 The optional floating-point extension

// FPProcessNaNs()

/] ===============

/!

// The boolean part of the return value says whether a NaN has been found and
// processed. The bits(N) part is only relevant if it has and supplies the

// result of the operation.

/!

// The ‘fpscr_val’ argument supplies FPSCR control bits. Status information is
// updated directly in the FPSCR where appropriate.

(booTlean, bits(N)) FPProcessNaNs(FPType typel, FPType type2,
bits(N) opl, bits(N) op2,
bits(32) fpscr_val)
assert N IN {32,64};
if typel == FPType_SNaN then
done = TRUE; result = FPProcessNaN(typel, opl, fpscr_val);
elsif type2 == FPType_SNaN then
done = TRUE; result = FPProcessNaN(type2, op2, fpscr_val);
elsif typel == FPType_QNaN then
done = TRUE; result = FPProcessNaN(typel, opl, fpscr_val);
elsif type2 == FPType_QNaN then
done = TRUE; result = FPProcessNaN(type2, op2, fpscr_val);
else
done = FALSE; result = Zeros(N); // ‘Don’t care’ result
return (done, result);

The FPProcessNaNs3() function performs the standard NaN processing for a three-operand operation:

// FPProcessNaNs3()

/] ===============

/!

// The boolean part of the return value says whether a NaN has been found and
// processed. The bits(N) part is only relevant if it has and supplies the

// result of the operation.

/!

// The ‘fpscr_val’ argument supplies FPSCR control bits. Status information is
// updated directly in the FPSCR where appropriate.

(boolean, bits(N)) FPProcessNaNs3(FPType typel, FPType type2, FPType type3,
bits(N) opl, bits(N) op2, bits(N) op3,
bits(32) fpscr_val)

assert N IN {32,64};
if typel == FPType_SNaN then

done = TRUE; result = FPProcessNaN(typel, opl, fpscr_val);
elsif type2 == FPType_SNaN then
done = TRUE; result = FPProcessNaN(type2, op2, fpscr_val);

elsif type3 == FPType_SNaN then

done = TRUE; result = FPProcessNaN(type3, op3, fpscr_val);
elsif typel == FPType_QNaN then

done = TRUE; result = FPProcessNaN(typel, opl, fpscr_val);
elsif type2 == FPType_QNaN then

done = TRUE; result = FPProcessNaN(type2, op2, fpscr_val);
elsif type3 == FPType_QNaN then

done = TRUE; result = FPProcessNaN(type3, op3, fpscr_val);
else

done = FALSE; result = Zeros(N); // ‘Don’t care’ result
return (done, result);

FP rounding

The FPRound() function rounds and encodes a single-precision floating-point result value to a specified destination
format. This includes processing Overflow, Underflow and Inexact floating-point exceptions and performing
flush-to-zero processing on result values.

// FPRound()
/] —
//

// The ‘fpscr_val’ argument supplies FPSCR control bits. Status information is

A2-50

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A2 Application Level Programmers’ Model
A2.5 The optional floating-point extension

// updated directly in the FPSCR where appropriate.

bits(N) FPRound(real value, integer N, bits(32) fpscr_val)

assert N IN {16,32,64};
assert value != 0.0;

// Obtain format parameters - minimum exponent, numbers of exponent and fraction bits.
if N == 16 then

5;

== 32 then

8;

else E = 11;

elsi

m —h m
=

minimum_exp = 2 - 2A(E-1);
F=N-E-1;

// Split value into sign, unrounded mantissa and exponent.
if value < 0.0 then

sign = ‘1’; mantissa = -value;
else

sign = ‘Q’; mantissa = value;
exponent = 0;
while mantissa < 1.0 do

mantissa = mantissa * 2.0; exponent = exponent - 1;
while mantissa >= 2.0 do

mantissa = mantissa / 2.0; exponent = exponent + 1;

// Deal with flush-to-zero.
if fpscr_val<24> == ‘1’ & N != 16 && exponent < minimum_exp then
result = FPZero(sign, N);
FPSCR.UFC = ‘1’; // Flush-to-zero never generates a trapped exception

else
// Start creating the exponent value for the result. Start by biasing the actual exponent
// so that the minimum exponent becomes 1, Tower values @ (indicating possible underflow).
biased_exp = Max(exponent - minimum_exp + 1, 0);
if biased_exp == 0 then mantissa = mantissa / 2A(minimum_exp - exponent);

// Get the unrounded mantissa as an integer, and the “units in last place” rounding error.
int_mant = RoundDown(mantissa * 2AF); // < 2AF if biased_exp == 0, >= 2AF if not
error = mantissa = 2AF - int_mant;

// Underflow occurs if exponent is too small before rounding, and result is inexact or

// the Underflow exception is trapped.

if biased_exp == 0 & (error != 0.0 || fpscr_val<ll> == ‘1’) then
FPProcessException(FPExc_Underflow, fpscr_val);

// Round result according to rounding mode.
case fpscr_val<23:22> of
when ‘00’ // Round to Nearest (rounding to even if exactly halfway)
round_up = (error > 0.5 || (error == 0.5 && int_mant<0> == ‘1’));
overflow_to_inf = TRUE;
when ‘01’ // Round towards Plus Infinity
round_up = (error != 0.0 & sign == ‘0’);
overflow_to_inf = (sign == ‘0’);
when ‘10’ // Round towards Minus Infinity
round_up = (error != 0.0 & sign == ‘1’);
overflow_to_inf = (sign == ‘1’);
when ‘11’ // Round towards Zero
round_up = FALSE;
overflow_to_inf = FALSE;
if round_up then
int_mant = int_mant + 1;
if dint_mant == 2AF then // Rounded up from denormalized to normalized
biased_exp = 1;
if int_mant == 2A(F+1) then // Rounded up to next exponent
biased_exp = biased_exp + 1;
int_mant = int_mant DIV 2;

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A2-51
Non-Confidential

A2 Application Level Programmers’ Model
A2.5 The optional floating-point extension

// Deal with overflow and generate result.
if N 1= 16 || fpscr_val<26> == ‘0’ then // Single, double or IEEE half precision
if biased_exp >= 2AE - 1 then
result = if overflow_to_inf then FPInfinity(sign, N) else FPMaxNormal(sign, N);
FPProcessException(FPExc_Overflow, fpscr_val);
error = 1.0; // Ensure that an Inexact exception occurs
else
result = sign:biased_exp<E-1:0>:int_mant<F-1:0>;
else // Alternative half precision (with N==16)
if biased_exp >= 2AE then
result = sign : Ones(15);
FPProcessException(FPExc_InvalidOp, fpscr_val);
error = 0.0; // Ensure that an Inexact exception does not occur
else
result = sign:biased_exp<E-1:0>:int_mant<F-1:0>;

// Deal with Inexact exception.
if error != 0.0 then
FPProcessException(FPExc_Inexact, fpscr_val);

return result;

The FPRoundInt() function rounds a single or double-precision floating-point value to an integer in floating-point

format.

// FPRoundInt()
A —

//

// Round floating-point value to nearest integral floating point value
// using given rounding mode. If exact is TRUE, set inexact flag if result
// is not numerically equal to given value.

bits(N) FPRoundInt(bits(N) op, bits(2) rmode, boolean away, boolean exact)
assert N IN {32,64};

// Unpack using FPSCR to determine if subnormals are flushed-to-zero
(type,sign,value) = FPUnpack(op, FPSCR);

if type == FPType_SNaN || type == FPType_QNaN then

result = FPProcessNaN(type, op, FPSCR);

elsif type == FPType_Infinity then

result = FPInfinity(sign);

elsif type == FPType_Zero then

result = FPZero(sign);

else

// extract integer component
int_result = RoundDown(value);
error = value - int_result;

// Determine whether supplied rounding mode requires an increment
case rmode of
when ‘00’ // Round to nearest, ties to even
round_up = (error > 0.5 || (error == 0.5 && int_result<0> == ‘1’));
when ‘01’ // Round towards Plus Infinity
round_up = (error != 0.0);
when ‘10’ // Round towards Minus Infinity
round_up = FALSE;
when ‘11’ // Round towards Zero
round_up = (error != 0.0 & int_result < 0);

if away then // Round towards Zero, ties away
round_up = (error > 0.5 || (error == 0.5 && int_result >= 0));

if round_up then int_result = int_result + 1;

// Convert integer value into an equivalent real value
real_result = 1.0 * int_result;

A2-52

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b

Non-Confidential

ID120114

A2 Application Level Programmers’ Model
A2.5 The optional floating-point extension

// Re-encode as a floating-point value, result is always exact
if real_result == 0.0 then

result = FPZero(sign);
else

result = FPRound(real_result, N, FPSCR);

// Generate inexact exceptions
if error != 0.0 & exact then
FPProcessException(FPExc_Inexact, FPSCR);

return result;

Selection of ARM standard floating-point arithmetic

The function StandardFPSCRValue() returns an FPSCR value that selects ARM standard floating-point arithmetic.
Most FP arithmetic functions have a boolean argument fpscr_controlled that selects between using the real FPSCR
value and this value.

// StandardFPSCRValue()
//

bits(32) StandardFPSCRValue()
return ‘00000’ : FPSCR<26> : ‘11000000000000000000000000° ;

FP comparisons

The FPCompare() function compares two floating-point numbers, producing an (N,Z,C,V) flags result as Table A2-4
shows:

Table A2-4 FP comparison flag values

Comparisonresult N Z C V

Equal 0 1 1 0
Less than 1 0 0 0
Greater than 0 0 1 0
Unordered 0 0 1 1

In the FP extension, this result defines the VCMP instruction. The VCMP instruction writes these flag values in the
FPSCR. Software can use a VMRS instruction to transfer them to the APSR, and they then control conditional
execution as Table A7-1 on page A7-176 shows.

// FPCompare()
/] m==mmm=m===

(bit, bit, bit, bit) FPCompare(bits(N) opl, bits(N) op2, boolean quiet_nan_exc,
boolean fpscr_controlled)
assert N IN {32,64};
fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
(typel,signl,valuel) = FPUnpack(opl, fpscr_val);
(type2,sign2,value2) = FPUnpack(op2, fpscr_val);
if typel==FPType_SNaN || typel==FPType_QNaN || type2==FPType_SNaN || type2==FPType_QNaN then
result = (‘0’,’0’,’1",’1");
if typel==FPType_SNaN || type2==FPType_SNaN || quiet_nan_exc then
FPProcessException(FPExc_InvalidOp, fpscr_val);
else
// A11 non-NaN cases can be evaluated on the values produced by FPUnpack()
if valuel == value2 then
result = (‘0’,’1’,’1",’0’);
elsif valuel < value2 then
result = (‘1°,70",’0°,’0");
else // valuel > value2

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A2-53
Non-Confidential

A2 Application Level Programmers’ Model
A2.5 The optional floating-point extension

result = (‘0’,’0’,’1",°0’);
return result;

FP addition and subtraction

The following functions perform floating-point addition and subtraction.

// FPAdd()
J/——

bits(N) FPAdd(bits(N) opl, bits(N) op2, boolean fpscr_controlled)
assert N IN {32,64};
fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
(typel,signl,valuel) = FPUnpack(opl, fpscr_val);
(type2,sign2,value2) = FPUnpack(op2, fpscr_val);
(done,result) = FPProcessNaNs(typel, type2, opl, op2, fpscr_val);
if !done then
infl = (typel == FPType_Infinity); 1inf2 = (type2 == FPType_Infinity);
zerol = (typel == FPType_Zero); zero2 = (type2 == FPType_Zero);
if infl && inf2 && signl == NOT(sign2) then
result = FPDefauTtNaN(N);
FPProcessException(FPExc_InvalidOp, fpscr_val);
elsif (infl && signl == ‘0’) || (inf2 && sign2 == ‘@’) then
result = FPInfinity(‘Q’, N);
elsif (infl && signl == ‘1’) || (inf2 && sign2 == ‘1’) then
result = FPInfinity(‘1l’, N);
elsif zerol & zero2 && signl == sign2 then
result = FPZero(signl, N);
else
result_value = valuel + value2;
if result_value == 0.0 then // Sign of exact zero result depends on rounding mode
result_sign = if fpscr_val<23:22> == ‘10’ then ‘1’ else ‘0Q’;
result = FPZero(result_sign, N);
else
result = FPRound(result_value, N, fpscr_val);
return result;
// FPSub()
/] =======

bits(N) FPSub(bits(N) opl, bits(N) op2, boolean fpscr_controlled)
assert N IN {32,64};
fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
(typel,signl,valuel) = FPUnpack(opl, fpscr_val);
(type2,sign2,value2) = FPUnpack(op2, fpscr_val);
(done,result) = FPProcessNaNs(typel, type2, opl, op2, fpscr_val);
if !done then
infl = (typel == FPType_Infinity); 1inf2 = (type2 == FPType_Infinity);
zerol = (typel == FPType_Zero); zero2 = (type2 == FPType_Zero);
if infl && inf2 && signl == sign2 then
result = FPDefauTtNaN(N);
FPProcessException(FPExc_InvalidOp, fpscr_val);
elsif (infl && signl == ‘0’) || (inf2 && sign2 == ‘1’) then
result = FPInfinity(‘0’, N);
elsif (infl && signl == ‘1’) || (inf2 && sign2 == ‘0’) then
result = FPInfinity(‘1l’, N);
elsif zerol && zero2 & signl == NOT(sign2) then
result = FPZero(signl, N);
else
result_value = valuel - value2;
if result_value == 0.0 then // Sign of exact zero result depends on rounding mode
result_sign = if fpscr_val<23:22> == ‘10’ then ‘1’ else ‘0’;
result = FPZero(result_sign, N);
else
result = FPRound(result_value, N, fpscr_val);
return result;

A2-54 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A2 Application Level Programmers’ Model
A2.5 The optional floating-point extension

FP multiplication and division

The following functions perform floating-point multiplication and division.

// FPMuT()
J/———

bits(N) FPMul(bits(N) opl, bits(N) op2, boolean fpscr_controlled)
assert N IN {32,64};
fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
(typel,signl,valuel) = FPUnpack(opl, fpscr_val);
(type2,sign2,value2) = FPUnpack(op2, fpscr_val);
(done,result) = FPProcessNaNs(typel, type2, opl, op2, fpscr_val);
if !done then
infl = (typel == FPType_Infinity); 1inf2 = (type2 == FPType_Infinity);
zerol = (typel == FPType_Zero); zero2 = (type2 == FPType_Zero);
if (infl && zero2) || (zerol && inf2) then
result = FPDefauTtNaN(N);
FPProcessException(FPExc_InvalidOp, fpscr_val);
elsif infl || inf2 then
result_sign = if signl == sign2 then ‘0@’ else ‘1’;
result = FPInfinity(result_sign, N);
elsif zerol || zero2 then
result_sign = if signl == sign2 then ‘@’ else ‘1’;
result = FPZero(result_sign, N);
else
result = FPRound(valuelxvalue2, N, fpscr_val);
return result;
// FPDiv()
/] =======

bits(N) FPDiv(bits(N) opl, bits(N) op2, boolean fpscr_controlled)
assert N IN {32,64};
fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
(typel,signl,valuel) = FPUnpack(opl, fpscr_val);
(type2,sign2,value2) = FPUnpack(op2, fpscr_val);
(done,result) = FPProcessNaNs(typel, type2, opl, op2, fpscr_val);
if !done then
infl = (typel == FPType_Infinity); 1inf2 = (type2 == FPType_Infinity);
zerol = (typel == FPType_Zero); zero2 = (type2 == FPType_Zero);
if (infl && inf2) || (zerol && zero2) then
result = FPDefauTtNaN(N);
FPProcessException(FPExc_InvalidOp, fpscr_val);
elsif infl || zero2 then
result_sign = if signl == sign2 then ‘0@’ else ‘1’;
result = FPInfinity(result_sign, N);
if linfl then FPProcessException(FPExc_DivideByZero, fpscr_val);
elsif zerol || inf2 then
result_sign = if signl == sign2 then ‘@’ else ‘1l’;
result = FPZero(result_sign, N);
else
result = FPRound(valuel/value2, N, fpscr_val);
return result;

FP multiply accumulate

The FPMulAdd() function performs the calculation A*B+C with only a single rounding step, and so provides greater
accuracy than performing the multiplication followed by an add:

// FPMulAdd()

// Calculates addend + oplxop2 with a single rounding.

bits(N) FPMulAdd(bits(N) addend, bits(N) opl, bits(N) op2,
boolean fpscr_controlled)
assert N IN {32,64};

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A2-55
Non-Confidential

A2 Application Level Programmers’ Model
A2.5 The optional floating-point extension

fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
(typeA,signA,valueA) = FPUnpack(addend, fpscr_val);

(typel,signl,valuel) = FPUnpack(opl, fpscr_val);

(type2,sign2,value2) = FPUnpack(op2, fpscr_val);

infl = (typel == FPType_Infinity); zerol = (typel == FPType_Zero);

inf2 = (type2 == FPType_Infinity); zero2 = (type2 == FPType_Zero);

(done,result) = FPProcessNaNs3(typeA, typel, type2, addend, opl, op2, fpscr_val);

if typeA == FPType_QNaN && ((infl && zero2) || (zerol && inf2)) then
result = FPDefaultNaN(N);
FPProcessException(FPExc_InvalidOp, fpscr_val);

if !done then
infA = (typeA == FPType_Infinity); zeroA = (typeA == FPType_Zero);

// Determine sign and type product will have if it does not cause an Invalid
// Operation.

signP = if signl == sign2 then ‘0’ else ‘1’;

infP = infl || inf2;

zeroP = zerol || zero2;

// Non SNaN-generated Invalid Operation cases are multiplies of zero by infinity and
// additions of opposite-signed infinities.
if (infl && zero2) || (zerol & inf2) || (infA & infP && signA == NOT(signP)) then
result = FPDefauTtNaN(N);
FPProcessException(FPExc_InvalidOp, fpscr_val);

// Other cases involving infinities produce an infinity of the same sign.
elsif (infA & signA == ‘0’) || (infP && signP == ‘@’) then

result = FPInfinity(‘Q’, N);
elsif (infA & signA == ‘1’) || (infP && signP == ‘1’) then

result = FPInfinity(‘1l’, N);

// Cases where the result is exactly zero and its sign is not determined by the
// rounding mode are additions of same-signed zeros.
elsif zeroA & zeroP && signA == signP then

result = FPZero(signA, N);

// Otherwise calculate numerical result and round it.
else
result_value = valueA + (valuel x value2);
if result_value == 0.0 then // Sign of exact zero result depends on rounding mode
result_sign = if fpscr_val<23:22> == ‘10’ then ‘1’ else ‘0’;
result = FPZero(result_sign, N);
else
result = FPRound(result_value, N, fpscr_val);

return result;

FP square root
The FPSqrt() function performs a floating-point square root calculation:

// FPSqrt()
/] ========

bits(N) FPSqrt(bits(N) operand)

assert N IN {32,64};

(type,sign,value) = FPUnpack(operand, FPSCR);

if type == FPType_SNaN || type == FPType_QNaN then
result = FPProcessNaN(type, operand, FPSCR);

elsif type == FPType_Zero then
result = FPZero(sign, N);

elsif type == FPType_Infinity && sign == ‘0’ then
result = FPInfinity(sign, N);

elsif sign == ‘1’ then
result = FPDefaultNaN(N);
FPProcessException(FPExc_InvalidOp, FPSCR);

A2-56 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A2 Application Level Programmers’ Model
A2.5 The optional floating-point extension

else
result = FPRound(Sqrt(value), N, FPSCR);
return result;

FP conversions
The following functions perform conversions between half-precision and single-precision floating-point numbers.

// FPHalfToSingle()
/] =====m=m=m=====

bits(32) FPHalfToSingle(bits(16) operand, boolean fpscr_controlled)
fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
(type,sign,value) = FPUnpack(operand, fpscr_val);
if type == FPType_SNaN || type == FPType_QNaN then
if fpscr_val<25> == ‘1’ then // DN bit set
result = FPDefaultNaN(32);
else
result = sign : ‘11111111 1’ : operand<8:0> : Zeros(13);
if type == FPType_SNaN then
FPProcessException(FPExc_InvalidOp, fpscr_val);
elsif type == FPType_Infinity then
result = FPInfinity(sign, 32);
elsif type == FPType_Zero then
result = FPZero(sign, 32);
else
result = FPRound(value, 32, fpscr_val); // Rounding will be exact
return result;
// FPSingleToHalf()
/] =======mmmm====

bits(16) FPSingleToHalf(bits(32) operand, boolean fpscr_controlled)
fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
(type,sign,value) = FPUnpack(operand, fpscr_val);
if type == FPType_SNaN || type == FPType_QNaN then
if fpscr_val<26> == ‘1’ then // AH bit set
result = FPZero(sign, 16);
elsif fpscr_val<25> == ‘1’ then // DN bit set
result = FPDefaultNaN(16);
else
result = sign : ‘11111 1’ : operand<21:13>;
if type == FPType_SNaN || fpscr_val<26> == ‘1’ then
FPProcessException(FPExc_InvalidOp, fpscr_val);
elsif type == FPType_Infinity then
if fpscr_val<26> == ‘1’ then // AH bit set
result = sign : Ones(15);
FPProcessException(FPExc_InvalidOp, fpscr_val);
else
result = FPInfinity(sign, 16);
elsif type == FPType_Zero then
result = FPZero(sign, 16);
else
result = FPRound(value, 16, fpscr_val);
return result;

The following functions perform conversions between half-precision and double-precision floating-point numbers.

// FPHalfToDouble()
/] ====m=mmmm=me==s

bits(64) FPHalfToDouble(bits(16) operand, boolean fpscr_controlled)
fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
(type,sign,value) = FPUnpack(operand, fpscr_val);
if type == FPType_SNaN || type == FPType_QNaN then
if fpscr_val<25> == ‘1’ then // DN bit set
result = FPDefaultNaN(64);
else

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A2-57
Non-Confidential

A2 Application Level Programmers’ Model
A2.5 The optional floating-point extension

result = sign : ‘11111111111 1’ : operand<8:0> : Zeros(42);
if type == FPType_SNaN then
FPProcessException(FPExc_InvalidOp, fpscr_val);
elsif type == FPType_Infinity then
result = FPInfinity(sign, 64);
elsif type == FPType_Zero then
result = FPZero(sign, 64);
else
result = FPRound(value, 64, fpscr_val); // Rounding will be exact
return result;
// FPDoubTleToHalf()

bits(16) FPDoubleToHalf(bits(64) operand, boolean fpscr_controlled)
fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
(type,sign,value) = FPUnpack(operand, fpscr_val);
if type == FPType_SNaN || type == FPType_QNaN then
if fpscr_val<26> == ‘1’ then // AH bit set
result = FPZero(sign, 16);
elsif fpscr_val<25> == ‘1’ then // DN bit set
result = FPDefaultNaN(16);
else
result = sign : ‘11111 1’ : operand<50:42>;
if type == FPType_SNaN || fpscr_val<26> == ‘1’ then
FPProcessException(FPExc_InvalidOp, fpscr_val);
elsif type == FPType_Infinity then
if fpscr_val<26> == ‘1’ then // AH bit set
result = sign : Ones(15);
FPProcessException(FPExc_InvalidOp, fpscr_val);
else
result = FPInfinity(sign, 16);
elsif type == FPType_Zero then
result = FPZero(sign, 16);
else
result = FPRound(value, 16, fpscr_val);
return result;

The following functions perform conversions between floating-point numbers and integers or fixed-point numbers:

// FPToFixed()
// mmmmmmmn

bits(M) FPToFixed(bits(N) operand, integer M, integer fraction_bits, boolean unsigned,
boolean round_towards_zero, boolean fpscr_controlled)
assert N IN {32,64};
fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
if round_towards_zero then fpscr_val<23:22> = ‘11’;
(type,sign,value) = FPUnpack(operand, fpscr_val);

// For NaNs and infinities, FPUnpack() has produced a value that will round to the
// required result of the conversion. Also, the value produced for infinities will
// cause the conversion to overflow and signal an Invalid Operation floating-point
// exception as required. NaNs must also generate such a floating-point exception.
if type == FPType_SNaN || type == FPType_QNaN then
FPProcessException(FPExc_InvalidOp, fpscr_val);

// Scale value by specified number of fraction bits, then start rounding to an integer
// and determine the rounding error.

value = value = 2Afraction_bits;

int_result = RoundDown(value);

error = value - int_result;

// Apply the specified rounding mode.
case fpscr_val<23:22> of
when ‘00’ // Round to Nearest (rounding to even if exactly halfway)
round_up = (error > 0.5 || (error == 0.5 & int_result<0> == ‘1’));
when ‘01’ // Round towards Plus Infinity
round_up = (error != 0.0);
when ‘10’ // Round towards Minus Infinity

A2-58 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b

Non-Confidential

ID120114

A2 Application Level Programmers’ Model
A2.5 The optional floating-point extension

round_up = FALSE;
when ‘11’ // Round towards Zero
round_up = (error != 0.0 & int_result < 0);
if round_up then int_result = int_result + 1;

// Bitstring result is the integer result saturated to the destination size, with
// saturation indicating overflow of the conversion (signaled as an Invalid
// Operation floating-point exception).
(result, overflow) = SatQ(int_result, M, unsigned);
if overflow then
FPProcessException(FPExc_InvalidOp, fpscr_val);
elsif error != 0.0 then
FPProcessException(FPExc_Inexact, fpscr_val);

return result;
// FixedToFP()
/] ====m======

bits(N) FixedToFP(bits(M) operand, integer N, integer fraction_bits, boolean unsigned,
boolean round_to_nearest, boolean fpscr_controlled)
assert N IN {32,64};
fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();
if round_to_nearest then fpscr_val<23:22> = ‘00’;
int_operand = if unsigned then UInt(operand) else SInt(operand);
real_operand = int_operand / 2Afraction_bits;
if real_operand == 0.0 then
result = FPZero(‘0’, N);
else
result = FPRound(real_operand, N, fpscr_val);
return result;

The following functions perform conversions between floating-point numbers and integers with direct rounding:

// FPToFixedDirected()
//

bits(M) FPToFixedDirected(bits(N) op, integer fbits, boolean unsigned,
bits(2) round_mode, boolean fpscr_controlled)
assert N IN {32,64};

fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();

// Unpack using FPCR to determine if subnormals are flushed-to-zero
(type,sign,value) = FPUnpack(op, fpscr_val);

// If NaN, set cumulative flag or take exception
if type == FPType_SNaN || type == FPType_QNaN then
FPProcessException(FPExc_InvalidOp, FPCR);

// Scale by fractional bits and produce integer rounded towards
// minus-infinity

value = value = 2Afbits;

int_result = RoundDown(value);

error = value - int_result;

// Determine whether supplied rounding mode requires an increment
case round_mode of
when ‘00’ // ties away
round_up = (error > 0.5 || (error == 0.5 && int_result >= 0));
when ‘01’ // nearest even
round_up = (error > 0.5 || (error == 0.5 && int_result<0> == ‘1’));
when ‘10’ // plus infinity
round_up = (error != 0.0);
when ‘11’ // neg infinity
round_up = FALSE;

if round_up then int_result = int_result + 1;

ARM DDI 0403E.b Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A2-59
ID120114 Non-Confidential

A2 Application Level Programmers’ Model
A2.5 The optional floating-point extension

// Generate saturated result and exceptions
(result, overflow) = SatQ(int_result, M, unsigned);

if overflow then
FPProcessException(FPExc_InvalidOp, fpscr_val);
elsif error != 0.0 then
FPProcessException(FPExc_Inexact, fpscr_val);
return result;

FP minimum and maximum

The FPMinNum() function determines the minimum of two floating-point numbers with NaN handling as specified by
IEEE754-2008.

// FPMinNum()
// =

bits(N) FPMinNum(bits(N) opl, bits(N) op2, boolean fpscr_controlled)
assert N IN {32,64};

fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();

(typel,-,-) = FPUnpack(opl, fpscr_val);
(type2,-,-) = FPUnpack(op2, fpscr_val);

// Treat a single quiet-NaN as +Infinity

if typel == FPType_QNaN && type2 != FPType_QNaN then
opl = FPInfinity(‘Q’, N);

elsif typel != FPType_QNaN && type2 == FPType_QNaN then
op2 = FPInfinity(‘Q’, N);

return FPMin(opl, op2, fpscr_controlled);

The FPMaxNum() function determines the maximum of two floating-point numbers with NaN handling as specified
by IEEE754-2008.

// FPMaxNum()
// =

bits(N) FPMaxNum(bits(N) opl, bits(N) op2, boolean fpscr_controlled)
assert N IN {32,64};

fpscr_val = if fpscr_controlled then FPSCR else StandardFPSCRValue();

(typel,-,-) = FPUnpack(opl, fpscr_val);
(type2,-,-) = FPUnpack(op2, fpscr_val);

// treat a single quiet-NaN as -Infinity

if typel == FPType_QNaN && type2 != FPType_QNaN then
opl = FPInfinity(‘1’, N);

elsif typel != FPType_QNaN && type2 == FPType_QNaN then
op2 = FPInfinity(‘1’, N);

return FPMax(opl, op2, fpscr_controlled);

A2-60 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A2 Application Level Programmers’ Model
A2.6 Coprocessor support

A2.6 Coprocessor support

An ARMv7-M implementation can optionally support coprocessors. If it does not support them, it treats all
coprocessors as non-existent. Possible coprocessors number from 0 to 15, and are called CP0-CP15. ARM reserves
CP8 to CP15, and CP0 to CP7 are IMPLEMENTATION DEFINED, subject to the constraints of the coprocessor
instructions.

Coprocessors 10 and 11 support the ARMv7-M Floating-point (FP) extension, that provides floating-point
operations. On an ARMv7-M implementation that includes the FP extension, software must enable access to both
CP10 and CP11 before it can use any features of the extension. For more information see The optional floating-point
extension on page A2-34.

If software issues a coprocessor instruction to a non-existent or disabled coprocessor, the processor generates a
NOCP UsageFault, see Fault behavior on page B1-608.

If software issues an unknown instruction to an enabled coprocessor, the processor generates an UNDEFINSTR
UsageFault.

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A2-61
Non-Confidential

A2 Application Level Programmers’ Model
A2.6 Coprocessor support

A2-62 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

Chapter A3
ARM Architecture Memory Model

This chapter gives an application-level view of the ARMv7-M memory model. It contains the following sections:
. Address space on page A3-64.

. Alignment support on page A3-65.

. Endian support on page A3-67.

. Synchronization and semaphores on page A3-70.

. Memory types and attributes and the memory order model on page A3-78.

. Access rights on page A3-87.

. Memory access order on page A3-89.

. Caches and memory hierarchy on page A3-96.

ARM DDI 0403E.b Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A3-63
ID120114 Non-Confidential

A3 ARM Architecture Memory Model

A3.1 Address space

A3.1 Address space

ARMV7-M is a memory-mapped architecture. The system address map on page B3-648 describes the ARMv7-M
address map.

The ARMv7-M architecture uses a single, flat address space of 232 8-bit bytes. Byte addresses are treated as
unsigned numbers, running from 0 to 232 - 1.

This address space is regarded as consisting of 230 32-bit words, each of whose addresses is word-aligned, meaning
that the address is divisible by 4. The word whose word-aligned address is A consists of the four bytes with
addresses A, A+1, A+2, and A+3. The address space can also be considered as consisting of 231 16-bit halfwords,
cach of whose addresses is halfword-aligned, meaning that the address is divisible by 2. The halfword whose
halfword-aligned address is A consists of the two bytes with addresses A and A+1.

While instruction fetches are always halfword-aligned, some load and store instructions support unaligned
addresses. This affects the access address A, such that A[1:0] in the case of a word access and A[0] in the case of a
halfword access can have non-zero values.

Address calculations are normally performed using ordinary integer instructions. This means that they normally
wrap around if they overflow or underflow the address space. Another way of describing this is that any address
calculation is reduced modulo 232.

Normal sequential execution of instructions effectively calculates:
(address_of_current_instruction) + (2 or 4) /x16- and 32-bit instr mixs=/

after each instruction to determine which instruction to execute next. If this calculation overflows the top of the
address space, the result is UNPREDICTABLE. In ARMv7-M this condition cannot occur because the top of memory
is defined to always have the Execute Never (XN) memory attribute associated with it. See The system address map
on page B3-648 for more details. An access violation will be reported if this scenario occurs.

The above only applies to instructions that are executed, including those that fail their condition code check. Most
ARM implementations prefetch instructions ahead of the currently-executing instruction.

LDC, LDM, LDRD, POP, PUSH, STC, STRD, STM, VLDM, VPOP, VPUSH, VSTM, VLDR. 64, and VSTR. 64 instructions access a sequence
of words at increasing memory addresses, effectively incrementing a memory address by 4 for each register load or
store. If this calculation overflows the top of the address space, the result is UNPREDICTABLE.

Any unaligned load or store whose calculated address is such that it would access the byte at 0xFFFFFFFF and the
byte at address 0x00000000 as part of the instruction is UNPREDICTABLE.

All memory addresses used in ARMv7-M are physical addresses (PAs). For consistency with other ARM
Architecture Reference Manuals, the term Modified Virtual Address (MVA) is used throughout this manual, even
though ARMv7-M has no concept of virtual addresses (VAs). For the ARMv7-M architecture profile in all cases
the MVA, VA, and PA have the same value.

A3-64

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A3 ARM Architecture Memory Model
A3.2 Alignment support

A3.2 Alignment support

The system architecture provides two policies for alignment checking in ARMv7-M:
. Support the unaligned accesses.

. Generate a fault when an unaligned access occurs.

The policy varies with the type of access. An implementation can be configured to force alignment faults for all
unaligned accesses.

Writes to the PC are restricted according to the rules outlined in Use of 0b1111 as a register specifier on
page AS5-124.

A3.21 Alignment behavior

Address alignment affects data accesses and updates to the PC.

Alignment and data access

The following data accesses always generate an alignment fault:

. Non halfword-aligned LDREXH and STREXH.

. Non word-aligned LDREX and STREX.

. Non word-aligned LDRD, LDMIA, LDMDB, POP, LDC, VLDR, VLDM, and VPOP.

. Non word-aligned STRD, STMIA, STMDB, PUSH, STC, VSTR, VSTM, and VPUSH.

The following data accesses support unaligned addressing, and only generate alignment faults when the
CCR.UNALIGN_TRP bit is set to 1, see Configuration and Control Register, CCR on page B3-660:

. Non halfword-aligned LDR{S}H{T} and STRH{T}.
. Non halfword-aligned TBH.
. Non word-aligned LDR{T} and STR{T}.

Note
. LDREXD and STREXD are not supported in ARMv7-M.

. Accesses to Strongly Ordered and Device memory types must always be naturally aligned, see Memory
access restrictions on page A3-84.

The ARMv7-M alignment behavior is described in the following pseudocode:

For register definitions see Appendix D8 Register Index. For ExceptionTaken() see Exception entry behavior on
page B1-587. The other functions are local and descriptive only. For the actual memory access functionality, see
MemU[] and MemA([] that are used in the instruction definitions (see Chapter A7 Instruction Details), and defined
in Pseudocode details of general memory system operations on page B2-638.

if IsUnaligned(Address) then // the data access is to an unaligned address
if AlignedAccessInstr() then // the instruction does not support unaligned accesses
UFSR.UNALIGNED = ‘1’;
ExceptionTaken(UsageFault);
else
if CCR.UNALIGN_TRP then // trap on all unaligned accesses
UFSR.UNALIGNED = ‘1’;
ExceptionTaken(UsageFault);
else
UnalignedAccess(Address); // perform an unaligned access
else
AlignedAccess(Address); // perform an aligned access

Alignment and updates to the PC

All instruction fetches must be halfword-aligned. Any exception return irregularities are captured as an INVSTATE
or INVPC UsageFault by the exception return mechanism. See Fault behavior on page B1-608.

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A3-65
Non-Confidential

A3 ARM Architecture Memory Model
A3.2 Alignment support

For exception entry and return:

. Exception entry using a vector with bit[0] clear, sets EPSR.T to zero.
. A reserved EXC_RETURN value causes an INVPC UsageFault.
. Loading an unaligned value from the stack into the PC on an exception return is UNPREDICTABLE.

For all other cases where the PC is updated:

. Bit[0] of the value is ignored when loading the PC using an ADD or MOV instruction.

Note

This applies only to the 16-bit form of the ADD (register) and MOV (register) instructions otherwise loading the
PC is UNPREDICTABLE.

. The following instructions cause EPSR.T to be set to bit[0] of the value loaded to the PC:
— ABLXorBX.
— AnLDR to the PC.
— A POP or LDM that includes the PC

. Loading the PC with a value from a memory location whose address is not word aligned is UNPREDICTABLE.

Note
Attempting to execute an instruction while EPSR.T == 0 results in an INVSTATE UsageFault.

A3-66

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A3 ARM Architecture Memory Model
A3.3 Endian support

A3.3 Endian support

The address space rules (Address space on page A3-64) require that for an address A:

. The word at address A consists of the bytes at addresses A, A+1, A+2, and A+3.

. The halfword at address A consists of the bytes at addresses A and A+1.

. The halfword at address A+2 consists of the bytes at addresses A+2 and A+3.

. The word at address A therefore consists of the halfwords at addresses A and A+2.

However, this does not fully specify the mappings between words, halfwords and bytes. A memory system uses one
of the following mapping schemes. This choice is known as the endianness of the memory system.

In a little-endian memory system the mapping between bytes from memory and the interpreted value in an ARM
register is illustrated in Figure A3-1.

. A byte or halfword at address A is the least significant byte or halfword within the word at that address.
. A byte at a halfword address A is the least significant byte within the halfword at that address.

i31 2423 16:15 87 0!

Word at

Address A Byte at address (A+3) | Byte at address (A+2) | Byte at address (A+1) Byte at address A

Halfword at Address A | Byte at address (A+1) Byte at address A

Figure A3-1 Little-endian byte format

In a big-endian memory system the mapping between bytes from memory and the interpreted value in an ARM
register is illustrated in Figure A3-2.

. A byte or halfword at address A is the most significant byte or halfword within the word at that address.
. A byte at a halfword address A is the most significant byte within the halfword at that address.
31 24 23 16 15 8 7 0
Word at

Address A Byte at address A Byte at address (A+1) | Byte at address (A+2) | Byte at address (A+3)

Halfword at Address A Byte at address A Byte at address (A+1)

Figure A3-2 Big-endian byte format

For a word address A, Figure A3-3 and Figure A3-4 on page A3-68 show how the word at address A, the halfwords
at address A and A+2, and the bytes at addresses A, A+1, A+2, and A+3 map onto each other for each endianness.

MSByte MSByte-1 LSByte+1 LSByte

Word at address A

Halfword at address (A+2) Halfword at address A

Byte at address (A+3) | Byte at address (A+2) | Byte at address (A+1) Byte at address A

Figure A3-3 Little-endian memory system

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A3-67
Non-Confidential

A3 ARM Architecture Memory Model

A3.3 Endian support

MSByte MSByte-1 LSByte+1 LSByte

Word at address A

Halfword at address A Halfword at address (A+2)

Byte at address A Byte at address (A+1) | Byte at address (A+2) | Byte at address (A+3)

Figure A3-4 Big-endian memory system

The big-endian and little-endian mapping schemes determine the order in which the bytes of a word or half-word
are interpreted.

As an example, a load of a word (4 bytes) from address 0x1000 will result in an access of the bytes contained at
memory locations 0x1000, 0x1001, 0x1002, and 0x1003, regardless of the mapping scheme used. The mapping scheme
determines the significance of those bytes.

A3.3.1 Control of endianness in ARMv7-M

ARMV7-M supports a selectable endian model in which, on a reset, a control input determines whether the
endianness is big endian (BE) or little endian (LE). This endian mapping has the following restrictions:

. The endianness setting only applies to data accesses. Instruction fetches are always little endian.
. All accesses to the SCS are little endian, see System Control Space (SCS) on page B3-651.

The AIRCR.ENDIANNESS bit indicates the endianness, see Application Interrupt and Reset Control Register,
AIRCR on page B3-658.

If an implementation requires support for big endian instruction fetches, it can implement this in the bus fabric. See
Endian support on page D5-859 for more information.

Instruction alignment and byte ordering

Thumb instruction execution enforces 16-bit alignment on all instructions. This means that 32-bit instructions are
treated as two halfwords, hwl and hw2, with hw1 at the lower address.

In instruction encoding diagrams, hw1 is shown to the left of hw2. This results in the encoding diagrams reading
more naturally. The byte order of a 32-bit Thumb instruction is shown in Figure A3-5.

1514131211109 8 7 6 5 4 3 2 1 0(1514131211109 8 7 6 5 4 3 2 1 0
32-bit Thumb instruction, hw1 32-bit Thumb instruction, hw2
Byte at Address A+1 Byte at Address A Byte at Address A+3 | Byte at Address A+2

Figure A3-5 Instruction byte order in memory

Pseudocode details of endianness
The BigEndian() pseudocode function tests whether data accesses are big-endian or little-endian:

// BigEndian()

Yy ——
boolean BigEndian()
return (AIRCR.ENDIANNESS == ‘1’);
A3-68 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b

Non-Confidential ID120114

A3 ARM Architecture Memory Model
A3.3 Endian support

A3.3.2 Element size and endianness

The effect of the endianness mapping on data applies to the size of the element(s) being transferred in the load and
store instructions. Table A3-1 shows the element size of each of the load and store instructions:.

Table A3-1 Load-store and element size association

Instruction class Instructions Element size
Load or store byte LDR{S}B{T}, STRB{T}, TBB, LDREXB, STREXB Byte

Load or store halfword LDR{S}H{T}, STRH{T}, TBH, LDREXH, STREXH Halfword
Load or store word LDR{T}, STR{T}, LDREX, STREX, VLDR.F32, VSTR.F32 Word

Load or store two words LDRD, STRD, VLDR.F64, VSTR.F64 Word

Load or store multiple words ~ LDM{IA,DB}, STM{IA,DB}, PUSH, POP, LDC, STC, VLDM, VSTM, VPUSH, VPOP Word

A3.3.3 Instructions to reverse bytes in a general-purpose register

When an application or device driver has to interface to memory-mapped peripheral registers or shared memory
structures that are not the same endianness as that of the internal data structures, or the endianness of the Operating
System, an efficient way of being able to explicitly transform the endianness of the data is required.

ARMV7-M supports instructions for the following byte transformations:

REV Reverse word (four bytes) register, for transforming 32-bit representations.
REVSH Reverse halfword and sign extend, for transforming signed 16-bit representations.
REV16 Reverse packed halfwords in a register for transforming unsigned 16-bit representations.

For more information see the instruction definitions in Chapter A7 Instruction Details.

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A3-69
Non-Confidential

A3 ARM Architecture Memory Model
A3.4 Synchronization and semaphores

A3.4 Synchronization and semaphores
Exclusive access instructions support non-blocking shared memory synchronization primitives that permit
calculation to be performed on the semaphore between the read and write phases, and scale for multiprocessor
system designs.
In ARMv7-M, the synchronization primitives provided are:
. Load-Exclusives:
— LDREX, see LDREX on page A7-270.
— LDREXB, see LDREXB on page A7-271.
— LDREXH, see LDREXH on page A7-272.
. Store-Exclusives:
— STREX, see STREX on page A7-438.
— STREXB, see STREXB on page A7-439.
— STREXH, see STREXH on page A7-440.
. Clear-Exclusive, CLREX, see CLREX on page A7-223.
Note
This section describes the operation of a Load-Exclusive/Store-Exclusive pair of synchronization primitives using,
as examples, the LDREX and STREX instructions. The same description applies to any other pair of synchronization
primitives:
. LDREXB used with STREXB.
. LDREXH used with STREXH.
Each Load-Exclusive instruction must be used only with the corresponding Store-Exclusive instruction.
STREXD and LDREXD are not supported in ARMv7-M.
The model for the use of a Load-Exclusive/Store-Exclusive instruction pair, accessing memory address x is:
. The Load-Exclusive instruction always successfully reads a value from memory address x
. The corresponding Store-Exclusive instruction succeeds in writing back to memory address x only if no other
processor or process has performed a more recent store of address x. The Store-Exclusive operation returns
a status bit that indicates whether the memory write succeeded.
A Load-Exclusive instruction tags a small block of memory for exclusive access. The size of the tagged block is
IMPLEMENTATION DEFINED, see Tagging and the size of the tagged memory block on page A3-75. A Store-Exclusive
instruction to the same address clears the tag.
A3.41 Exclusive access instructions and Non-shareable memory regions
For memory regions that do not have the Shareable attribute, the exclusive access instructions rely on a local
monitor that tags any address from which the processor executes a Load-Exclusive. Any non-aborted attempt by the
same processor to use a Store-Exclusive to modify any address is guaranteed to clear the tag.
A Load-Exclusive performs a load from memory, and:
. The executing processor tags the physical memory address for exclusive access.
. The local monitor of the executing processor transitions to its Exclusive Access state.
A Store-Exclusive performs a conditional store to memory, that depends on the state of the local monitor:
If the local monitor is in its Exclusive Access state
. If the address of the Store-Exclusive is the same as the address that has been tagged in the
monitor by an earlier Load-Exclusive, then the store takes place, otherwise it is
IMPLEMENTATION DEFINED whether the store takes place.
. A status value is returned to a register:
— If'the store took place the status value is 0.
A3-70 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b

Non-Confidential ID120114

A3 ARM Architecture Memory Model
A3.4 Synchronization and semaphores

— Otherwise, the status value is 1.

. The local monitor of the executing processor transitions to its Open Access state.

If the local monitor is in its Open Access state

. No store takes place.
. A status value of 1 is returned to a register.
. The local monitor remains in its Open Access state.

The Store-Exclusive instruction defines the register to which the status value is returned.
When a processor writes using any instruction other than a Store-Exclusive:

. If the write is to a physical address that is not covered by its local monitor the write does not affect the state
of the local monitor.

. If the write is to a physical address that is covered by its local monitor it is IMPLEMENTATION DEFINED
whether the write affects the state of the local monitor.

If the local monitor is in its Exclusive Access state and a processor performs a Store-Exclusive to any address other
than the last one from which it has performed a Load-Exclusive, it is IMPLEMENTATION DEFINED whether the store
succeeds, but in all cases the local monitor is reset to its Open Access state. In ARMv7-M, the store must be treated
as a software programming error.

Note

It is UNPREDICTABLE whether a store to a tagged physical address causes a tag in the local monitor to be cleared if
that store is by an observer other than the one that caused the physical address to be tagged.

Figure A3-6 shows the state machine for the local monitor. Table A3-2 on page A3-72 shows the effect of each of
the operations shown in the figure.

LoadExcT(x) LoadExcT(x)

| L[]
Open Exclusive

|—> Access Access
T s

CLREX CLREX Store(!Tagged_address)
StoreExc1(x) Store(Tagged_address)* Store(Tagged_address)*
Store(x) StoreExcl(Tagged_address)

StoreExcl(!'Tagged_address)

Operations marked * are possible alternative IMPLEMENTATION DEFINED options.
In the diagram: LoadExc]1 represents any Load-Exclusive instruction
StoreExc]1 represents any Store-Exclusive instruction
Store represents any other store instruction.

Any LoadExc1 operation updates the tagged address to the most significant bits of the address x used
for the operation. See text for more information about tagging.

Figure A3-6 Local monitor state machine diagram

For more information about tagging see 7Tagging and the size of the tagged memory block on page A3-75.

Note

. The IMPLEMENTATION DEFINED options for the local monitor are consistent with the local monitor being
constructed so that it does not hold any physical address, but instead treats any access as matching the address
of the previous LDREX. In such an implementation, the Exclusives reservation granule defined in Tagging and
the size of the tagged memory block on page A3-75 is the entire memory address range.

. A local monitor implementation can be unaware of Load-Exclusive and Store-Exclusive operations from
other processors.
ARM DDI 0403E.b Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A3-71

ID120114

Non-Confidential

A3 ARM Architecture Memory Model
A3.4 Synchronization and semaphores

. It is UNPREDICTABLE whether the transition from Exclusive Access to Open Access state occurs when the STR
or STREX is from another observer.

Table A3-2 shows the effect of the operations shown in Figure A3-6 on page A3-71.

Table A3-2 Effect of Exclusive instructions and write operations on local monitor

Initial state Operation2a Effect Final state

Open Access CLREX No effect Open Access
StoreExc1(x) Does not update memory, returns status 1 Open Access
LoadExc1(x) Loads value from memory, tags address x Exclusive Access
Store(x) Updates memory, no effect on monitor Open Access

Exclusive Access CLREX Clears tagged address Open Access
StoreExc1(t) Updates memory, returns status 0 Open Access

StoreExc1(!t)

Updates memory, returns status 0b

Does not update memory, returns status 1b

Open Access

LoadExc1(x)

Store(!t)

Store(t)

Loads value from memory, changes tag to address to x

Updates memory, no effect on monitor

Updates memory

Exclusive Access
Exclusive Access

Exclusive Accessb

Open Access®

a. In the table:

LoadExc1 represents any Load-Exclusive instruction.

StoreExcl represents any Store-Exclusive instruction.

Store represents any store operation other than a Store-Exclusive operation.

t is the tagged address, bits [31:a] of the address of the last Load-Exclusive instruction. For more information see
Tagging and the size of the tagged memory block on page A3-75.

b. IMPLEMENTATION DEFINED alternative actions.

A3.4.2

For memory regions that have the Shareable attribute, exclusive access instructions rely on:

Exclusive access instructions and Shareable memory regions

. A local monitor for each processor in the system, that tags any address from which the processor executes a
Load-Exclusive. The local monitor operates as described in Exclusive access instructions and Non-shareable
memory regions on page A3-70, except that for Shareable memory, any Store-Exclusive described in that
section as updating memory and/or returning the status value 0 is then subject to checking by the global
monitor. The local monitor can ignore exclusive accesses from other processors in the system.

. A global monitor that tags a physical address as exclusive access for a particular processor. This tag is used
later to determine whether a Store-Exclusive to the tagged address, that has not been failed by the local
monitor, can occur. Any successful write to the tagged address by any other observer in the shareability
domain of the memory location is guaranteed to clear the tag.

For each processor in the system, the global monitor:

— Holds a single tagged address.

— Maintains a state machine.

The global monitor can either reside in a processor block or exist as a secondary monitor at the memory interfaces.

An implementation can combine the functionality of the global and local monitors into a single unit.

A3-72

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved.

Non-Confidential

ARM DDI 0403E.b
ID120114

A3 ARM Architecture Memory Model
A3.4 Synchronization and semaphores

Operation of the global monitor

Load-Exclusive from Shareable memory performs a load from memory, and causes the physical address of the
access to be tagged as exclusive access for the requesting processor. This access also causes the exclusive access
tag to be removed from any other physical address that has been tagged by the requesting processor. The global
monitor only supports a single outstanding exclusive access to Shareable memory per processor.

Store-Exclusive performs a conditional store to memory:

. The store is guaranteed to succeed only if the physical address accessed is tagged as exclusive access for the
requesting processor and both the local monitor and the global monitor state machines for the requesting
processor are in the Exclusive Access state. In this case:

— A status value of 0 is returned to a register to acknowledge the successful store.

— The final state of the global monitor state machine for the requesting processor is IMPLEMENTATION
DEFINED.

— Ifthe address accessed is tagged for exclusive access in the global monitor state machine for any other
processor then that state machine transitions to Open Access state.
. If no address is tagged as exclusive access for the requesting processor, the store does not succeed:
— A status value of 1 is returned to a register to indicate that the store failed.
— The global monitor is not affected and remains in Open Access state for the requesting processor.
. If a different physical address is tagged as exclusive access for the requesting processor, it is
IMPLEMENTATION DEFINED whether the store succeeds or not:
— If the store succeeds a status value of 0 is returned to a register, otherwise a value of 1 is returned.

— If the global monitor state machine for the processor was in the Exclusive Access state before the
Store-Exclusive it is IMPLEMENTATION DEFINED whether that state machine transitions to the Open
Access state.

The Store-Exclusive instruction defines the register to which the status value is returned.

In a shared memory system, the global monitor implements a separate state machine for each processor in the
system. The state machine for accesses to Shareable memory by processor (n) can respond to all the Shareable
memory accesses visible to it. This means it responds to:

. Accesses generated by the associated processor (n).
. Accesses generated by the other observers in the shared memory system (!n).

In a shared memory system, the global monitor implements a separate state machine for each observer that can
generate a Load-Exclusive or a Store-Exclusive in the system.

Figure A3-7 on page A3-74 shows the state machine for processor(n) in a global monitor. Table A3-3 on
page A3-74 shows the effect of each of the operations shown in the figure.

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A3-73
Non-Confidential

A3 ARM Architecture Memory Model

A3.4 Synchronization and semaphores

CLREX(n), CLREX(In),

LoadExcT(x,n)

LoadExc1(x,n)

Open
Access

-

|t

v

Exclusive J

Access

r]

LoadExc1(x,!n),

StoreExcl(x,n),
StoreExcl(x,!n),
Store(x,n), Store(x,!n)

StoreExc1(Tagged_address,!n)t
Store(Tagged_address,!n)
StoreExcl(Tagged_address,n)*
StoreExc1(!Tagged_address,n)*
Store(Tagged_address,n)*
CLREX(n)*

StoreExc1(Tagged_address,!n)t
Store(!Tagged_address,n)
StoreExcl(Tagged_address,n)*
StoreExc1(!Tagged_address,n)*
Store(Tagged_address,n)*
CLREX(n)*
StoreExc1(!Tagged_address,!n)
Store(ITagged_address,!n)
CLREX('n)

$StoreExc1(Tagged_Address,!n) clears the monitor only if the StoreExc1 updates memory
Operations marked * are possible alternative IMPLEMENTATION DEFINED options.

In the diagram: LoadExc]1 represents any Load-Exclusive instruction
StoreExc] represents any Store-Exclusive instruction

Store represents any other store instruction.

Any LoadExc1 operation updates the tagged address to the most significant bits of the address x used
for the operation. See text for more information about tagging.

Figure A3-7 Global monitor state machine diagram for a processor in a multiprocessor system

For more information about tagging see Tagging and the size of the tagged memory block on page A3-75.

Note

Whether a Store-Exclusive successfully updates memory or not depends on whether the address accessed
matches the tagged Shareable memory address for the processor issuing the Store-Exclusive instruction. For
this reason, Figure A3-7 and Table A3-3 only show how the (!n) entries cause state transitions of the state
machine for processor(n).

A Load-Exclusive can only update the tagged Shareable memory address for the processor issuing the
Load-Exclusive instruction.

The effect of the CLREX instruction on the global monitor is IMPLEMENTATION DEFINED.

. It is IMPLEMENTATION DEFINED whether a modification to a non-shareable memory location can cause a
global monitor Exclusive Access to Open Access transition.

. It is IMPLEMENTATION DEFINED whether a Load-Exclusive to a non-shareable memory location can cause a
global monitor Open Access to Exclusive Access transition.

Table A3-3 shows the effect of the operations shown in Figure A3-7.

Table A3-3 Effect of load/store operations on global monitor for processor(n)

Initial statea Operation® Effect Final state2
Open CLREX(n), CLREX(!n) None Open

Open StoreExc1(x,n) Does not update memory, returns status 1 Open

Open LoadExc1(x, !n) Loads value from memory, no effect on tag address for processor(n) Open

Open StoreExcl(x, !n) Depends on state machine and tag address for processor issuing STREX¢ ~ Open

Open STR(x,n), STR(x, !n) Updates memory, no effect on monitor Open

Open LoadExc1(x,n) Loads value from memory, tags address x Exclusive

A3-74 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b

Non-Confidential

ID120114

A3 ARM Architecture Memory Model
A3.4 Synchronization and semaphores

Table A3-3 Effect of load/store operations on global monitor for processor(n) (continued)

Initial state2a OperationP Effect Final statea
Exclusive LoadExc1(x,n) Loads value from memory, tags address x Exclusive
Exclusive®
Exclusive CLREX(n) None. Effect on the final state is IMPLEMENTATION DEFINED.
Open¢®
Exclusive CLREX(!n) None Exclusive
Updates memory, returns status 0¢ Open
Exclusive StoreExcl(t,!n)
Does not update memory, returns status 1¢ Exclusive
Open
Exclusive StoreExc1(t,n) Updates memory, returns status 04
Exclusive
Open
Updates memory, returns status 0¢
Exclusive
Exclusive StoreExcl1(!t,n)
Open
Does not update memory, returns status 1¢
Exclusive
Exclusive StoreExcl(!t,!n) Depends on state machine and tag address for processor issuing STREX Exclusive
Exclusive®
Exclusive Store(t,n) Updates memory
Open¢
Exclusive Store(t,!n) Updates memory Open
Exclusive Store(!t,n),Store(!t,!n) Updates memory, no effect on monitor Exclusive

Open = Open Access state, Exclusive = Exclusive Access state.

b. In the table:

LoadExc1 represents any Load-Exclusive instruction

StoreExc1 represents any Store-Exclusive instruction

Store represents any store operation other than a Store-Exclusive operation.

t is the tagged address for processor(n), bits [31:a] of the address of the last Load-Exclusive instruction issued by processor(n), see
Tagging and the size of the tagged memory block.

c. The result of a STREX(x, In) or a STREX(t, !n) operation depends on the state machine and tagged address for the processor issuing the STREX
instruction. This table shows how each possible outcome affects the state machine for processor(n).
d. After a successful STREX to the tagged address, the state of the state machine is IMPLEMENTATION DEFINED. However, this state has no effect
on the subsequent operation of the global monitor.

e. Effect is IMPLEMENTATION DEFINED. The table shows all permitted implementations.

A3.4.3

Tagging and the size of the tagged memory block

As shown in Figure A3-6 on page A3-71 and Figure A3-7 on page A3-74, when a LDREX instruction is executed, the
resulting tag address ignores the least significant bits of the memory address:

Tagged_address == Memory_address[31:a]

The value of a in this assignment is IMPLEMENTATION DEFINED, between a minimum value of 2 and a maximum
value of 11. For example, in an implementation where a = 4, a successful LDREX of address 0x000341B4 gives a tag
value of bits[31:4] of the address, giving 0x000341B. This means that the four words of memory from 0x000341B0 to
0x000341BF are tagged for exclusive access. Subsequently, a valid STREX to any address in this block will remove the

tag.

ARM DDI 0403E.b

ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved.

Non-Confidential

A3-75

A3 ARM Architecture Memory Model
A3.4 Synchronization and semaphores

The size of the tagged memory block is called the Exclusives reservation granule. The Exclusives reservation
granule is IMPLEMENTATION DEFINED between:

. One word, in an implementation with a == 2.
. 512 words, in an implementation with a == 11.
Note

For the local monitor, one of the IMPLEMENTATION DEFINED options is for the monitor to treat any access as
matching the address of the previous Load-Exclusive access. In such an implementation, the Exclusives reservation
granule is the entire memory address range.

A3.4.4 Context switch support

It is necessary to ensure that the local monitor is in the Open Access state after a context switch. In ARMv7-M, the
local monitor is changed to Open Access automatically as part of an exception entry or exit sequence. The local
monitor can also be forced to the Open Access state by a CLREX instruction.

Note

Context switching is not an application level operation. However, this information is included here to complete the
description of the exclusive operations.

A context switch might cause a subsequent Store-Exclusive to fail, requiring a load ... store sequence to be
replayed. To minimize the possibility of this happening, ARM recommends that the Store-Exclusive instruction is
kept as close as possible to the associated Load-Exclusive instruction, see Load-Exclusive and Store-Exclusive
usage restrictions.

A3.45 Load-Exclusive and Store-Exclusive usage restrictions

The Load-Exclusive and Store-Exclusive instructions are designed to work together, as a pair, for example a
LDREX/STREX pair or a LDREXB/STREXB pair. As mentioned in Context switch support, ARM recommends that the
Store-Exclusive instruction always follows within a few instructions of its associated Load-Exclusive instructions.
In order to support different implementations of these functions, software must follow the notes and restrictions
given here.

These notes describe use of a LDREX/STREX pair, but apply equally to any other Load-Exclusive/Store-Exclusive pair:

. The exclusives support a single outstanding exclusive access for each processor thread that is executed. The
architecture makes use of this by not requiring an address or size check as part of the IsExclusivelLocal()
function. If the target address of an STREX is different from the preceding LDREX in the same execution thread,
behavior can be UNPREDICTABLE. As a result, an LDREX/STREX pair can only be relied upon to eventually
succeed if they are executed with the same address.

. An explicit store to memory can cause the clearing of exclusive monitors associated with other processors,
therefore, performing a store between the LDREX and the STREX can result in a livelock situation. As a result,
code must avoid placing an explicit store between an LDREX and an STREX in a single code sequence.

. If two STREX instructions are executed without an intervening LDREX the second STREX returns a status value of
1. This means that:

— Every STREX must have a preceding LDREX associated with it in a given thread of execution.
— Itis not necessary for every LDREX to have a subsequent STREX.

. An implementation of the Load-Exclusive and Store-Exclusive instructions can require that, in any thread of
execution, the transaction size of a Store-Exclusive is the same as the transaction size of the preceding
Load-Exclusive that was executed in that thread. If the transaction size of a Store-Exclusive is different from
the preceding Load-Exclusive in the same execution thread, behavior can be UNPREDICTABLE. As a result,
software can rely on a Load-Exclusive/Store-Exclusive pair to eventually succeed only if they are executed
with the same address.

A3-76 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A3 ARM Architecture Memory Model
A3.4 Synchronization and semaphores

. An implementation might clear an exclusive monitor between the LDREX and the STREX, without any
application-related cause. For example, this might happen because of cache evictions. Code written for such
an implementation must avoid having any explicit memory accesses or cache maintenance operations
between the LDREX and STREX instructions.

. Implementations can benefit from keeping the LDREX and STREX operations close together in a single code
sequence. This minimizes the likelihood of the exclusive monitor state being cleared between the LDREX
instruction and the STREX instruction. Therefore, ARM recommends strongly a limit of 128 bytes between
LDREX and STREX instructions in a single code sequence, for best performance.

. Implementations that implement coherent protocols, or have only a single master, might combine the local
and global monitors for a given processor. The IMPLEMENTATION DEFINED and UNPREDICTABLE parts of the
definitions in Pseudocode details of operations on exclusive monitors on page B2-642 are provided to cover
this behavior.

. The architecture sets an upper limit of 2048 bytes on the size of a region that can be marked as exclusive.
Therefore, for performance reasons, ARM recommends that software separates objects that will be accessed
by exclusive accesses by at least 2048 bytes. This is a performance guideline rather than a functional
requirement.

. LDREX and STREX operations must be performed only on memory with the Normal memory attribute.

. If the memory attributes for the memory being accessed by an LDREX/STREX pair are changed between the LDREX
and the STREX, behavior is UNPREDICTABLE.

. The effect of a data or unified cache invalidate, cache clean, or cache clean and invalidate instruction on a
local or global exclusive monitor that is in the Exclusive Access state is UNPREDICTABLE. Execution of the
instruction might clear the monitor, or it might leave it in the Exclusive Access state. For address-based
maintenance instructions this also applies to the monitors of other processors in the same shareability domain
as the processor executing the cache maintenance instruction, as determined by the shareability domain of
the address being maintained.

A3.4.6 Synchronization primitives and the memory order model

The synchronization primitives follow the memory ordering model of the memory type accessed by the instructions.
For this reason:

. Portable code for claiming a spinlock must include a DMB instruction between claiming the spinlock and
making any access that makes use of the spinlock.

. Portable code for releasing a spinlock must include a DMB instruction before writing to clear the spinlock.

This requirement applies to code using the Load-Exclusive/Store-Exclusive instruction pairs, for example
LDREX/STREX.

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A3-77
Non-Confidential

A3 ARM Architecture Memory Model
A3.5 Memory types and attributes and the memory order model

A3.5 Memory types and attributes and the memory order model
ARMV7 defines a set of memory attributes with the characteristics required to support the memory and devices in
the system memory map.
The ordering of accesses for regions of memory, referred to as the memory order model, is defined by the memory
attributes. This model is described in the following sections:
. Memory types.
. Summary of ARMv7 memory attributes on page A3-79.
. Atomicity in the ARM architecture on page A3-79.
. Normal memory on page A3-80.
. Device memory on page A3-82.
. Strongly-ordered memory on page A3-83.
. Memory access restrictions on page A3-84.
A3.5.1 Memory types
For each memory region, the most significant memory attribute specifies the memory type. There are three mutually
exclusive memory types:
. Normal.
. Device.
. Strongly-ordered.
Normal and Device memory regions have additional attributes.
Usually, memory used for program code and for data storage is Normal memory. Examples of Normal memory
technologies are:
. Programmed Flash ROM.
Note
During programming, Flash memory can be ordered more strictly than Normal memory.
. ROM.
. SRAM.
. DRAM and DDR memory.
System peripherals (I/O) generally conform to different access rules to Normal memory. Examples of I/O accesses
are:
. FIFOs where consecutive accesses:
— Add queued values on write accesses.
— Remove queued values on read accesses.
. Interrupt controller registers where an access can be used as an interrupt acknowledge, changing the state of
the controller itself.
. Memory controller configuration registers that are used to set up the timing and correctness of areas of
Normal memory.
. Memory-mapped peripherals, where accessing a memory location can cause side effects in the system.
In ARMV7, regions of the memory map for these accesses are defined as Device or Strongly-ordered memory. To
ensure system correctness, access rules for Device and Strongly-ordered memory are more restrictive than those for
Normal memory:
. Both read and write accesses can have side effects.
. Accesses must not be repeated, for example, on return from an exception.
. The number, order, and sizes of the accesses must be maintained.
A3-78 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b

Non-Confidential ID120114

A3 ARM Architecture Memory Model
A3.5 Memory types and attributes and the memory order model

In addition, for Strongly-ordered memory, all memory accesses are strictly ordered to correspond to the program
order of the memory access instructions.

A3.5.2 Summary of ARMv7 memory attributes
Table A3-4 summarizes the memory attributes. For more information about these attributes see:
. Normal memory on page A3-80 and Shareable attribute for Device memory regions on page A3-83, for the
shareability attribute.
. Write-through cacheable, Write-back cacheable and Non-cacheable Normal memory on page A3-82, for the
cacheability attribute.
Table A3-4 Memory attribute summary
Mer.nory type Shareability = Other attributes Description
attribute
Strongly- Shareable - All memory accesses to Strongly-ordered
ordered memory occur in program order. All
Strongly-ordered regions are Shareable.
Device Shareable - Intended to handle memory- mapped
peripherals that are shared by several
processors.

Non-shareable - Intended to handle memory- mapped
peripherals that are used only by a single
processor.

Normal Shareable Cacheability, one of: 2 Intended to handle Normal memory that is

Non-shareable

. Non-cacheable Write-Through cacheable. ~ Shared between several processors.

. Write-Back Write-Allocate cacheable.
. Write-Back no Write-Allocate cacheable.

Intended to handle Normal memory that is
used by only a single processor.

a. The cacheability attribute is defined independently for inner and outer cache regions.

A3.5.3

Atomicity in the ARM architecture

Atomicity is a feature of memory accesses, described as atomic accesses. The ARM architecture description refers
to two types of atomicity, defined in:

Single-copy atomicity.
Multi-copy atomicity on page A3-80.

Single-copy atomicity

A read or write operation is single-copy atomic if the following conditions are both true:

After any number of write operations to an operand, the value of the operand is the value written by one of
the write operations. It is impossible for part of the value of the operand to come from one write operation
and another part of the value to come from a different write operation.

When a read operation and a write operation are made to the same operand, the value obtained by the read
operation is one of:

— The value of the operand before the write operation.
— The value of the operand after the write operation.

It is never the case that the value of the read operation is partly the value of the operand before the write
operation and partly the value of the operand after the write operation.

ARM DDI 0403E.b

ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved.
Non-Confidential

A3-79

A3 ARM Architecture Memory Model
A3.5 Memory types and attributes and the memory order model

In ARMv7-M, the single-copy atomic processor accesses are:
. All byte accesses.

. All halfword accesses to halfword-aligned locations.

. All word accesses to word-aligned locations

LDM, LDC, LDC2, LDRD, STM, STC, STC2, STRD, PUSH, POP, VLDR, VSTR, VLDM, VSTM, VPUSH, and VPOP instructions are executed
as a sequence of word-aligned word accesses. Each 32-bit word access is guaranteed to be single-copy atomic. A
subsequence of two or more word accesses from the sequence might not exhibit single-copy atomicity.

When an access is not single-copy atomic, it is executed as a sequence of smaller accesses, each of which is
single-copy atomic, at least at the byte level.

If an instruction is executed as a sequence of accesses according to these rules, some exceptions can be taken in the
sequence and cause execution of the instruction to be abandoned.

On exception return, the instruction that generated the sequence of accesses is re-executed and so any accesses that
had already been performed before the exception was taken might be repeated. See also Exceptions in Load Multiple
and Store Multiple operations on page B1-599.

Note

The exception behavior for these multiple access instructions means they are not suitable for use for writes to
memory for the purpose of software synchronization.

For implicit accesses:

. Cache linefills and evictions have no effect on the single-copy atomicity of explicit transactions or instruction
fetches.
. Instruction fetches are single-copy atomic at 16-bit granularity.

Multi-copy atomicity

In a multiprocessing system, writes to a memory location are multi-copy atomic if the following conditions are both
true:

. All writes to the same location are serialized, meaning they are observed in the same order by all observers,
although some observers might not observe all of the writes.

. A read of a location does not return the value of a write until all observers observe that write.
Writes to Normal memory are not multi-copy atomic.
All writes to Device and Strongly-Ordered memory that are single-copy atomic are also multi-copy atomic.

All write accesses to the same location are serialized. Write accesses to Normal memory can be repeated up to the
point that another write to the same address is observed.

For Normal memory, serialization of writes does not prohibit the merging of writes.

A3.5.4 Normal memory
Normal memory is idempotent, meaning that it exhibits the following properties:
. Read accesses can be repeated with no side effects.
. repeated read accesses return the last value written to the resource being read.
. Read accesses can prefetch additional memory locations with no side effects.
. Write accesses can be repeated with no side effects, provided that the contents of the location are unchanged
between the repeated writes.
. Unaligned accesses can be supported.
A3-80 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b

Non-Confidential ID120114

A3 ARM Architecture Memory Model
A3.5 Memory types and attributes and the memory order model

. Accesses can be merged before accessing the target memory system.

Normal memory can be read/write or read-only, and a Normal memory region is defined as being either Shareable
or Non-shareable.

The Normal memory type attribute applies to most memory used in a system.

Accesses to Normal memory have a weakly consistent model of memory ordering. See a standard text describing
memory ordering issues for a description of weakly consistent memory models, for example chapter 2 of Memory
Consistency Models for Shared Memory-Multiprocessors, Kourosh Gharachorloo, Stanford University Technical
Report CSL-TR-95-685. In general, for Normal memory, barrier operations are required where the order of memory
accesses observed by other observers must be controlled. This requirement applies regardless of the cacheability
and shareability attributes of the Normal memory region.

The ordering requirements of accesses described in Ordering requirements for memory accesses on page A3-91
apply to all explicit accesses.

An instruction that generates a sequence of accesses as described in Afomicity in the ARM architecture on

page A3-79 might be abandoned as a result of an exception being taken during the sequence of accesses. On return
from the exception the instruction is restarted, and therefore one or more of the memory locations might be accessed
multiple times. This can result in repeated write accesses to a location that has been changed between the write
accesses.

Note

For ARMv7-M, the LDM, STM, PUSH, POP, VLDM, VSTM, VPUSH, and VPOP instructions can restart or continue on exception
return, see Exceptions in Load Multiple and Store Multiple operations on page B1-599.

Non-shareable Normal memory

For a Normal memory region, the Non-shareable attribute identifies Normal memory that is likely to be accessed
only by a single processor.

A region of memory marked as Non-shareable Normal does not have any requirement to make the effect of a cache
transparent for data or instruction accesses. If other observers share the memory system, software must use cache
maintenance operations if the presence of caches might lead to coherency issues when communicating between the
observers. This cache maintenance requirement is in addition to the barrier operations that are required to ensure
memory ordering.

For Non-shareable Normal memory, the Load Exclusive and Store Exclusive synchronization primitives do not take
account of the possibility of accesses by more than one observer.

Shareable Normal memory

For Normal memory, the Shareable memory attribute describes Normal memory that is expected to be accessed by
multiple processors or other system masters.

A region of Normal memory with the Sharable attribute is one for which the effect of interposing a cache, or caches,
on the memory system is entirely transparent to data accesses in the same shareability domain. Explicit software
management is needed to ensure the coherency of instruction caches.

Implementations can use a variety of mechanisms to support this management requirement, from simply not caching
accesses in Shareable regions to more complex hardware schemes for cache coherency for those regions.

For Shareable Normal memory, the Load-Exclusive and Store-Exclusive synchronization primitives take account
of the possibility of accesses by more than one observer in the same Shareability domain.

Note

The Shareable concept enables system designers to specify the locations in Normal memory that must have
coherency requirements. However, to facilitate porting of software, software developers must not assume that
specifying a memory region as Non-shareable permits software to make assumptions about the incoherency of

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A3-81
Non-Confidential

A3 ARM Architecture Memory Model
A3.5 Memory types and attributes and the memory order model

memory locations between different processors in a shared memory system. Such assumptions are not portable
between different multiprocessing implementations that make use of the Shareable concept. Any multiprocessing
implementation might implement caches that, inherently, are shared between different processing elements.

Write-through cacheable, Write-back cacheable and Non-cacheable Normal memory

In addition to being Shareable or Non-shareable, each region of Normal memory can be marked as being one of:
. Write-through cacheable.
. Write-back cacheable, with an additional qualifier that marks it as one of:
— Write-back, write-allocate.
— Write-back, no write-allocate.
. Non-cacheable.

The cacheability attributes for a region are independent of the shareability attributes for the region. The cacheability
attributes indicate the required handling of the data region if it is used for purposes other than the handling of shared
data. This independence means that, for example, a region of memory that is marked as being cacheable and
Shareable might not be held in the cache in an implementation where Shareable regions do not cache their data.

A3.5.5 Device memory

The Device memory type attribute defines memory locations where an access to the location can cause side effects,
or where the value returned for a load can vary depending on the number of loads performed. memory-mapped
peripherals and I/O locations are examples of memory regions that normally are marked as being Device.

For explicit accesses from the processor to memory marked as Device:
. All accesses occur at their program size.
. The number of accesses is the number specified by the program.

An implementation must not repeat an access to a Device memory location if the program has only one access to
that location. In other words, accesses to Device memory locations are not restartable.

The architecture does not permit speculative accesses to memory marked as Device.

Address locations marked as Device are Non-cacheable. While writes to Device memory can be buffered, writes
can be merged only where the merge maintains:

. The number of accesses.
. The order of the accesses.
. The size of each access.

Multiple accesses to the same address must not change the number of accesses to that address. Coalescing of
accesses is not permitted for accesses to Device memory.

When a Device memory operation has side effects that apply to Normal memory regions, software must use a
Memory Barrier to ensure correct execution. An example is programming the configuration registers of a memory
controller with respect to the memory accesses it controls.

All explicit accesses to Device memory must comply with the ordering requirements of accesses described in
Ordering requirements for memory accesses on page A3-91.

An instruction that generates a sequence of accesses as described in Atomicity in the ARM architecture on

page A3-79 might be abandoned as a result of an exception being taken during the sequence of accesses. On return
from the exception the instruction is restarted, and therefore one or more of the memory locations might be accessed
multiple times. This can result in repeated write accesses to a location that has been changed between the write
accesses.

A3-82 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A3 ARM Architecture Memory Model
A3.5 Memory types and attributes and the memory order model

Note

Do not use an instruction that generates a sequence of accesses to access Device memory if the instruction might
restart after an exception and repeat any write accesses, see Exceptions in Load Multiple and Store Multiple
operations on page B1-599 for more information.

Any unaligned access that is not faulted by the alignment restrictions and accesses Device memory has
UNPREDICTABLE behavior.

Shareable attribute for Device memory regions

Device memory regions can be given the Shareable attribute. This means that a region of Device memory can be
described as either:

. Shareable Device memory.
. Non-shareable Device memory.

Non-shareable Device memory is defined as only accessible by a single processor. An example of a system
supporting Shareable and Non-shareable Device memory is an implementation that supports both:

. A local bus for its private peripherals.
. System peripherals implemented on the main shared system bus.

Such a system might have more predictable access times for local peripherals such as watchdog timers or interrupt
controllers. In particular, a specific address in a Non-shareable Device memory region might access a different
physical peripheral for each processor.

A3.5.6 Strongly-ordered memory

The Strongly-ordered memory type attribute defines memory locations where an access to the location can cause
side effects, or where the value returned for a load can vary depending on the number of loads performed. Examples
of memory regions normally marked as being Strongly-ordered are memory-mapped peripherals and I/O locations.

For explicit accesses from the processor to memory marked as Strongly-ordered:
. All accesses occur at their program size.
. The number of accesses is the number specified by the program.

An implementation must not perform more accesses to a Strongly-ordered memory location than are specified by a
simple sequential execution of the program, except as a result of an exception. This section describes this permitted
effect of an exception.

The architecture does not permit speculative data accesses to memory marked as Strongly-ordered.

Address locations in Strongly-ordered memory are not held in a cache, and are always treated as Shareable memory
locations.

All explicit accesses to Strongly-ordered memory must correspond to the ordering requirements of accesses
described in Ordering requirements for memory accesses on page A3-91.

An instruction that generates a sequence of accesses as described in Afomicity in the ARM architecture on

page A3-79 might be abandoned as a result of an exception being taken during the sequence of accesses. On return
from the exception the instruction is restarted, and therefore one or more of the memory locations might be accessed
multiple times. This can result in repeated write accesses to a location that has been changed between the write
accesses.

Note

Do not use an instruction that generates a sequence of accesses to access Strongly-ordered memory if the instruction
might restart after an exception and repeat any write accesses, see Exceptions in Load Multiple and Store Multiple
operations on page B1-599 for more information.

Any unaligned access that is not faulted by the alignment restrictions and accesses Strongly-ordered memory has
UNPREDICTABLE behavior.

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A3-83
Non-Confidential

A3 ARM Architecture Memory Model
A3.5 Memory types and attributes and the memory order model

A3.5.7

Memory access restrictions

The following restrictions apply to memory accesses:

For any access X, the bytes accessed by X must all have the same memory type attribute, otherwise the
behavior of the access is UNPREDICTABLE. That is, an unaligned access that spans a boundary between
different memory types is UNPREDICTABLE.

For any two memory accesses X and Y that are generated by the same instruction, the bytes accessed by X
and Y must all have the same memory type attribute, otherwise the results are UNPREDICTABLE. For example,
an LDC, LDM, LDRD, STC, STM, STRD, VSTM, VLDM, VPUSH, VPOP, VLDR, or VSTR that spans a boundary between Normal
and Device memory is UNPREDICTABLE.

An instruction that generates an unaligned memory access to Device or Strongly-ordered memory is
UNPREDICTABLE.

For instructions that generate accesses to Device or Strongly-ordered memory, implementations must not
change the sequence of accesses specified by the pseudocode of the instruction. This includes not changing:

— How many accesses there are.
— The time order of the accesses at any particular memory-mapped peripheral.
— The data sizes and other properties of each access.

In addition, processor implementations expect any attached memory system to be able to identify the memory
type of an accesses, and to obey similar restrictions with regard to the number, time order, data sizes and other
properties of the accesses.

Exceptions to this rule are:

— A processor implementation can break this rule, provided that the information it supplies to the
memory system enables the original number, time order, and other details of the accesses to be
reconstructed. In addition, the implementation must place a requirement on attached memory systems
to do this reconstruction when the accesses are to Device or Strongly-ordered memory.

For example, an implementation with a 64-bit bus might pair the word loads generated by an LDM into
64-bit accesses. This is because the instruction semantics ensure that the 64-bit access is always a word
load from the lower address followed by a word load from the higher address. However the
implementation must permit the memory systems to unpack the two word loads when the access is to
Device or Strongly-ordered memory.

— Any implementation technique that produces results that cannot be observed to be different from those
described above is legitimate.

LDM, STM, PUSH, POP, VLDM and VSTM instructions that are used with the IT instruction are restartable if interrupted
during execution. Restarting a load or store instruction is incompatible with the Device and Strongly Ordered
memory access rules. For details of the architecture constraints associated with these instructions in the
exception model see Exceptions in Load Multiple and Store Multiple operations on page B1-599.

Any multi-access instruction that loads or stores the PC must access only Normal memory. If the instruction
accesses Device or Strongly-ordered memory the result is UNPREDICTABLE.

Any instruction fetch must access only Normal memory. If it accesses Device or Strongly-ordered memory,
the result is UNPREDICTABLE. For example, instruction fetches must not be performed to an area of memory
that contains read-sensitive devices, because there is no ordering requirement between instruction fetches and
explicit accesses.

To ensure correctness, read-sensitive locations must be marked as non-executable (see Privilege level access
controls for instruction accesses on page A3-87).

Mismatched memory attributes

A physical memory location is accessed with mismatched attributes if all accesses to the location do not use a
common definition of all of the following attributes of that location:

Memory type, Strongly-ordered, Device, or Normal.
Shareability.

A3-84

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A3 ARM Architecture Memory Model
A3.5 Memory types and attributes and the memory order model

Cacheability, for both the inner and outer levels of cache, but excluding any cache allocation hints.

The following rules apply when a physical memory location is accessed with mismatched attributes:

1.

When a memory location is accessed with mismatched attributes the only software visible effects are one or
more of the following:

. Uniprocessor semantics for reads and writes to that memory location might be lost. This means:

— Aread of the memory location by a thread of execution might not return the value most recently
written to that memory location by that thread of execution.

— Multiple writes to the memory location by a thread of execution, that use different memory
attributes, might not be ordered in program order.

. There might be a loss of coherency when multiple threads of execution attempt to access a memory
location.

. There might be a loss of properties derived from the memory type, see rule 2.

. If multiple threads of execution attempt to use Load-Exclusive or Store-Exclusive instructions to

access a location with different memory attributes, the exclusive monitor state becomes UNKNOWN.

The loss of properties associated with mismatched memory type attributes refers only to the following
properties of Strongly-ordered or Device memory, that are additional to the properties of Normal memory:

. Prohibition of speculative accesses.

. Preservation of the size of accesses.

. Preservation of the order of accesses.

. The guarantee that the write acknowledgement comes from the endpoint of the access.

If the only memory type mismatch is between Strongly-ordered and Device memory, then the only property
that can be lost is:

. The guarantee that the write acknowledgement comes from the endpoint of the access.

If all aliases of a memory location that permit write access to the location assign the same shareability and
cacheability attributes to that location, and all these aliases use a definition of the shareability attribute that
includes all the threads of execution that can access the location, then any thread of execution that reads the
memory location using these shareability and cacheability attributes accesses it coherently, to the extent
required by that common definition of the memory attributes.

The possible loss of properties caused by mismatched attributes for a memory location is defined more
precisely if all of the mismatched attributes define the memory location as one of:

. Strongly-ordered memory.
. Device memory.
. Normal Inner Non-cacheable, Outer Non-cacheable memory.

In these cases, the only possible software-visible effects of the mismatched attributes are one or more of:

. Possible loss of properties derived from the memory type when multiple threads of execution attempt
to access the memory location.

. Possible re-ordering of memory transactions to the memory location that use different memory
attributes, potentially leading to a loss of coherency or uniprocessor semantics. Any possible loss of
coherency or uniprocessor semantics can be avoided by inserting DMB barrier instructions between
accesses to the same memory location that might use different attributes.

If the mismatched attributes for a memory location all assign the same shareability attribute to the location,
any loss of coherency within a shareability domain can be avoided. To do so, software must use the
techniques that are required for the software management of the coherency of cacheable locations between
threads of execution in different shareability domains. This means:

. If any thread of execution might have written to the location with the write-back attribute, before
writing to the location not using the write-back attribute, a thread of execution must invalidate, or
clean, the location from the caches. This avoids the possibility of overwriting the location with stale
data.

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A3-85
Non-Confidential

A3 ARM Architecture Memory Model
A3.5 Memory types and attributes and the memory order model

. After writing to the location with the write-back attribute, a thread of execution must clean the location
from the caches, to make the write visible to external memory.

. Before reading the location with a cacheable attribute, a thread of execution must invalidate the
location from the caches, to ensure that any value held in the caches reflects the last value made visible
in external memory.

In all cases:

. Location refers to any byte within the current coherency granule.

. A clean and invalidate operation can be used instead of a clean operation, or instead of an invalidate
operation.

. To ensure coherency, all cache maintenance and memory transactions must be completed, or ordered

by the use of barrier operations.

6. If the mismatched attributes for a location mean that multiple cacheable accesses to the location might be
made with different shareability attributes, then coherency is guaranteed only if each thread of execution that
accesses the location with a cacheable attribute performs a clean and invalidate of the location.

Note
For rule 5 and 6, with software management of coherency, race conditions can cause loss of data. A race
condition occurs when different threads of execution write simultaneously to bytes that are in the same
location, and the (invalidate or clean), write, clean sequence of one thread overlaps the equivalent sequence
of another thread.

In addition, if multiple threads attempt to use Load-Exclusive or Store-Exclusive instructions to access a location
with different memory attributes associated with it, the exclusive monitor state becomes UNKNOWN.

ARM strongly recommends that software does not use mismatched attributes for aliases of the same location. An
implementation might not optimize the performance of a system that uses mismatched aliases.

A3-86 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A3 ARM Architecture Memory Model
A3.6 Access rights

A3.6 Access rights

ARMV7 includes additional attributes for memory regions. These attributes enable:

. Data accesses to be restricted, based on the privilege of the access. See Privilege level access controls for
data accesses.

. Instruction fetches to be restricted, based on the privilege of the process or thread making the fetch. See
Privilege level access controls for instruction accesses.

A3.6.1 Privilege level access controls for data accesses

The memory attributes can define that a memory region is:
. Not accessible to any accesses.

. Accessible only to Privileged accesses.

. Accessible to Privileged and Unprivileged accesses.

The access privilege level is defined separately for explicit read and explicit write accesses. However, a system that
defines the memory attributes is not required to support all combinations of memory attributes for read and write
accesses.

A Privileged access is an access made during privileged execution, as a result of a load or store operation other than
LDRT, STRT, LDRBT, STRBT, LDRHT, STRHT, LDRSHT, or LDRSBT.

An Unprivileged access is an access made as a result of load or store operation performed in one of these cases:
. When the current execution mode is configured for Unprivileged access only.

. When the processor is in any mode and the access is made as a result of a LDRT, STRT, LDRBT, STRBT, LDRHT,
STRHT, LDRSHT, or LDRSBT instruction.

An exception occurs if the processor attempts a data access that the access rights do not permit. For example, a
MemManage exception occurs if the processor mode is Unprivileged and the processor attempts to access a memory
region that is marked as only accessible to Privileged accesses.

Note

Data access control is only supported when a Memory Protection Unit is implemented and enabled, see Protected
Memory System Architecture, PMSAv7 on page B3-688.

A3.6.2 Privilege level access controls for instruction accesses

Memory attributes can define that a memory region is:

. Not accessible for execution.

. Accessible for execution by Privileged processes only.

. Accessible for execution by Privileged and Unprivileged processes.

To define the instruction access rights to a memory region, the memory attributes describe, separately, for the
region:

. Its read access rights.

. Whether the region is Execute Never (XN), meaning software cannot be executed from the region.

For example, a region that is accessible for execution by Privileged processes has the memory attributes:
. Accessible only to Privileged read accesses.
. Suitable for execution.

This means there is some linkage between the memory attributes that define the accessibility of a region to explicit
memory accesses, and those that define that a region can be executed.

A MemManage exception occurs if a processor attempts to execute code from a memory location with attributes
that do not permit code execution.

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A3-87
Non-Confidential

A3 ARM Architecture Memory Model
A3.6 Access rights

Note
Instruction access control is fully supported when a Memory Protection Unit is implemented and enabled, see
Protected Memory System Architecture, PMSAv7 on page B3-688.

Instruction execution access control is also supported in the default address map, see The system address map on
page B3-648.

A3-88 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A3 ARM Architecture Memory Model
A3.7 Memory access order

A3.7 Memory access order

ARMV7 provides a set of three memory types, Normal, Device, and Strongly-ordered, with well-defined memory
access properties.

The ARMvV7 application-level view of the memory attributes is described in:
. Memory types and attributes and the memory order model on page A3-78.
. Access rights on page A3-87.

When considering memory access ordering, an important feature is the Shareable memory attribute that indicates
whether a region of memory can be shared between multiple processors, and therefore requires an appearance of
cache transparency in the ordering model.

The key issues with the memory order model depend on the target audience:

. For software programmers, considering the model at the application level, the key factor is that for accesses
to Normal memory, barriers are required in some situations where the order of accesses observed by other
observers must be controlled.

. For silicon implementers, considering the model at the system level, the Strongly-ordered and Device
memory attributes place certain restrictions on the system designer in terms of what can be built and when to
indicate completion of an access.

Note

Implementations remain free to choose the mechanisms required to implement the functionality of the
memory model.

More information about the memory order model is given in the following subsections:
. Reads and writes.
. Ordering requirements for memory accesses on page A3-91.

. Memory barriers on page A3-92.

Additional attributes and behaviors relate to the memory system architecture. These features are defined in the
system level section of this manual, see Protected Memory System Architecture, PMSAv7 on page B3-688.

A3.71 Reads and writes

Each memory access is either a read or a write. Explicit memory accesses are the memory accesses required by the
function of an instruction. The following can cause memory accesses that are not explicit:

. Instruction fetches.
. Cache loads and write-backs

Except where otherwise stated, the memory ordering requirements only apply to explicit memory accesses.

Reads
Reads are defined as memory operations that have the semantics of a load.

The memory accesses of the following instructions are reads:
. LDR, LDRB, LDRH, LDRSB, and LDRSH.

. LDRT, LDRBT, LDRHT, LDRSBT, and LDRSHT.

. LDREX, LDREXB, and LDREXH.

. LDM{IA,DB}, LDRD, POP, VLDM, VLDR, and VPOP.

. LDC and LDC2.

. The return of status values by STREX, STREXB, and STREXH.
. TBB and TBH.

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A3-89
Non-Confidential

A3 ARM Architecture Memory Model
A3.7 Memory access order

Writes
Writes are defined as memory operations that have the semantics of a store.

The memory accesses of the following instructions are Writes:
. STR, STRB, and STRH.

. STRT, STRBT, and STRHT.

. STREX, STREXB, and STREXH .

. STM{IA,DB}, STRD, PUSH, VSTR, VSTM, and VPUSH.

. STC and STC2

Synchronization primitives

Synchronization primitives must ensure correct operation of system semaphores in the memory order model. The
synchronization primitive instructions are defined as those instructions that are used to ensure memory
synchronization:

. LDREX, STREX, LDREXB, STREXB, LDREXH, STREXH.

For details of the Load-Exclusive, Store-Exclusive and Clear-Exclusive instructions see Synchronization and
semaphores on page A3-70.

The Load-Exclusive and Store-Exclusive instructions are supported to Shareable and Non-shareable memory.
Non-shareable memory can be used to synchronize processes that are running on the same processor. Shareable
memory must be used to synchronize processes that might be running on different processors.

Observability and completion
The set of observers that can observe a memory access is defined by the system.

For all memory:

. A write to a location in memory is said to be observed by an observer when a subsequent read of the location
by the same observer will return the value written by the write.

. A write to a location in memory is said to be globally observed for a shareability domain when a subsequent
read of the location by any observer within that shareability domain that is capable of observing the write will
return the value written by the write.

. A read of a location in memory is said to be observed by an observer when a subsequent write to the location
by the same observer will have no effect on the value returned by the read.

. A read of a location in memory is said to be globally observed for a shareability domain when a subsequent
write to the location by any observer within that shareability domain that is capable of observing the write
will have no effect on the value returned by the read.

Additionally, for Strongly-ordered memory:

. A read or write of a memory-mapped location in a peripheral that exhibits side-effects is said to be observed,
and globally observed, only when the read or write:
— Meets the general conditions listed.
— Can begin to affect the state of the memory-mapped peripheral.

— Can trigger all associated side effects, whether they affect other peripheral devices, processors, or
memory.

For all memory, the ARMv7-M completion rules are defined as:

. A read or write is complete for a shareability domain when all of the following are true:
— The read or write is globally observed for that shareability domain.

— Any instruction fetches by observers within the shareability domain have observed the read or write.

A3-90

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A3 ARM Architecture Memory Model
A3.7 Memory access order

. A cache or branch predictor maintenance operation is complete for a shareability domain when the effects of
operation are globally observed for that shareability domain.

Side effect completion in Strongly-ordered and Device memory

The completion of a memory access in Strongly-ordered or Device memory is not guaranteed to be sufficient to
determine that the side effects of the memory access are visible to all observers. The mechanism that ensures the
visibility of side-effects of a memory access is IMPLEMENTATION DEFINED, for example provision of a status register
that can be polled.

A3.7.2 Ordering requirements for memory accesses

ARMV7-M defines access restrictions in the permitted ordering of memory accesses. These restrictions depend on
the memory attributes of the accesses involved.

Two terms used in describing the memory access ordering requirements are:

Address dependency

An address dependency exists when the value returned by a read access is used to compute the
address of a subsequent read or write access. An address dependency exists even if the value read
by the first read access does not change the address of the second read or write access. This might
be the case if the value returned is masked off before it is used, or if it has no effect on the predicted
address value for the second access.

Control dependency

A control dependency exists when the data value returned by a read access is used to determine the
condition code flags, and the values of the flags are used for condition code evaluation to determine
the address of a subsequent read access. This address determination might be through conditional
execution, or through the evaluation of a branch

Figure A3-8 on page A3-92 shows the memory ordering between two explicit accesses Al and A2, where A1 occurs
before A2 in program order. The symbols used in the figure are as follows:

< Accesses must be globally observed in program order, that is, A1 must be globally observed strictly
before A2.

- Accesses can be globally observed in any order, provided that the requirements of uniprocessor
semantics, for example respecting dependencies between instructions in a single processor, are
maintained.

The following additional restrictions apply to the ordering of memory accesses that have this

symbol:
. If there is an address dependency then the two memory accesses are observed in program
order.

This ordering restriction does not apply if there is only a control dependency between the two
read accesses.

If there is both an address dependency and a control dependency between two read accesses
the ordering requirements of the address dependency apply.

. If the value returned by a read access is used as data written by a subsequent write access,
then the two memory accesses are observed in program order.

. It is impossible for an observer to observe a write access to a memory location if that location
would not be written to in a sequential execution of a program

. It is impossible for an observer to observe a write value to a memory location if that value
would not be written in a sequential execution of a program.

In Figure A3-8 on page A3-92, an access refers to a read or a write access to the specified memory
type. For example, Device access, Non-shareable refers to a read or write access to Non-shareable
Device memory.

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A3-91
Non-Confidential

A3 ARM Architecture Memory Model
A3.7 Memory access order

i Strongly-

A2 Normal Device access gly

A1 access ordered

Non-shareable| Shareable access

Normal access - - - -
Device access, Non-shareable - < - <
Device access, Shareable - - < <
Strongly-ordered access - < < <

Figure A3-8 Memory ordering restrictions

There are no ordering requirements for implicit accesses to any type of memory.

Program order for instruction execution

The program order of instruction execution is the order of the instructions in the control flow trace.
Explicit memory accesses in an execution can be either:

Strictly Ordered Denoted by <. Must occur strictly in order.

Ordered Denoted by <=. Can occur either in order or simultaneously.

Multiple load and store instructions, LDC, LDC2, LDMDB, LDMIA, LDRD, POP, PUSH, STC, STC2, STMDB, STMIA, STRD, VLDR.F64,
VSTR.F64, VLDM, VPUSH, VSTM, and VPOP, generate multiple word accesses, each of which is a separate access for the
purpose of determining ordering.

The rules for determining program order for two accesses Al and A2 are:

If Al and A2 are generated by two different instructions:

. A1 < A2 if the instruction that generates A1 occurs before the instruction that generates A2 in program order.
. A2 < Al if the instruction that generates A2 occurs before the instruction that generates A1 in program order.
If Al and A2 are generated by the same instruction:

. If A1 and A2 are two word loads generated by an LDC, LDC2, LDMDB, LDMIA or POP instruction, or two word stores
generated by a PUSH, STC, STC2, STMDB, or STMIA instruction, excluding LDMDB, LDMIA or POP instructions with a
register list that includes the PC:

Al <= A2 if the address of Al is less than the address of A2.
— A2 <= Al if the address of A2 is less than the address of Al.

. If Al and A2 are two word loads generated by an LDMDB, LDMIA or POP instruction with a register list that
includes the PC, the program order of the memory accesses is not defined.

. If Al and A2 are two word loads generated by an LDRD instruction or two word stores generated by an STRD
instruction, the program order of the memory accesses is not defined.

. For any instruction or operation not explicitly mentioned in this section, if the single-copy atomicity rules
described in Single-copy atomicity on page A3-79 mean the operation becomes a sequence of accesses, then
the time-ordering of those accesses is not defined.

A3.7.3 Memory barriers
Memory barrier is the general term applied to an instruction, or sequence of instructions, used to force
synchronization events by a processor with respect to retiring load and store instructions in a processor. A memory
barrier is used to guarantee both:
. Completion of preceding load and store instructions to the programmers’ model.
. Flushing of any prefetched instructions before the memory barrier event.

A3-92 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b

Non-Confidential ID120114

A3 ARM Architecture Memory Model
A3.7 Memory access order

ARMV7-M requires three explicit memory barriers to support the memory order model described in this chapter.
The three memory barriers are:

. Data Memory Barrier, see Data Memory Barrier (DMB).
. Data Synchronization Barrier, see Data Synchronization Barrier (DSB) on page A3-94.
. Instruction Synchronization Barrier, see Instruction Synchronization Barrier (ISB) on page A3-94.

The DMB and DSB memory barriers affect reads and writes to the memory system generated by load and store
instructions. Instruction fetches are not explicit accesses and are not affected.

Note

In ARMv7-M, memory barrier operations might be required in conjunction with data or unified cache and branch
predictor maintenance operations.

Data Memory Barrier (DMB)

The DMB instruction is a data memory barrier. The processor that executes the DMB instruction is referred to as the
executing processor, Pe. The DMB instruction takes the required shareability domain and required access types as
arguments.

Note

ARMV7-M only supports system-wide barriers with no shareability domain or access type limitations.

A DMB creates two groups of memory accesses, Group A and Group B:

Group A Contains:

. All explicit memory accesses of the required access types from observers within the same
shareability domain as Pe that are observed by Pe before the DMB instruction. This includes
any accesses of the required access types and required shareability domain performed by Pe.

. All loads of required access types from observers within the same shareability domain as Pe
that have been observed by any given observer Py within the same required shareability
domain as Pe before Py has performed a memory access that is a member of Group A.

Group B Contains:

. All explicit memory accesses of the required access types by Pe that occur in program order
after the DMB instruction.

. All explicit memory accesses of the required access types by any given observer Px within
the same required shareability domain as Pe that can only occur after Px has observed a store
that is a member of Group B.

Any observer with the same required shareability domain as Pe observes all members of Group A before it observes
any member of Group B. Where members of Group A and Group B access the same memory-mapped peripheral,
all members of Group A will be visible at the memory-mapped peripheral before any members of Group B are
visible at that peripheral.

Note

. A memory access might be in neither Group A nor Group B. The DMB does not affect the order of
observation of such a memory access.

. The second part of the definition of Group A is recursive. Ultimately, membership of Group A derives from
the observation by Py of a load before Py performs an access that is a member of Group A as a result of the
first part of the definition of Group A.

. The second part of the definition of Group B is recursive. Ultimately, membership of Group B derives from
the observation by any observer of an access by Pe that is a member of Group B as a result of the first part of
the definition of Group B.

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A3-93
Non-Confidential

A3 ARM Architecture Memory Model
A3.7 Memory access order

DMB only affects memory accesses. It has no effect on the ordering of any other instructions executing on the
processor.

For details of the DMB instruction see DMB on page A7-235.

Data Synchronization Barrier (DSB)

The DSB instruction is a special memory barrier, that synchronizes the execution stream with memory accesses. The
DSB instruction takes the required shareability domain and required access types as arguments. A DSB behaves as a
DMB with the same arguments, and also has the additional properties defined here.

Note
ARMV7-M only supports system-wide barriers with no shareability domain or access type limitations.

A DSB completes when both:

. All explicit memory accesses that are observed by Pe before the DSB is executed, are of the required access
types, and are from observers in the same required shareability domain as Pe, are complete for the set of
observers within the required shareability domain.

. All explicit accesses to the system control space (SCS) that result in a context altering operation issued by Pe
before the DSB are complete.

In addition, no instruction that appears in program order after the DSB instruction can execute until the DSB completes.

For details of the DSB instruction see DSB on page A7-237.

Instruction Synchronization Barrier (ISB)

An ISB instruction flushes the pipeline in the processor, so that all instructions that come after the ISB instruction in
program order are fetched from cache or memory only after the ISB instruction has completed. Using an ISB ensures
that the effects of context altering operations executed before the ISB are visible to the instructions fetched after the
ISB instruction. Examples of context altering operations that might require the insertion of an ISB instruction to
ensure the operations are complete are:

. Ensuring a system control update has occurred.
. Re-prioritizing the exceptions that have configurable priority.

In addition, any branches that appear in program order after the ISB instruction are written into the branch prediction
logic with the context that is visible after the ISB instruction. This is needed to ensure correct execution of the
instruction stream.

Any context altering operations appearing in program order after the ISB instruction only take effect after the ISB
has been executed.

An ARMv7-M implementation must choose how far ahead of the current point of execution it prefetches
instructions. This can be either a fixed or a dynamically varying number of instructions. As well as choosing how
many instructions to prefetch, an implementation can choose which possible future execution path to prefetch along.
For example, after a branch instruction, it can prefetch either the instruction appearing in program order after the
branch or the instruction at the branch target. This is known as branch prediction.

A potential problem with all forms of instruction prefetching is that the instruction in memory might be changed
after it was prefetched but before it is executed. If this happens, the modification to the instruction in memory does
not normally prevent the already prefetched copy of the instruction from executing to completion. The memory
barrier instructions, ISB, DMB or DSB as appropriate, are used to force execution ordering where necessary.

For details of the ISB instruction see /SB on page A7-241.

A3-94

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A3 ARM Architecture Memory Model
A3.7 Memory access order

Synchronization requirements for System Control Space updates

The architecture defines the SCS as Strongly-ordered memory. In addition to the rules for the behavior of
Strongly-ordered memory, the architecture requires that the side effects of any access to the SCS that performs a
context-altering operation take effect when the access completes. Software can issue a DSB instruction to guarantee
completion of a previous SCS access.

The architecture guarantees the visibility of the effects of a context-altering operation only for instructions fetched
after the completion of the SCS access that performed the context-altering operation. Executing an ISB instruction,
or performing an exception entry or exception return, guarantees the refetching of any instructions that have been
fetched but not executed.

To guarantee that the side effects of a previous SCS access are visible, software can execute a DSB instruction
followed by an ISB instruction.

ARM DDI 0403E.b Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A3-95
ID120114 Non-Confidential

A3 ARM Architecture Memory Model
A3.8 Caches and memory hierarchy

A3.8

A3.8.1

A3.8.2

Caches and memory hierarchy

ARMV7-M defines support for caches within the architecture and via memory attributes. Memory attributes can be
exported on a supporting bus protocol such as AMBA (AHB or AXI protocols) to support system caches.

In situations where a breakdown in coherency can occur, software must manage the caches using cache maintenance
operations that are memory mapped and IMPLEMENTATION DEFINED.

Introduction to caches

A cache is a block of high-speed memory locations containing both address information (commonly known as a
TAG) and the associated data. The purpose is to increase the average speed of a memory access. Caches operate on
two principles of locality:

Spatial locality An access to one location is likely to be followed by accesses from adjacent locations, for
example, sequential instruction execution or usage of a data structure.

Temporal locality An access to an area of memory is likely to be repeated within a short time period, for
example, execution of a code loop.

To minimize the quantity of control information stored, the spatial locality property is used to group several
locations together under the same TAG. This logical block is commonly known as a cache line. When data is loaded
into a cache, access times for subsequent loads and stores are reduced, resulting in overall performance benefits. An
access to information already in a cache is known as a cache hit, and other accesses are called cache misses.

Normally, caches are self-managing, with the updates occurring automatically. Whenever the processor wants to
access a cacheable location, the cache is checked. If the access is a cache hit, the access occurs immediately,
otherwise a location is allocated and the cache line loaded from memory. Different cache topologies and access
policies are possible, however they must comply with the memory coherency model of the underlying architecture.

Caches introduce a number of potential problems, mainly because of:
. Memory accesses occurring at times other than when the programmer would normally expect them.
. The existence of multiple physical locations where a data item can be held.

Memory hierarchy

Memory close to a processor has very low latency, but is limited in size and expensive to implement. Further from
the processor it is easier to implement larger blocks of memory but these have increased latency. To optimize overall
performance, an ARMv7 memory system can include multiple levels of cache in a hierarchical memory system.
Figure A3-9 shows such a system.

Physical address

»
>

v h 4 Y

Configuration and [| avel 1 Level 2

Processor control Cache Cache rovel 3
R15 » Instruction DRAM

fetch SRAM

= = Load Flash Level 4

RO Store -« ROM foé?:xgg:g ©
disk

A

A 4
A
A

A

Figure A3-9 Multiple levels of cache in a memory hierarchy

Note

In this manual, in a hierarchical memory system, Level 1 refers to the level closest to the processor, as shown in
Figure A3-9.

A3-96

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A3 ARM Architecture Memory Model
A3.8 Caches and memory hierarchy

A3.8.3 Implication of caches to the application programmer

Caches are largely invisible to the application programmer, but can become visible due to a breakdown in coherency.
Such a breakdown can occur when:

. Memory locations are updated by other agents in the systems.
. Memory updates made from the application code must be made visible to other agents in the system.

For example:

In systems with a DMA that reads memory locations that are held in the data cache of a processor, a breakdown of
coherency occurs when the processor has written new data in the data cache, but the DMA reads the old data held
in memory.

In a Harvard architecture of caches, a breakdown of coherency occurs when new instruction data has been written
into the data cache and/or to memory, but the instruction cache still contains the old instruction data.

Data coherency issues

Software can ensure the data coherency of caches in the following ways:

. By not using the caches in situations where coherency issues can arise. This can be achieved by:
— Using Non-cacheable or, in some cases, Write-Through Cacheable memory.
— Not enabling caches in the system.

. By using cache maintenance operations to manage the coherency issues in software, see Cache and branch
predictor maintenance operations on page B2-633. Many of these operations are only available to system
software.

. By using hardware coherency mechanisms to ensure the coherency of data accesses to memory for cacheable

locations by observers within the different shareability domains, see Non-shareable Normal memory on
page A3-81 and Shareable Normal memory on page A3-81.

The performance of these hardware coherency mechanisms is highly implementation-specific. In some
implementations the mechanism suppresses the ability to cache shareable locations. In other
implementations, cache coherency hardware can hold data in caches while managing coherency between
observers within the shareability domains.

Instruction coherency issues

How far ahead of the current point of execution instructions are fetched from is IMPLEMENTATION DEFINED. Such
prefetching can be either a fixed or a dynamically varying number of instructions, and can follow any or all possible
future execution paths. For all types of memory:

. The processor might have fetched the instructions from memory at any time since the last context
synchronization operation on that processor.

. Any instructions fetched in this way might be executed multiple times, if this is required by the execution of
the program, without being refetched from memory

Note

See Context synchronization operation on page Glossary-908 for the definition of this term.

In addition, the ARM architecture does not require the hardware to ensure coherency between instruction caches
and memory, even for regions of memory with Shareable attributes. This means that for cacheable regions of
memory, an instruction cache can hold instructions that were fetched from memory before the context
synchronization operation.

If software requires coherency between instruction execution and memory, it must manage this coherency using the
ISB and DSB memory barriers and cache maintenance operations, see Ordering of cache and branch predictor
maintenance operations on page B2-634. Many of these operations are only available to system software.

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A3-97
Non-Confidential

A3 ARM Architecture Memory Model
A3.8 Caches and memory hierarchy

A3.8.4 Preloading caches

The ARM architecture provides memory system hints PLD (Preload Data) and PLI (Preload instruction) to permit
software to communicate the expected use of memory locations to the hardware. The memory system can respond
by taking actions that are expected to speed up the memory accesses if and when they do occur. The effect of these
memory system hints is IMPLEMENTATION DEFINED. Typically, implementations will use this information to bring
the data or instruction locations into caches that have faster access times than Normal memory.

The Preload instructions are hints, and so implementations can treat them as NOPs without affecting the functional
behavior of the device. The instructions do not generate exceptions, but the memory system operations might
generate an imprecise fault (asynchronous exception) due to the memory access.

A3-98 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

Chapter A4

The ARMv7-M Instruction Set

This chapter describes the ARMv7-M Thumb instruction set, including the additional instructions added by the
Floating-point extension. It contains the following sections:

About the instruction set on page A4-100.

Unified Assembler Language on page A4-102.

Branch instructions on page A4-104.

Data-processing instructions on page A4-105.

Status register access instructions on page A4-112.

Load and store instructions on page A4-113.

Load Multiple and Store Multiple instructions on page A4-115.
Miscellaneous instructions on page A4-116.
Exception-generating instructions on page A4-117.
Coprocessor instructions on page A4-118.

Floating-point load and store instructions on page A4-119.
Floating-point register transfer instructions on page A4-120.
Floating-point data-processing instructions on page A4-121.

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved.
Non-Confidential

A4-99

A4 The ARMv7-M Instruction Set
A4.1 About the instruction set

A4.1 About the instruction set
ARMV7-M supports a large number of 32-bit instructions that Thumb-2 technology introduced into the Thumb
instruction set. Much of the functionality available is identical to the ARM instruction set supported alongside the
Thumb instruction set in ARMv6T2 and other ARMv7 profiles. This chapter describes the functionality available
in the ARMv7-M Thumb instruction set, and the Unified Assembler Language (UAL) that can be assembled to
either the Thumb or ARM instruction sets.
Thumb instructions are either 16-bit or 32-bit, and are aligned on a two-byte boundary. 16-bit and 32-bit instructions
can be intermixed freely. Many common operations are most efficiently executed using 16-bit instructions.
However:
. Most 16-bit instructions can only access eight of the general purpose registers, R0-R7. These are known as
the low registers. A small number of 16-bit instructions can access the high registers, R8-R15.
. Many operations that would require two or more 16-bit instructions can be more efficiently executed with a
single 32-bit instruction.
The ARM and Thumb instruction sets are designed to interwork freely. Because ARMv7-M only supports Thumb
instructions, interworking instructions in ARMv7-M must only reference Thumb state execution, see ARMv7-M and
interworking support for more details.
In addition, see:
. Chapter A5 The Thumb Instruction Set Encoding for encoding details of the Thumb instruction set.
. Chapter A7 Instruction Details for detailed descriptions of the instructions.
Ad41.1 ARMv7-M and interworking support
Thumb interworking is held as bit [0] of an interworking address. Interworking addresses are used in the following
instructions:
. BX or BLX.
. an LDR or LDM that loads the PC.
ARMV7-M only supports the Thumb instruction execution state and attempting to execute an instruction while
EPSR.T == 0 results in an INVSTATE UsageFault exception, therefore the value of address bit[0] must be 1 in
interworking instructions, otherwise a fault will occur. All instructions ignore bit[0] and write bits[31:1]:’0” when
updating the PC.
16-bit instructions that update the PC behave as follows:
. ADD (register) and MOV (register) branch without interworking.
Note
ARM deprecates the use of Rd as the PC in the ADD (SP plus register) 16-bit instruction.
. B branches without interworking.
. (BZ and CBNZ branch without interworking.
. BLX and BX interwork on the value in Rm.
. POP interworks on the value loaded to the PC.
. BKPT and SVC cause exceptions and are not considered to be interworking instructions.
32-bit instructions that update the PC behave as follows:
. B branches without interworking.
. BL branches without interworking.
. LDM and LDR support interworking using the value written to the PC.
. TBB and TBH branch without interworking.
For more details, see the description of the BXWritePC() function in Pseudocode details of ARM core register
operations on page A2-30.
A4-100 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b

Non-Confidential ID120114

A4 The ARMv7-M Instruction Set
A4.1 About the instruction set

A4.1.2 Conditional execution

Conditionally executed means that the instruction only has its normal effect on the programmers’ model operation,
memory and coprocessors if the N, Z, C, and V flags in the APSR satisfy a condition specified in the instruction. If
the flags do not satisfy this condition, the instruction acts as a NOP, that is, execution advances to the next instruction
as normal, including any relevant checks for exceptions being taken, but has no other effect.

Most Thumb instructions are unconditional. Conditional execution in Thumb code can be achieved using any of the
following instructions:

. A 16-bit conditional branch instruction, with a branch range of —256 to +254 bytes. See B on page A7-207
for details. Before the additional instruction support in ARMv6T2, this was the only mechanism for
conditional execution in Thumb code.

. A 32-bit conditional branch instruction, with a branch range of approximately + 1MB. See B on page A7-207
for details.

. 16-bit Compare and Branch on Zero and Compare and Branch on Nonzero instructions, with a branch range
of +4 to +130 bytes. See CBNZ, CBZ on page A7-219 for details.

. A 16-bit If-Then instruction that makes up to four following instructions conditional. See /7 on page A7-242
for details. The instructions that are made conditional by an IT instruction are called its /7 block. Instructions
in an IT block must either all have the same condition, or some can have one condition, and others can have
the inverse condition.

See Conditional execution on page A7-176 for more information about conditional execution.

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A4-101
Non-Confidential

A4 The ARMv7-M Instruction Set
A4.2 Unified Assembler Language

A4.2

A4.21

A4.2.2

Unified Assembler Language

This document uses the ARM Unified Assembler Language (UAL). This assembly language syntax provides a
canonical form for all ARM and Thumb instructions.

UAL describes the syntax for the mnemonic and the operands of each instruction. In addition, it assumes that
instructions and data items can be given labels. It does not specify the syntax to be used for labels, nor what
assembler directives and options are available. See your assembler documentation for these details.

Earlier ARM assembly language mnemonics are still supported as synonyms, as described in the instruction details.

Note

Most earlier Thumb assembly language mnemonics are not supported. See Appendix D2 Legacy Instruction
Mnemonics for details.

UAL includes instruction selection rules that specify which instruction encoding is selected when more than one
can provide the required functionality. For example, both 16-bit and 32-bit encodings exist for an ADD R0,R1,R2
instruction. The most common instruction selection rule is that when both a 16-bit encoding and a 32-bit encoding
are available, the 16-bit encoding is selected, to optimize code density.

Syntax options exist to override the normal instruction selection rules and ensure that a particular encoding is
selected. These are useful when disassembling code, to ensure that subsequent assembly produces the original code,
and in some other situations.

Conditional instructions

For maximum portability of UAL assembly language between the ARM and Thumb instruction sets, ARM
recommends that:

. IT instructions are written before conditional instructions in the correct way for the Thumb instruction set.

. When assembling to the ARM instruction set, assemblers check that any IT instructions are correct, but do
not generate any code for them.

Although other Thumb instructions are unconditional, all instructions that are made conditional by an IT instruction
must be written with a condition. These conditions must match the conditions imposed by the IT instruction. For
example, an ITTEE EQ instruction imposes the EQ condition on the first two following instructions, and the NE
condition on the next two. Those four instructions must be written with EQ, EQ, NE and NE conditions respectively.

Some instructions cannot be made conditional by an IT instruction. Some instructions can be conditional if they are
the last instruction in the IT block, but not otherwise.

The branch instruction encodings that include a condition field cannot be made conditional by an IT instruction. If
the assembler syntax indicates a conditional branch that correctly matches a preceding IT instruction, it is assembled
using a branch instruction encoding that does not include a condition field.

Use of labels in UAL instruction syntax

The UAL syntax for some instructions includes the label of an instruction or a literal data item that is at a fixed offset
from the instruction being specified. The assembler must:

1. Calculate the PC or ATign(PC,4) value of the instruction. The PC value of an instruction is its address plus 4
for a Thumb instruction. The Align(PC,4) value of an instruction is its PC value ANDed with 0xFFFFFFFC to
force it to be word-aligned.

2. Calculate the offset from the PC or Align(PC,4) value of the instruction to the address of the labelled
instruction or literal data item.

3, Assemble a PC-relative encoding of the instruction, that is, one that reads its PC or A1ign(PC,4) value and adds
the calculated offset to form the required address.

A4-102

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A4 The ARMv7-M Instruction Set
A4.2 Unified Assembler Language

Note

For instructions that encode a subtraction operation, if the instruction cannot encode the calculated offset, but
can encode minus the calculated offset, the instruction encoding specifies a subtraction of minus the
calculated offset.

The syntax of the following instructions includes a label:

B and BL. The assembler syntax for these instructions always specifies the label of the instruction that they
branch to. Their encodings specify a sign-extended immediate offset that is added to the PC value of the
instruction to form the target address of the branch.

(BNZ and (BZ. The assembler syntax for these instructions always specifies the label of the instruction that they
branch to. Their encodings specify a zero-extended immediate offset that is added to the PC value of the
instruction to form the target address of the branch. They do not support backward branches.

LDC, LDC2, LDR, LDRB, LDRD, LDRH, LDRSB, LDRSH, PLD, PLI, VLDR, and VSTR. The normal assembler syntax of these
load instructions can specify the label of a literal data item that is to be loaded. The encodings of these
instructions specify a zero-extended immediate offset that is either added to or subtracted from the
Align(PC,4) value of the instruction to form the address of the data item. A few such encodings perform a
fixed addition or a fixed subtraction and must only be used when that operation is required, but most contain
a bit that specifies whether the offset is to be added or subtracted.

When the assembler calculates an offset of 0 for the normal syntax of these instructions, it must assemble an
encoding that adds 0 to the Align(PC,4) value of the instruction. Encodings that subtract 0 from the
Align(PC,4) value cannot be specified by the normal syntax.

There is an alternative syntax for these instructions that specifies the addition or subtraction and the
immediate offset explicitly. In this syntax, the label is replaced by [PC, #+/-<imm>], where:

+/- Is + or omitted to specify that the immediate offset is to be added to the Align(PC,4) value, or - if
it is to be subtracted.

<imm> Is the immediate offset.

This alternative syntax makes it possible to assemble the encodings that subtract 0 from the Align(PC,4)
value, and to disassemble them to a syntax that can be re-assembled correctly.

ADR. The normal assembler syntax for this instruction can specify the label of an instruction or literal data item
whose address is to be calculated. Its encoding specifies a zero-extended immediate offset that is either added
to or subtracted from the Align(PC,4) value of the instruction to form the address of the data item, and some
opcode bits that determine whether it is an addition or subtraction.

When the assembler calculates an offset of 0 for the normal syntax of this instruction, it must assemble the
encoding that adds 0 to the A1ign(PC,4) value of the instruction. The encoding that subtracts 0 from the
Align(PC,4) value cannot be specified by the normal syntax.

There is an alternative syntax for this instruction that specifies the addition or subtraction and the immediate
value explicitly, by writing them as additions ADD <Rd>,PC,#<imm> or subtractions SUB <Rd>,PC,#<imm>. This
alternative syntax makes it possible to assemble the encoding that subtracts 0 from the A1ign(PC,4) value, and
to disassemble it to a syntax that can be re-assembled correctly.

Note

ARM recommends that where possible, you avoid using:

The alternative syntax for the ADR, LDC, LDC2, LDR, LDRB, LDRD, LDRH, LDRSB, LDRSH, PLD, PLI, VLDR, and VSTR
instructions.

The encodings of these instructions that subtract 0 from the A1ign(PC,4) value.

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A4-103
Non-Confidential

A4 The ARMv7-M Instruction Set
A4.3 Branch instructions

A4.3 Branch instructions

Table A4-1 summarizes the branch instructions in the Thumb instruction set. In addition to providing for changes
in the flow of execution, some branch instructions can change instruction set.

Table A4-1 Branch instructions

Instruction Usage Range

B on page A7-207 Branch to target address +/-1 MB

CBNZ, CBZ on page A7-219 Compare and Branch on Nonzero, Compare and Branch on Zero 0-126 B

BL on page A7-216 Call a subroutine +/-16 MB

BLX (register) on page A7-217 Call a subroutine, optionally change instruction set Any

BX on page A7-218 Branch to target address, change instruction set Any

TBB, TBH on page A7-462 TBB: Table Branch, byte offsets 0-510B
TBH: Table Branch, halfword offsets 0-131070 B

LDR, LDM, and POP instructions can also cause a branch. See Load and store instructions on page A4-113 and Load
Multiple and Store Multiple instructions on page A4-115 for details.

A4-104 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A4 The ARMv7-M Instruction Set
A4.4 Data-processing instructions

Ad4.4 Data-processing instructions

Data-processing instructions belong to one of the following groups:
. Standard data-processing instructions.
This group perform basic data-processing operations, and shares a common format with some variations.
. Shift instructions on page A4-106.
. Multiply instructions on page A4-107.

. Saturating instructions on page A4-108.

. Packing and unpacking instructions on page A4-109.

. Divide instructions on page A4-110.

. Parallel addition and subtraction instructions, DSP extension on page A4-110.
. Miscellaneous data-processing instructions on page A4-111.

See also Floating-point data-processing instructions on page A4-121.

Ad4.4.1 Standard data-processing instructions

These instructions generally have a destination register Rd, a first operand register Rn, and a second operand. The
second operand can be either another register Rm, or a modified immediate constant.

If the second operand is a modified immediate constant, it is encoded in 12 bits of the instruction. See Modified
immediate constants in Thumb instructions on page A5-137 for details.

If the second operand is another register, it can optionally be shifted in any of the following ways:

LSL Logical Shift Left by 1-31 bits.

LSR Logical Shift Right by 1-32 bits.

ASR Arithmetic Shift Right by 1-32 bits.

ROR Rotate Right by 1-31 bits.

RRX Rotate Right with Extend. See Shift and rotate operations on page A2-26 for details.

In Thumb code, the amount to shift the second operand by is always a constant encoded in the instruction. The
Thumb instruction set provides register-based shifts as explicit instructions, see Shift instructions on page A4-106.

In addition to placing a result in the destination register, these instructions can optionally set the condition code flags
according to the result of the operation. If an instruction does not set a flag, the existing value of that flag, from a
previous instruction, is preserved.

Table A4-2 summarizes the main data-processing instructions in the Thumb instruction set. Generally, each of these
instructions is described in two sections in Chapter A7 Instruction Details, one section for each of the following:

. INSTRUCTION (immediate) where the second operand is a modified immediate constant.
. INSTRUCTION (register) where the second operand is a register, or a register shifted by a constant.

Table A4-2 Standard data-processing instructions

Mnemonic Instruction Notes
ADC Add with Carry -
ADD Add Thumb permits use of a modified immediate constant or a zero-extended

12-bit immediate constant.

ADR Form PC-relative First operand is the PC. Second operand is an immediate constant. Thumb
Address supports a zero-extended 12-bit immediate constant. Operation is an
addition or a subtraction.

AND Bitwise AND -
BIC Bitwise Bit Clear -
CMN Compare Negative Sets flags. Like ADD but with no destination register.
ARM DDI 0403E.b Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A4-105

ID120114 Non-Confidential

A4 The ARMv7-M Instruction Set
A4.4 Data-processing instructions

Table A4-2 Standard data-processing instructions (continued)

Mnemonic Instruction Notes
CMP Compare Sets flags. Like SUB but with no destination register.
EOR Bitwise Exclusive OR -
MOV Copies operand to Has only one operand, with the same options as the second operand in most
destination of these instructions. If the operand is a shifted register, the instruction is
an LSL, LSR, ASR, or ROR instruction instead. See Shift instructions for details.
Thumb permits use of a modified immediate constant or a zero-extended
16-bit immediate constant.
MVN Bitwise NOT Has only one operand, with the same options as the second operand in most
of these instructions.
ORN Bitwise OR NOT -
ORR Bitwise OR -
RSB Reverse Subtract Subtracts first operand from second operand. This permits subtraction
from constants and shifted registers.
SBC Subtract with Carry -
SUB Subtract Thumb permits use of a modified immediate constant or a zero-extended
12-bit immediate constant.
TEQ Test Equivalence Sets flags. Like EOR but with no destination register.
TST Test Sets flags. Like AND but with no destination register.
A4.4.2 Shift instructions
Table A4-3 lists the shift instructions in the Thumb instruction set.
Table A4-3 Shift instructions
Instruction See
Arithmetic Shift Right ASR (immediate) on page A7-203
Arithmetic Shift Right ASR (register) on page A7-205
Logical Shift Left LSL (immediate) on page A7-298
Logical Shift Left LSL (register) on page A7-300
Logical Shift Right LSR (immediate) on page A7-302
Logical Shift Right LSR (register) on page A7-304
Rotate Right ROR (immediate) on page A7-366
Rotate Right ROR (register) on page A7-368
Rotate Right with Extend ~ RRX on page A7-370
A4-106 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b

Non-Confidential ID120114

A4.43

A4 The ARMv7-M Instruction Set
A4.4 Data-processing instructions

Multiply instructions

These instructions can operate on signed or unsigned quantities. In some types of operation, the results are same
whether the operands are signed or unsigned.

Table A4-4 lists the multiply instructions where there is no distinction between signed and unsigned
quantities.

The least significant 32 bits of the result are used. More significant bits are discarded.
Table A4-5 lists the signed multiply instructions in the ARMv7-M base architecture.

Table A4-6 lists the signed multiply instructions that the DSP extension adds to the ARMv7-M instruction
set.

Table A4-7 on page A4-108 lists the unsigned multiply instructions in the ARMv7-M base architecture.

Table A4-8 on page A4-108 lists the unsigned multiply instructions that the DSP extension adds to the
ARMV7-M instruction set.

Table A4-4 General multiply instructions

Instruction See Operation (number of bits)
Multiply Accumulate ~ MLA on page A7-310 32=32+32x32

Multiply and Subtract ~ MLS on page A7-311 32=32-32x32

Multiply MUL on page A7-324 32=32x32

Table A4-5 Signed multiply instructions, ARMv7-M base architecture

Instruction See Operation (number of bits)

Signed Multiply Accumulate Long ~ SMLAL on page A7-396 64 =64+ 32 x 32

Signed Multiply Long SMULL on page A7-412 64=32x32

Table A4-6 Signed multiply instructions, ARMv7-M DSP extension

Instruction

See Operation (number of bits)

Signed Multiply Accumulate, halfwords

SMLABB, SMLABT, SMLATB,
SMLATT on page A7-392

32=32+16x16

Signed Multiply Accumulate Dual

SMLAD, SMLADX on page A7-394 32=32+16x16+16x16

Signed Multiply Accumulate Long,

halfwords

SMLALBB, SMLALBT, SMLALTB,
SMLALTT on page A7-398

64=64+16x16

SMLALD, SMLALDX on page A7-400 64=64+16%16+16x 16

Signed Multiply Accumulate Long Dual

Signed Multiply Accumulate, word by
halfword

SMLAWB, SMLAWT on page A7-402

32=32+32x162

Signed Multiply Subtract Dual
Signed Multiply Subtract Long Dual

Signed Most Significant Word Multiply
Accumulate

Signed Most Significant Word Multiply
Subtract

SMLSD, SMLSDX on page A7-403
SMLSLD, SMLSLDX on page A7-404

SMMLA, SMMLAR on page A7-406

SMMLS, SMMLSR on page A7-407

32=32+16%x16—-16x 16
64=64+16x16-16x16

32=32+32x32b

32=32-32x32b

ARM DDI 0403E.b

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved.

Non-Confidential

A4-107

A4 The ARMv7-M Instruction Set
A4.4 Data-processing instructions

Table A4-6 Signed multiply instructions, ARMv7-M DSP extension (continued)

Instruction See Operation (number of bits)
Signed Most Significant Word Multiply SMMUL, SMMULR on page A7-408 32 =32 x32b
Signed Dual Multiply Add SMUAD, SMUADX on page A7-409 32=16x16+16x 16
Signed Multiply, halfwords SMULBB, SMULBT, SMULTB, 32=16x16
SMULTT on page A7-410
Signed Multiply, word by halfword SMULWB, SMULWT on page A7-413 32=32 x 162
Signed Dual Multiply Subtract SMUSD, SMUSDX on page A7-414 32=16x16-16x 16

a. Uses the most significant 32 bits of the 48-bit product. Discards the less significant bits.
b. Uses the most significant 32 bits of the 64-bit product. Discards the less significant bits.

Table A4-7 Unsigned multiply instructions, ARMv7-M base architecture

Instruction See Operation (number of bits)

Unsigned Multiply Accumulate Long ~ UMLAL on page A7-480 64 =64 + 32 x 32

Unsigned Multiply Long UMULL on page A7-481 64 =32 x32

Table A4-8 Unsigned multiply instructions, ARMv7-M DSP extension

Instruction See Operation (number of bits)

Unsigned Multiply Accumulate Accumulate Long ~ UMAAL on page A7-479 64 =32+ 32+32 x 32

Ad.44 Saturating instructions

Table A4-9 lists the saturating instructions in the ARMv7-M base architecture. For more information see
Pseudocode details of saturation on page A2-29.

Table A4-9 Saturating instructions, ARMv7-M base architecture

Instruction See Operation

Signed Saturate SSAT on page A7-415 Saturates optionally shifted 32-bit value to selected range

Unsigned Saturate ~ USAT on page A7-490 Saturates optionally shifted 32-bit value to selected range

Additional saturating instructions, DSP extension

The DSP extension adds:
. two saturating instructions that operate on parallel halfwords, as Table A4-10 shows
. saturating addition and subtraction instructions, as Table A4-11 on page A4-109 shows.
Table A4-10 Halfword saturating instructions, ARMv7-M DSP extension
Instruction See Operation
Signed Saturate 16 SSAT16 on page A7-416 Saturates two 16-bit values to selected range

Unsigned Saturate 16 ~ USAT16 on page A7-491 Saturates two 16-bit values to selected range

A4-108 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A4 The ARMv7-M Instruction Set
A4.4 Data-processing instructions

Table A4-11 Saturating addition and subtraction instructions, ARMv7-M DSP extension

Instruction See

Operation

Saturating Add QOADD on page A7-352

Add, saturating result to the 32-bit signed integer range

Saturating Subtract ~ QSUB on page A7-359

Subtract, saturating result to the 32-bit signed integer range

Saturating Double ODADD on page A7-356 Doubles one value and adds a second value, saturating the doubling and
and Add the addition to the 32-bit signed integer range
Saturating Double ODSUB on page A7-357 Doubles one value and subtracts the result from a second value, saturating

and Subtract

the doubling and the subtraction to the 32-bit signed integer range

See also Parallel addition and subtraction instructions, DSP extension on page A4-110.

A4.4.5

Packing and unpacking instructions

Table A4-12 lists the packing and upacking instructions in the ARMv7-M base architecture.

Table A4-12 Packing and unpacking instructions, ARMv7-M base architecture

Instruction See Operation

Signed Extend Byte SXTB on page A7-459 Extend 8 bits to 32
Signed Extend Halfword SXTH on page A7-461 Extend 16 bits to 32
Unsigned Extend Byte UXTB on page A7-498 Extend 8 bits to 32

Unsigned Extend Halfword

UXTH on page A7-500

Extend 16 bits to 32

Table A4-13 lists the packing and unpacking instructions that the DSP extension adds to the ARMv7-M instruction

set.
Table A4-13 Packing and unpacking instructions, ARMv7-M DSP extension
Instruction See Operation
Pack Halfword PKHBT, PKHTB on page A7-338 Combine halfwords

Signed Extend and Add Byte

SXTAB on page A7-456

Extend 8 bits to 32 and add

Signed Extend and Add Byte 16

Signed Extend and Add Halfword

SXTABI16 on page A7-457

SXTAH on page A7-458

Dual extend 8 bits to 16 and add

Extend 16 bits to 32 and add

Signed Extend Byte 16

SXTB16 on page A7-460

Dual extend 8 bits to 16

Unsigned Extend and Add Byte

UXTAB on page A7-495

Extend 8 bits to 32 and add

Unsigned Extend and Add Byte 16

UXTAB16 on page A7-496

Dual extend 8 bits to 16 and add

Unsigned Extend and Add Halfword

Unsigned Extend Byte 16

UXTAH on page A7-497

UXTB16 on page A7-499

Extend 16 bits to 32 and add

Dual extend 8 bits to 16

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved.
Non-Confidential

A4-109

A4 The ARMv7-M Instruction Set
A4.4 Data-processing instructions

A4.4.6 Divide instructions
In the ARMv7-M profile, the Thumb instruction set includes signed and unsigned integer divide instructions that
are implemented in hardware. For details of the instructions see:
. SDIV on page A7-383.
. UDIV on page A7-472.
In the ARMv7-M profile, the CCR.DIV_0_TRP bit enables divide by zero fault detection:
DIV_0_TRP ==
Divide-by-zero returns a zero result.
DIV_0_TRP ==
SDIV and UDIV generate a divide-by-zero UsageFault exception on a divide-by-zero.
A reset clears the CCR.DIV_0_TRP bit to zero.
A4.4.7 Parallel addition and subtraction instructions, DSP extension
The DSP extension adds instructions that perform additions and subtractions on the values of two registers and write
the result to a destination register, treating the register values as sets of two halfwords or four bytes.
These instructions consist of a prefix followed by a main instruction mnemonic. The prefixes are as follows:
S Signed arithmetic modulo 28 or 216.
Q Signed saturating arithmetic.
SH Signed arithmetic, halving the results.
u Unsigned arithmetic modulo 28 or 216,
uQ Unsigned saturating arithmetic.
UH Unsigned arithmetic, halving the results.
The main instruction mnemonics are as follows:
ADD16 Adds the top halfwords of two operands to form the top halfword of the result, and the bottom
halfwords of the same two operands to form the bottom halfword of the result.
ASX Exchanges halfwords of the second operand, and then adds top halfwords and subtracts bottom
halfwords.
SAX Exchanges halfwords of the second operand, and then subtracts top halfwords and adds bottom
halfwords.
SUB16 Subtracts each halfword of the second operand from the corresponding halfword of the first operand
to form the corresponding halfword of the result.
ADD8 Adds each byte of the second operand to the corresponding byte of the first operand to form the
corresponding byte of the result.
SUB8 Subtracts each byte of the second operand from the corresponding byte of the first operand to form
the corresponding byte of the result.
The instruction set permits all 36 combinations of prefix and main instruction operand, as Table A4-14 shows.
Table A4-14 Parallel addition and subtraction instructions
Main instruction Signed Saturating Slgn.ed Unsigned Un5|gn.ed Un5|_gned
halving saturating halving
ADD16, add, two halfwords SADD16 QADD16 SHADD16 UADD16 UQADD16 UHADD16
ASX, add and subtract with exchange ~ SASX QASX SHASX UASX UQASX UHASX
SAX, subtract and add with exchange = SSAX QSAX SHSAX USAX UQSAX UHSAX
A4-110 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b

Non-Confidential ID120114

A4 The ARMv7-M Instruction Set
A4.4 Data-processing instructions

Table A4-14 Parallel addition and subtraction instructions (continued)

Signed Unsigned Unsigned

Main instruction Signed Saturating halving Unsigned saturating halving

SUB16, subtract, two halfwords SSUB16 QSUB16 SHSUB16 USUB16 UQSUB16 UHSUB16

ADD8, add, four bytes SADD8 QADD8 SHADD8 UADD8 UQADDS UHADDS

SUB8, subtract, four bytes SSUBS QSUB8 SHSUB8 USUB8 UQsuBs UHSUBS
A4.4.8 Miscellaneous data-processing instructions

Table A4-15 lists the miscellaneous data-processing instructions in the Thumb instruction set in the ARMv7-M base
architecture. Immediate values in these instructions are simple binary numbers.

Table A4-15 Miscellaneous data-processing instructions, ARMv7-M base architecture

Instruction See Notes

Bit Field Clear BFC on page A7-209 -

Bit Field Insert BFI on page A7-210 -

Count Leading Zeros CLZ on page A7-224 -

Move Top MOVT on page A7-317 Moves 16-bit immediate value to top halfword.

Bottom halfword unaltered.

Reverse Bits RBIT on page A7-362 -

Byte-Reverse Word REV on page A7-363 -

Byte-Reverse Packed Halfword ~ REV16 on page A7-364 -

Byte-Reverse Signed Halfword ~ REVSH on page A7-365 -

Signed Bit Field Extract SBFX on page A7-382 -

Unsigned Bit Field Extract UBFX on page A7-470

Table A4-16 lists the miscellaneous data-processing instructions that the DSP extension adds to the ARMv7-M
Thumb instruction set.

Table A4-16 Miscellaneous data-processing instructions, ARMv7-M DSP extension

Instruction See
Select Bytes using GE flags SEL on page A7-384
Unsigned Sum of Absolute Differences USADS on page A7-488

Unsigned Sum of Absolute Differences and Accumulate ~ USADAS on page A7-489

ARM DDI 0403E.b Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A4-111
ID120114 Non-Confidential

A4 The ARMv7-M Instruction Set
A4.5 Status register access instructions

A4.5 Status register access instructions

The MRS and MSR instructions move the contents of the Application Program Status Register (APSR) to or from
a general-purpose register.

The APSR is described in The Application Program Status Register (APSR) on page A2-31.

The condition flags in the APSR are normally set by executing data-processing instructions, and are normally used
to control the execution of conditional instructions. However, you can set the flags explicitly using the MSR
instruction, and you can read the current state of the flags explicitly using the MRS instruction.

For details of the system level use of status register access instructions CPS, MRS, and MSR, see Chapter B5 System
Instruction Details.

A4-112 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A4 The ARMv7-M Instruction Set
A4.6 Load and store instructions

A4.6 Load and store instructions
Table A4-17 summarizes the general-purpose register load and store instructions in the Thumb instruction set. See
also
. Load Multiple and Store Multiple instructions on page A4-115.
. Floating-point load and store instructions on page A4-119.
Load and store instructions have several options for addressing memory. See Addressing modes on page A4-114 for
more information.
Table A4-17 Load and store instructions
Data type Load Store Load. . Stor(? . Load . Store .
unprivileged unprivileged exclusive exclusive
32-bit word LDR STR LDRT STRT LDREX STREX
16-bit halfword - STRH - STRHT - STREXH
16-bit unsigned halfword LDRH - LDRHT - LDREXH -
16-bit signed halfword LDRSH - LDRSHT - - -
8-bit byte - STRB - STRBT - STREXB
8-bit unsigned byte LDRB - LDRBT - LDREXB -
8-bit signed byte LDRSB - LDRSBT - - -
Two 32-bit words LDRD STRD - - - -
A4.6.1 Loads to the PC
The LDR instruction can be used to load a value into the PC. The value loaded is treated as an interworking address,
as described by the LoadWritePC() pseudocode function in Pseudocode details of ARM core register operations on
page A2-30.
A4.6.2 Halfword and byte loads and stores
Halfword and byte stores store the least significant halfword or byte from the register, to 16 or 8 bits of memory
respectively. There is no distinction between signed and unsigned stores.
Halfword and byte loads load 16 or 8 bits from memory into the least significant halfword or byte of a register.
Unsigned loads zero-extend the loaded value to 32 bits, and signed loads sign-extend the value to 32 bits.
A4.6.3 Unprivileged loads and stores
In an unprivileged mode, unprivileged loads and stores operate in exactly the same way as the corresponding
ordinary operations. In a privileged mode, unprivileged loads and stores are treated as though they were executed
in an unprivileged mode. See Privilege level access controls for data accesses on page A3-87 for more information.
A4.6.4 Exclusive loads and stores
Exclusive loads and stores provide for shared memory synchronization. See Synchronization and semaphores on
page A3-70 for more information.
ARM DDI 0403E.b Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A4-113

ID120114

Non-Confidential

A4 The ARMv7-M Instruction Set
A4.6 Load and store instructions

A4.6.5 Addressing modes

The address for a load or store is formed from two parts:

. A value from a base register.

. An offset.

The base register can be any one of the general-purpose registers.

For loads, the base register can be the PC. This permits PC-relative addressing for position-independent code.

Instructions marked (literal) in their title in Chapter A7 Instruction Details are PC-relative loads.

The offset takes one of three formats:

Immediate The offset is an unsigned number that can be added to or subtracted from the base register
value. Immediate offset addressing is useful for accessing data elements that are a fixed
distance from the start of the data object, such as structure fields, stack offsets and
input/output registers.

Register The offset is a value from a general-purpose register. This register cannot be the PC. The
value can be added to, or subtracted from, the base register value. Register offsets are useful
for accessing arrays or blocks of data.

Scaled register The offset is a general-purpose register, other than the PC, shifted by an immediate value,
then added to or subtracted from the base register. This means an array index can be scaled
by the size of each array element.

The offset and base register can be used in three different ways to form the memory address. The addressing modes

are described as follows:

Offset The offset is added to or subtracted from the base register to form the memory address.

Pre-indexed The offset is added to or subtracted from the base register to form the memory address. The
base register is then updated with this new address, to permit automatic indexing through an
array or memory block.

Post-indexed The value of the base register alone is used as the memory address. The offset is then added
to or subtracted from the base register. and this value is stored back in the base register, to
permit automatic indexing through an array or memory block.

Note

Not every variant is available for every instruction, and the range of permitted immediate values and the options for

scaled registers vary from instruction to instruction. See Chapter A7 Instruction Details for full details for each

instruction.
A4-114 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b

Non-Confidential ID120114

A4 The ARMv7-M Instruction Set
A4.7 Load Multiple and Store Multiple instructions

A4.7 Load Multiple and Store Multiple instructions
Load Multiple instructions load a subset, or possibly all, of the general-purpose registers from memory.
Store Multiple instructions store a subset, or possibly all, of the general-purpose registers to memory.

The memory locations are consecutive word-aligned words. The addresses used are obtained from a base register,
and can be either above or below the value in the base register. The base register can optionally be updated by the
total size of the data transferred.

Table A4-18 summarizes the Thumb Load Multiple and Store Multiple instructions.

Table A4-18 Load Multiple and Store Multiple instructions

Instruction Description

Load Multiple, Increment After or Full Descending LDM, LDMIA, LDMFD on page A7-248
Load Multiple, Decrement Before or Empty Ascending LDMDB, LDMEA on page A7-250

Pop multiple registers off the stack @ POP on page A7-348

Push multiple registers onto the stack PUSH on page A7-350

Store Multiple, Increment After or Empty Ascending STM, STMIA, STMEA on page A7-422
Store Multiple, Decrement Before or Full Descending STMDB, STMFD on page A7-424

a. This instruction is equivalent to an LDM instruction with the SP as base register, and base register updating.
b. This instruction is equivalent to an STMDB instruction with the SP as base register, and base register updating.

A4.71 Loads to the PC

The LDM, LDMDB, and POP instructions can be used to load a value into the PC. The value loaded is treated as an
interworking address, as described by the LoadWritePC() pseudocode function in Pseudocode details of ARM core
register operations on page A2-30.

ARM DDI 0403E.b Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A4-115
ID120114 Non-Confidential

A4 The ARMv7-M Instruction Set
A4.8 Miscellaneous instructions

A4.8 Miscellaneous instructions
Table A4-19 summarizes the miscellaneous instructions in the Thumb instruction set.
Table A4-19 Miscellaneous instructions
Instruction See
Clear Exclusive CLREX on page A7-223
Debug hint DBG on page A7-234
Data Memory Barrier DMB on page A7-235
Data Synchronization Barrier DSB on page A7-237
Instruction Synchronization Barrier ~ ISB on page A7-241
If Then IT on page A7-242
No Operation NOP on page A7-331
Preload Data PLD (immediate) on page A7-340
PLD (literal) on page A7-341
PLD (register) on page A7-342
Preload Instruction PLI (immediate, literal) on page A7-344
PLI (register) on page A7-346
Send Event SEV on page A7-385
Supervisor Call SVC on page A7-455
Wait for Event WFE on page A7-560
Wait for Interrupt WFI on page A7-561
Yield YIELD on page A7-562
A4-116 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b

Non-Confidential

ID120114

A4 The ARMv7-M Instruction Set
A4.9 Exception-generating instructions

A4.9 Exception-generating instructions

The following instructions are intended specifically to cause a processor exception to occur:

The Supervisor Call instruction, SVC, causes an SVCall exception to occur. This is the main mechanism for
unprivileged code to make calls to privileged Operating System code. See ARMv7-M exception model on
page B1-579 for details.

Note

Older ARM documentation often describes unprivileged code as User code. This description is not
appropriate to the M profile architecture.

The Breakpoint (BKPT) instruction provides for software breakpoints. It can generate a DebugMonitor
exception or cause a running system to halt depending on the debug configuration. See Debug event behavior
on page C1-752 for more details.

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A4-117
Non-Confidential

A4 The ARMv7-M Instruction Set
A4.10 Coprocessor instructions

A4.10 Coprocessor instructions

There are three types of instruction for communicating with coprocessors. These permit the processor to:

. Initiate a coprocessor data-processing operation, see CDP, CDP2 on page A7-221.

. Transfer general-purpose registers to and from coprocessor registers, see:

— MCR, MCR2 on page A7-306.
— MCRR, MCRR?2 on page A7-308.
— MRC, MRC2 on page A7-318.
— MRRC, MRRC?2 on page A7-320.
. Generate addresses for the coprocessor load/store instructions, see:
— LDC, LDC2 (immediate) on page A7-244.
— LDC, LDC? (literal) on page A7-246.
— STC, STC2 on page A7-420.
The instruction set distinguishes up to 16 coprocessors with a 4-bit field in each coprocessor instruction, so each
coprocessor is assigned a particular number.
Note

One coprocessor can use more than one of the 16 numbers if it requires a large coprocessor instruction set.

If an ARMv7-M implementation includes the optional FP extension, it uses coprocessors 10 and 11, together, to

provide the floating-point (FP) functionality. The extension provides different instructions for accessing these

coprocessors. These instructions are of similar types to the instructions for other coprocessors. This means they can:

. Initiate a coprocessor data-processing operation, see Floating-point data-processing instructions on
page A6-163.

. Transfer general-purpose registers to and from coprocessor registers, see 32-bit transfer between ARM core
and extension registers on page A6-166 and 64-bit transfers between ARM core and extension registers on
page A6-167.

. Load or store the values of coprocessor registers, see Extension register load or store instructions on
page A6-165.

Coprocessors execute the same instruction stream as the processor, ignoring non-coprocessor instructions and

coprocessor instructions for other coprocessors. Coprocessor instructions that cannot be executed by any

coprocessor hardware cause a UsageFault exception and indicate the reason as follows:

. If the Coprocessor Access Register denies access to a coprocessor, the processor sets the UFSR.NOCP flag
to 1 to indicate that the coprocessor does not exist.

. If the coprocessor access is permitted but the instruction is unknown, the processor sets the
UFSR.UNDEFINSTR flag to 1 to indicate that the instruction is UNDEFINED.

A4-118 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b

Non-Confidential ID120114

A4 The ARMv7-M Instruction Set
A4.11 Floating-point load and store instructions

A4.11 Floating-point load and store instructions

Table A4-20 summarizes the extension register load/store instructions in the Floating-point instruction set.

Table A4-20 FP extension register load and store instructions

Instruction See Operation

FP Load Multiple ~ VLDM on page A7-519 Load 1-16 consecutive 32-bit or 64-bit registers.

FP Load Register ~ VLDR on page A7-521 Load one 32-bit or 64-bit register.

FP Pop VPOP on page A7-541 Pop 1-16 consecutive 32-bit or 64-bit registers from the stack.

FP Push VPUSH on page A7-543 Push 1-16 consecutive 32-bit or 64-bit registers onto the stack.

FP Store Multiple ~ VSTM on page A7-555 Store 1-16 consecutive 32-bit or 64-bit registers.

FP Store Register ~ V'STR on page A7-557 Store one 32-bit or 64-bit register.

ARM DDI 0403E.b Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A4-119
ID120114 Non-Confidential

A4 The ARMv7-M Instruction Set
A4.12 Floating-point register transfer instructions

A4.12 Floating-point register transfer instructions

Table A4-21 summarizes the floating-point register transfer instructions in the Floating-point instruction set. These
instructions transfer data from ARM core registers to FP extension registers, or from FP extension registers to ARM
core registers.

Single-precision and double-precision FP extension registers are different views of the same FP register set, see The
FP extension registers on page A2-35.

Table A4-21 FP extension register transfer instructions

Instruction See

Copy word from ARM core register to extension register VMOV (ARM core register to scalar) on page A7-529
Copy word from extension register to ARM core register VMOV (scalar to ARM core register) on page A7-530
Copy from single-precision extension register to ARM core register, or VMOV (between ARM core register and single-precision
from ARM core register to single-precision extension register register) on page A7-531

Copy two words from ARM core registers to consecutive single-precision VMOV (between two ARM core registers and two
extension registers, or from consecutive single-precision extension single-precision registers) on page A7-532
registers to ARM core registers

Copy two words from ARM core registers to doubleword extension VMOV (between two ARM core registers and a
register, or from doubleword extension register to ARM core registers doubleword register) on page A7-533
Copy from FP extension System Register to ARM core register VMRS on page A7-534
Copy from ARM core register to FP extension System Register VMSR on page A7-535
A4-120 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b

Non-Confidential ID120114

A4.13

A4 The ARMv7-M Instruction Set
A4.13 Floating-point data-processing instructions

Floating-point data-processing instructions

Table A4-22 summarizes the data-processing instructions in the Floating-point instruction set.

For details of the floating-point arithmetic used by the FP instructions, see Floating-point data types and arithmetic

on page A2-38.

Table A4-22 Floating-point data-processing instructions

Instruction

See

Absolute value

VABS on page A7-501

Add

VADD on page A7-502

Compare (optionally with exceptions enabled)

VCMP, VCMPE on page A7-503

Convert between floating-point and integer

VCVT, VCVTR (between floating-point and integer) on
page A7-507

Convert between double-precision and single-precision

VCVT (between double-precision and single-precision) on
page A7-511

Floating-point integer conversions with directed rounding

Convert between floating-point and fixed-point

Convert between half-precision and single-precision or
double-precision

Divide

VCVTA, VCVTN, VCVTP, and VCVTM on page A7-505

VCVT (between floating-point and fixed-point) on
page A7-509

VCVTB, VCVTT on page A7-513

VDIV on page A7-515

Fused Multiply Accumulate, Fused Multiply Subtract

VFMA, VEMS on page A7-516

Fused Negate Multiply Accumulate, Fused Negate
Multiply Subtract

VENMA, VENMS on page A7-517

Floating-point Maximum or Minimum Number

VMAXNM, VMINNM on page A7-523

Multiply Accumulate, Multiply Subtract

VMLA, VMLS on page A7-525

Move immediate value to extension register

VMOV (immediate) on page A7-527

Copy from one extension register to another

Multiply

VMOV (register) on page A7-528

VMUL on page A7-536

Negate (invert the sign bit)

VNEG on page A7-537

Multiply Accumulate and Negate, Multiply Subtract and
Negate, Multiply and Negate

VNMLA, VNMLS, VNMUL on page A7-539

Floating-point round to an integer in floating-point format
using directed rounding

VRINTA, VRINTN, VRINTP, and VRINTM on page A7-545

Floating-point round to integral floating-point

VRINTZ, VRINTR on page A7-549

Floating-point Selection

VSEL on page A7-551

Square Root

Subtract

VSORT on page A7-553

VSUB on page A7-559

ARM DDI 0403E.b

ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved.

Non-Confidential

A4-121

A4 The ARMv7-M Instruction Set
A4.13 Floating-point data-processing instructions

A4-122 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

Chapter A5
The Thumb Instruction Set Encoding

This chapter introduces the Thumb instruction set and describes how it uses the ARM programmers’ model. It
contains the following sections:

. Thumb instruction set encoding on page A5-124.
. 16-bit Thumb instruction encoding on page A5-127.
. 32-bit Thumb instruction encoding on page A5-135.

ARM DDI 0403E.b Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A5-123
ID120114 Non-Confidential

A5 The Thumb Instruction Set Encoding
Ab.1 Thumb instruction set encoding

A5.1 Thumb instruction set encoding

The Thumb instruction stream is a sequence of halfword-aligned halfwords. Each Thumb instruction is either a

single 16-bit halfword in that stream, or a 32-bit instruction consisting of two consecutive halfwords in that stream.

If bits [15:11] of the halfword being decoded take any of the following values, the halfword is the first halfword of

a 32-bit instruction:

. 0b11101.

. 0b11110.

. 0b11111.

Otherwise, the halfword is a 16-bit instruction.

See 16-bit Thumb instruction encoding on page A5-127 for details of the encoding of 16-bit Thumb instructions.

See 32-bit Thumb instruction encoding on page A5-135 for details of the encoding of 32-bit Thumb instructions.

A5.1.1 UNDEFINED and UNPREDICTABLE instruction set space

An attempt to execute an unallocated instruction results in either:

. Unpredictable behavior. The instruction is described as UNPREDICTABLE.

. An Undefined Instruction exception. The instruction is described as UNDEFINED.

An instruction is UNDEFINED if it is declared as UNDEFINED in an instruction description, or in this chapter

An instruction is UNPREDICTABLE if:

. A bit marked (0) or (1) in the encoding diagram of an instruction is not 0 or 1, respectively, and the
pseudocode for that encoding does not indicate that a different special case applies

. It is declared as UNPREDICTABLE in an instruction description or in this chapter.

Unless otherwise specified:

. Thumb instructions introduced in an architecture variant are either UNPREDICTABLE or UNDEFINED in earlier
architecture variants.

. A Thumb instruction that is provided by one or more of the architecture extensions is either UNPREDICTABLE
or UNDEFINED in an implementation that does not include those extensions.

In both cases, the instruction is UNPREDICTABLE if it is a 32-bit instruction in an architecture variant before

ARMv6T2, and UNDEFINED otherwise.

A5.1.2 Use of 0b1111 as a register specifier

The use of @b1111 as a register specifier is not normally permitted in Thumb instructions. When a value of 0b1111 is

permitted, a variety of meanings is possible. For register reads, these meanings are:

. Read the PC value, that is, the address of the current instruction + 4. The base register of the table branch
instructions TBB and TBH can be the PC. This enables branch tables to be placed in memory immediately after
the instruction. (Some instructions read the PC value implicitly, without the use of a register specifier, for
example the conditional branch instruction B<cond>.)

Note
Use of the PC as the base register in the STC instruction is deprecated in ARMv7.

. Read the word-aligned PC value, that is, the address of the current instruction + 4, with bits [1:0] forced to
zero. The base register of LDC, LDR, LDRB, LDRD (pre-indexed, no write-back), LDRH, LDRSB, and LDRSH instructions
can be the word-aligned PC. This enables PC-relative data addressing. In addition, some encodings of the ADD
and SUB instructions permit their source registers to be 0b1111 for the same purpose.

A5-124 Copyright © 2006-2008, 2010, 2014 ARM. Al rights reserved. ARM DDI 0403E.b

Non-Confidential ID120114

A5 The Thumb Instruction Set Encoding
A5.1 Thumb instruction set encoding

. Read zero. This is done in some cases when one instruction is a special case of another, more general
instruction, but with one operand zero. In these cases, the instructions are listed on separate pages, with a
special case in the pseudocode for the more general instruction cross-referencing the other page.

For register writes, these meanings are:

. The PC can be specified as the destination register of an LDR instruction. This is done by encoding Rt as
0b1111. The loaded value is treated as an address, and the effect of execution is a branch to that address. bit [0]
of the loaded value selects the execution state after the branch and must have the value 1.
Some other instructions write the PC in similar ways, either:
— Implicitly, for example, B<cond>.
— By using a register mask rather than a register specifier, for example LDM.

The address to branch to can be:

— A loaded value, for example LDM.

— A register value, for example BX.

— The result of a calculation, for example TBB or TBH.

. Discard the result of a calculation. This is done in some cases when one instruction is a special case of
another, more general instruction, but with the result discarded. In these cases, the instructions are listed on
separate pages, with a special case in the pseudocode for the more general instruction cross-referencing the
other page.

. If the destination register specifier of an LDRB, LDRH, LDRSB, or LDRSH instruction is @b1111, the instruction is a
memory hint instead of a load operation.

. If the destination register specifier of an MRC instruction is @b1111, bits [31:28] of the value transferred from
the coprocessor are written to the N, Z, C, and V flags in the APSR, and bits [27:0] are discarded.

A5.1.3 Use of 0b1101 as a register specifier

R13 is defined in the Thumb instruction set so that its use is primarily as a stack pointer, and R13 is normally
identified as SP in Thumb instructions. In 32-bit Thumb instructions, if you use SP as a general purpose register
beyond the architecturally defined constraints described in this section, the results are UNPREDICTABLE.

The following subsections describe the restrictions that apply to using SP:
. SP[1:0] definition.
. 32-bit Thumb instruction support for SP.

See also 16-bit Thumb instruction support for SP on page A5-126.

SP[1:0] definition

Bits[1:0] of SP must be treated as SBZP (Should Be Zero or Preserved). Writing a non-zero value to bits[1:0] results
in UNPREDICTABLE behavior. Reading bits[1:0] returns zero.

32-bit Thumb instruction support for SP
32-bit Thumb instruction support for SP is restricted to the following:

. SP as the source or destination register of a MOV instruction. Only register to register transfers without shifts
are supported, with no flag setting:

MoV SP,Rm
MoV Rn,SP

. Adjusting SP up or down by a multiple of its alignment:

ADD{W} SP,SP,#N ; For N a multiple of 4
SUB{W} SP,SP,#N ; For N a multiple of 4
ADD SP,SP,Rm,LSL #shft ; For shft=0,1,2,3
SuB SP,SP,Rm,LSL #shft ; For shft=0,1,2,3

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A5-125
Non-Confidential

A5 The Thumb Instruction Set Encoding
Ab.1 Thumb instruction set encoding

. SP as a base register, Rn, of any load or store instruction. This supports SP-based addressing for load, store,
or memory hint instructions, with positive or negative offsets, with and without write-back.

. SP as the first operand, Rn, in any ADD{S}, CMN, CMP, or SUB{S} instruction. The add and subtract instructions
support SP-based address generation, with the address going into a general-purpose register. CMN and CMP are
useful for stack checking in some circumstances.

. SP as the transferred register, Rt, in any LDR or STR instruction.

. SP as the address in a POP or PUSH instruction.

16-bit Thumb instruction support for SP

For 16-bit data processing instructions that affect high registers, SP can only be used as described in 32-bit Thumb
instruction support for SP on page A5-125. ARM deprecates any other use. This affects the high register forms of
(MP and ADD, where ARM deprecates the use of SP as Rm.

A5-126 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A5 The Thumb Instruction Set Encoding
Ab5.2 16-bit Thumb instruction encoding

A5.2 16-bit Thumb instruction encoding

The encoding of 16-bit Thumb instructions is:

1514131211109 8 7 6 5 4 3 2 1 0
opcode |

Table A5-1 shows the allocation of 16-bit instruction encodings.

Table A5-1 16-bit Thumb instruction encoding

opcode Instruction or instruction class

00xxxx Shift (immediate), add, subtract, move, and compare on page A5-128

010000 Data processing on page A5-129

010001 Special data instructions and branch and exchange on page A5-130

01001x Load from Literal Pool, see LDR (literal) on page A7-254

0101xx Load/store single data item on page A5-131
011xxx
100xxx

10100x Generate PC-relative address, see ADR on page A7-197

10101x Generate SP-relative address, see ADD (SP plus immediate) on page A7-193

1011xx Miscellaneous 16-bit instructions on page A5-132

11000x Store multiple registers, see STM, STMIA, STMEA on page A7-422

11001x Load multiple registers, see LDM, LDMIA, LDMFD on page A7-248
1101xx Conditional branch, and supervisor call on page A5-134

11100x Unconditional Branch, see B on page A7-207

ARM DDI 0403E.b Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A5-127
ID120114 Non-Confidential

A5 The Thumb Instruction Set Encoding
Ab.2 16-bit Thumb instruction encoding

A5.21 Shift (immediate), add, subtract, move, and compare
The encoding of Shift (immediate), add, subtract, move, and compare instructions is:
151413121109 8 7 6 5 4 3 2 1 0
0 0] opcode |
Table A5-2 shows the allocation of encodings in this space.
Table A5-2 16-bit shift (immediate), add, subtract, move and compare encoding
opcode Instruction See
000xx Logical Shift Left? LSL (immediate) on page A7-298
001xx Logical Shift Right LSR (immediate) on page A7-302
010xx Arithmetic Shift Right ASR (immediate) on page A7-203
01100 Add register ADD (register) on page A7-191
01101 Subtract register SUB (register) on page A7-450
01110 Add 3-bit immediate ADD (immediate) on page A7-189
01111 Subtract 3-bit immediate ~ SUB (immediate) on page A7-448
100xx Move MOV (immediate) on page A7-312
101xx Compare CMP (immediate) on page A7-229
110xx Add 8-bit immediate ADD (immediate) on page A7-189
111xx Subtract 8-bit immediate ~ SUB (immediate) on page A7-448
a. When opcode is 0b00000, and bits[8:6] are 0b000, this encoding is MOV
(register), sce MOV (register) on page A7-314.
A5-128 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b

Non-Confidential

ID120114

A5.2.2 Data processing

The encoding of data processing instructions is:

1514131211109 8 7 6 56 4 3 2 1 0

A5 The Thumb Instruction Set Encoding

01000 0 opcode |

Table A5-3 shows the allocation of encodings in this space.

Ab5.2 16-bit Thumb instruction encoding

Table A5-3 16-bit data processing instructions

opcode Instruction See
0000 Bitwise AND AND (register) on page A7-201
0001 Exclusive OR EOR (register) on page A7-239
0010 Logical Shift Left LSL (register) on page A7-300
0011 Logical Shift Right LSR (register) on page A7-304
0100 Arithmetic Shift Right ASR (register) on page A7-205
0101 Add with Carry ADC (register) on page A7-187
0110 Subtract with Carry SBC (register) on page A7-380
0111 Rotate Right ROR (register) on page A7-368
1000 Set flags on bitwise AND 7ST (register) on page A7-466
1001 Reverse Subtract from 0 RSB (immediate) on page A7-372
1010 Compare Registers CMP (register) on page A7-231
1011 Compare Negative CMN (register) on page A7-227
1100 Logical OR ORR (register) on page A7-336
1101 Multiply Two Registers MUL on page A7-324
1110 Bit Clear BIC (register) on page A7-213
1111 Bitwise NOT MVN (register) on page A7-328
ARM DDI 0403E.b Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A5-129

ID120114

Non-Confidential

A5 The Thumb Instruction Set Encoding
Ab.2 16-bit Thumb instruction encoding

A5.2.3 Special data instructions and branch and exchange
The encoding of special data instructions, and branch and exchange instructions, is:
151413121109 8 7 6 5 4 3 2 1 0
01000 1] opcode |
Table A5-4 shows the allocation of encodings in this space.
Table A5-4 Special data instructions and branch and exchange
opcode Instruction See
00xx Add Registers ADD (register) on page A7-191
0100 UNPREDICTABLE -
0101 Compare Registers CMP (register) on page A7-231
0l1x
10xx Move Registers MOV (register) on page A7-314
110x Branch and Exchange BX on page A7-218
111x Branch with Link and Exchange BLX (register) on page A7-217
A5-130 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b

Non-Confidential

ID120114

A5 The Thumb Instruction Set Encoding
Ab5.2 16-bit Thumb instruction encoding

A5.2.4 Load/store single data item
The encoding of Load/store single data item instructions is:

1514131211109 8 7 6 5 4 3 2 1 0
opA |opB |

These instructions have one of the following values in opA:

. 0b0101.
. 0b011x.
. 0b100x.

Table A5-5 shows the allocation of encodings in this space.

Table A5-5 16-bit Load/store instructions

opA opB Instruction See

0101 000 Store Register STR (register) on page A7-428
0101 001 Store Register Halfword STRH (register) on page A7-444
0101 010 Store Register Byte STRB (register) on page A7-432
0101 011 Load Register Signed Byte LDRSB (register) on page A7-286
0101 100 Load Register LDR (register) on page A7-256
0101 101 Load Register Halfword LDRH (register) on page A7-278
0101 110 Load Register Byte LDRB (register) on page A7-262

0101 111 Load Register Signed Halfword LDRSH (register) on page A7-294

0110 Oxx Store Register STR (immediate) on page A7-426
0110 1Ixx Load Register LDR (immediate) on page A7-252
0111 Oxx Store Register Byte STRB (immediate) on page A7-430
0111 Ixx Load Register Byte LDRB (immediate) on page A7-258
1000 Oxx Store Register Halfword STRH (immediate) on page A7-442
1000 1xx Load Register Halfword LDRH (immediate) on page A7-274
1001 Oxx Store Register SP relative STR (immediate) on page A7-426
1001 1xx Load Register SP relative LDR (immediate) on page A7-252
ARM DDI 0403E.b Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A5-131

ID120114 Non-Confidential

A5 The Thumb Instruction Set Encoding
Ab.2 16-bit Thumb instruction encoding

A5.2.5 Miscellaneous 16-bit instructions
The encoding of miscellaneous 16-bit instructions is:
1514131211109 8 7 6 5 4 3 2 10
10 1 1] opcode |
Table A5-6 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.
Table A5-6 Miscellaneous 16-bit instructions
opcode Instruction See
0110011 Change Processor State CPS on page B5-731
00000xx Add Immediate to SP ADD (SP plus immediate) on page A7-193
00001xx Subtract Immediate from SP SUB (SP minus immediate) on page A7-452
0001xxx Compare and Branch on Zero CBNZ, CBZ on page A7-219
001000x Signed Extend Halfword SXTH on page A7-461
001001x Signed Extend Byte SXTB on page A7-459
001010x Unsigned Extend Halfword UXTH on page A7-500
001011x Unsigned Extend Byte UXTB on page A7-498
0011xxx Compare and Branch on Zero CBNZ, CBZ on page A7-219
010xxxx Push Multiple Registers PUSH on page A7-350
1001xxx Compare and Branch on Nonzero ~ CBNZ, CBZ on page A7-219
101000x Byte-Reverse Word REV on page A7-363
101001x Byte-Reverse Packed Halfword REV16 on page A7-364
101011x Byte-Reverse Signed Halfword REVSH on page A7-365
1011xxx Compare and Branch on Nonzero ~ CBNZ, CBZ on page A7-219
110xxxx Pop Multiple Registers POP on page A7-348
1110xxx Breakpoint BKPT on page A7-215
1111xxx If-Then, and hints If-Then, and hints on page A5-133
A5-132 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b

Non-Confidential

ID120114

If-Then, and hints

The encoding of if-then instructions, and hints, is:

1514131211109 8 7 6 5 4 3 2 1

0

101 1[1 11 1] opA | opB

Table A5-7 shows the allocation of encodings in this space.

A5 The Thumb Instruction Set Encoding
Ab5.2 16-bit Thumb instruction encoding

Other encodings in this space are unallocated hints. They execute as NOPs, but software must not use them.

Table A5-7 If-Then and hint instructions

opA opB Instruction See

xxxx 1ot 0000 If-Then IT on page A7-242
0000 0000 No Operation hint NOP on page A7-331
0001 0000 Yield hint YIELD on page A7-562
0010 0000 Wait for Event hint WFE on page A7-560
0011 0000 Wait for Interrupt hint ~ WFI on page A7-561
0100 0000 Send Event hint SEV on page A7-385

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved.
Non-Confidential

A5-133

A5 The Thumb Instruction Set Encoding
Ab.2 16-bit Thumb instruction encoding

A5.2.6 Conditional branch, and supervisor call
The encoding of conditional branch and supervisor call instructions is:

1514131211109 8 7 6 5 4 3 2 1 0
1710 1| opcode |

Table A5-8 shows the allocation of encodings in this space.

Table A5-8 Branch and supervisor call instructions

opcode Instruction See
not 111x Conditional branch B on page A7-207
1110 Permanently UNDEFINED ~ UDF on page A7-471
1111 Supervisor call SVC on page A7-455
A5-134 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b

Non-Confidential ID120114

A5 The Thumb Instruction Set Encoding
A5.3 32-bit Thumb instruction encoding

A5.3 32-bit Thumb instruction encoding

The encoding of 32-bit Thumb instructions is:

1514131211109 8 7 6 56 4 3 2 1 0|1514131211109 8 7 6 5 4 3 2 1 0

11 1] opt |

op2

op|

opl !=0b00. If op1 == 0b00, a 16-bit instruction is encoded, see /6-bit Thumb instruction encoding on page AS5-127.

Table A5-9 shows the allocation of ARMv7-M Thumb encodings in this space.

Table A5-9 32-bit Thumb encoding

op1l op2 op Instruction class
01 00xx0xx X Load Multiple and Store Multiple on page A5-142
01 00xx1xx X Load/store dual or exclusive, table branch on page A5-143
01 Olxxxxx X Data processing (shifted register) on page A5-148
01 Ixxxxxx X Coprocessor instructions on page A5-156
10 x0xxxxx 0 Data processing (modified immediate) on page A5-136
10 xlxxxxx 0 Data processing (plain binary immediate) on page A5-139
10 XXXxxxx 1 Branches and miscellaneous control on page A5-140
11 000xxx0 x Store single data item on page A5-147
11 00xx001 x Load byte, memory hints on page A5-146
11 00xx011 x Load halfword, memory hints on page A5-145
11 00xx101 x Load word on page A5-144
11 00xx111 X UNDEFINED
11 010xxxx X Data processing (register) on page A5-150
11 0110xxx x Multiply, multiply accumulate, and absolute difference on page A5-154
11 0111xxx x Long multiply, long multiply accumulate, and divide on page A5-154
11 Ixxxxxx X Coprocessor instructions on page A5-156
ARM DDI 0403E.b Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A5-135

ID120114

Non-Confidential

A5 The Thumb Instruction Set Encoding
Ab.3 32-bit Thumb instruction encoding

A5.3.1 Data processing (modified immediate)
The encoding of data processing (modified immediate) instructions is:
1514131211109 8 7 6 5 4 3 2 1 0(1514131211109 8 7 6 5 4 3 2 1 0
11 1)1 o] Jo] op | Rn 0] | Rd
Table A5-10 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.
Table A5-10 32-bit modified immediate data processing instructions
op Rn Rd Instruction See
0000x not 1111 Bitwise AND AND (immediate) on page A7-199
1111 Test TST (immediate) on page A7-465
0001x Bitwise Clear BIC (immediate) on page A7-211
0010x not 1111 Bitwise Inclusive OR ORR (immediate) on page A7-334
1111 Move MOV (immediate) on page A7-312
0011x mnot 1111 Bitwise OR NOT ORN (immediate) on page A7-332
1111 Bitwise NOT MVN (immediate) on page A7-326
0100x not 1111 Bitwise Exclusive OR EOR (immediate) on page A7-238
1111 Test Equivalence TEQ (immediate) on page A7-463
1000x not 1111 Add ADD (immediate) on page A7-189
1111 Compare Negative CMN (immediate) on page A7-225
1010x Add with Carry ADC (immediate) on page A7-185
1011x Subtract with Carry SBC (immediate) on page A7-379
1101x not 1111 Subtract SUB (immediate) on page A7-448
1111 Compare CMP (immediate) on page A7-229
1110x Reverse Subtract RSB (immediate) on page A7-372
These instructions all have modified immediate constants, rather than a simple 12-bit binary number. This provides
a more useful range of values. See Modified immediate constants in Thumb instructions on page A5-137 for details.
A5-136 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b

Non-Confidential

ID120114

A5 The Thumb Instruction Set Encoding
A5.3 32-bit Thumb instruction encoding

A5.3.2 Modified immediate constants in Thumb instructions

The encoding of modified immediate constants in Thumb instructions is:

1514131211109 8 7 6 5 4 3 2 1 0|1514131211109 8 7 6 5 4 3 2 1 0
|i| |imm3| |abcdefgh

Table A5-11 shows the range of modified immediate constants available in Thumb data processing instructions, and
how they are encoded in the a, b, ¢, d, ¢, f, g, h, i, and imm3 fields in the instruction.

Table A5-11 Encoding of modified immediates in Thumb data-processing instructions

izimm3:a <const> 2

0000x 00000000 00000000 00000000 abcdefgh
0001x 00000000 abcdefgh 00000000 abcdefgh b
0010x abcdefgh 00000000 abcdefgh 00000000 ©
0011x abcdefgh abcdefgh abcdefgh abcdefgh ®
01000 1bcdefgh 00000000 00000000 00000000
01001 0lbcdefg t 000

01010 001bcdef gh

01011 0001bcde fgh

8-bit values shifted to other positions

11101 00000000 00000000 000001bc defgh00o
11110 1b cdefgh0o
11111 00000000 00000000 00000001 bcdefgho

a. In this table, the immediate constant value is shown in
binary form, to relate abcdefgh to the encoding diagram.
In assembly syntax, the immediate value is specified in
the usual way (a decimal number by default).

b. UNPREDICTABLE if abcdefgh == 00000000.

Carry out

A logical operation with i:imm3:a of the form 00xxx does not affect the carry flag. Otherwise, a logical operation
that sets the flags sets the Carry flag to the value of bit [31] of the modified immediate constant.

Operation of modified immediate constants

// ThumbExpandImm()
// ================

bits(32) ThumbExpandImm(bits(12) imml12)

// APSR.C argument to following function call does not affect the imm32 result.
(imm32, -) = ThumbExpandImm_C(imm12, APSR.C);

return imm32;

// ThumbExpandImm_C()

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A5-137
Non-Confidential

A5 The Thumb Instruction Set Encoding
Ab.3 32-bit Thumb instruction encoding

(bits(32), bit) ThumbExpandImm_C(bits(12) imml2, bit carry_in)
if imm12<11:10> == ‘00’ then

case imml2<9:8> of
when ‘00’
imm32 = ZeroExtend(imm12<7:0>, 32);
when ‘01’
if imml2<7:0> == ‘00000000’ then UNPREDICTABLE;
imm32 = ‘00000000 : imml2<7:0> : ‘00000000 : imml2<7:0>;
when ‘10’
if imml2<7:0> == ‘00000000’ then UNPREDICTABLE;
imm32 = imml2<7:0> : ‘00000000’ : imml2<7:0> : ‘00000000’;
when ‘11’
if imml12<7:0> == ‘00000000’ then UNPREDICTABLE;
imm32 = imml12<7:0> : imm12<7:0> : imm12<7:0> : imm12<7:0>;
carry_out = carry_in;

else

unrotated_value = ZeroExtend(‘1’:imm12<6:0>, 32);
(imm32, carry_out) = ROR_C(unrotated_value, UInt(imm12<11:7>));

return (imm32, carry_out);

A5-138 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved.
Non-Confidential

ARM DDI 0403E.b
ID120114

A5.3.3

Data processing (plain binary immediate)

A5 The Thumb Instruction Set Encoding
A5.3 32-bit Thumb instruction encoding

The encoding of data processing (plain binary immediate) instructions is:

1514131211109 8 7 6 56 4 3 2 10

1514131211109 8 7 6 56 4 3 2 1 0

11 1[1 o] [1]

op

Rn 0
| |

Table A5-12 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.

Table A5-12 32-bit unmodified immediate data processing instructions

op Rn Instruction See Variant
00000 not 1111 Add Wide, 12-bit ADD (immediate) on page A7-189 All

1111 Form PC-relative Address ~ 4ADR on page A7-197 All
00100 - Move Wide, 16-bit MOV (immediate) on page A7-312 All
01010 not 1111 Subtract Wide, 12-bit SUB (immediate) on page A7-448 All

1111 Form PC-relative Address ADR on page A7-197 All
01100 - Move Top, 16-bit MOVT on page A7-317 All
10000 - Signed Saturate SSAT on page A7-415 All
100102
100104 - Signed Saturate, two 16-bit SSA776 on page A7-416 v7E-M
10100 - Signed Bit Field Extract SBFX on page A7-382 All
10110 not 1111 Bit Field Insert BFI on page A7-210 All

1111 Bit Field Clear BFC on page A7-209 All
11000 - Unsigned Saturate USAT on page A7-490 All
110102
11010b - Unsigned Saturate 16 USAT16 on page A7-491 v7E-M
11100 - Unsigned Bit Field Extract ~ UBFX on page A7-470 All

a. In the second halfword of the instruction, bits[14:12.7:6] != 0b00000.
b. In the second halfword of the instruction, bits[14:12.7:6] == 0b00000.
ARM DDI 0403E.b Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A5-139

ID120114

Non-Confidential

A5 The Thumb Instruction Set Encoding
Ab.3 32-bit Thumb instruction encoding

A5.3.4 Branches and miscellaneous control
The behavior of branches and miscellaneous control instructions is:
151413121109 8 7 6 5 4 3 2 1 0(1514131211109 8 7 6 5 4 3 2 1 0
11 1[1 o] | 1] op1 |
Table A5-13 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.
Table A5-13 Branches and miscellaneous control instructions
opl op Instruction See
0x0 notxlllxxx Conditional branch B on page A7-207
0x0 011100x Move to Special Register MSR on page A7-323
0x0 0111010 - Hint instructions on page A5-141
0x0 0111011 - Miscellaneous control instructions on page A5-141
0x0 OIlll1x Move from Special Register MRS on page A7-322
010 1111111 Permanently UNDEFINED UDF on page A7-471
0xl XXXXXXX Branch B on page A7-207
Ixl XXXXXXX Branch with Link BL on page A7-216
A5-140 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b

Non-Confidential

ID120114

Hint instructions

The encoding of 32-bit hint instructions is:

151413121110 9 8

210

A5 The Thumb Instruction Set Encoding
A5.3 32-bit Thumb instruction encoding

1514131211109 8 7 6 56 4 3 2 1 0

11 1]1 0[0 1 1

76 5
101

4 3
0

1 0] Jo[[opt |

op2

Table A5-14 shows the allocation of encodings in this space. Other encodings in this space are unallocated hints that
execute as NOPs. These unallocated hint encodings are reserved and software must not use them.

Table A5-14 Change Processor State, and hint instructions

op1 op2 Instruction See

not 000 XXXXXXXX UNDEFINED? -

000 00000000 No Operation hint NOP on page A7-331
000 00000001 Yield hint YIELD on page A7-562
000 00000010 Wait For Event hint WFE on page A7-560
000 00000011 Wait For Interrupt hint ~ WFI on page A7-561
000 00000100 Send Event hint SEV on page A7-385
000 1111xxxx Debug hint DBG on page A7-234

a. These encodings provide a 32-bit form of the CPS instruction in the

ARMv7-A and ARMv7-R architecture profiles.

Miscellaneous control instructions

The encoding of miscellaneous control instructions is:

151413121110 9 8

43210

1514131211109 8 7 6 5 4 3 2 1 0

11 1]1 0[0 1 1

7 6 5
101

1]

1 0] Jof | op

Table A5-15 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED in

ARMvV7-M.

Table A5-15 Miscellaneous control instructions

op Instruction See

0010 Clear Exclusive CLREX on page A7-223
0100 Data Synchronization Barrier DSB on page A7-237
0101 Data Memory Barrier DMB on page A7-235
0110 Instruction Synchronization Barrier ~ /SB on page A7-241

ARM DDI 0403E.b
ID120114

Non-Confidential

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved.

A5-141

A5 The Thumb Instruction Set Encoding
Ab.3 32-bit Thumb instruction encoding

A5.3.5 Load Multiple and Store Multiple
The encoding of a Load Multiple or Store Multiple instructions is:
151413121109 8 7 6 5 4 3 2 1 0(1514131211109 8 7 6 5 4 3 2 1 0
11 1[0 1 0 0] op J[OJW[L] Rn
Table A5-16 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.
Table A5-16 Load Multiple and Store Multiple instructions
op L W:RRn Instruction See
01 o0 Store Multiple (Increment After, Empty Ascending) STM, STMIA, STMEA on page A7-422
01 1 notlll01 Load Multiple (Increment After, Full Descending) LDM, LDMIA, LDMFD on page A7-248
01 1 11101 Pop Multiple Registers from the stack POP on page A7-348
10 0 not11101 Store Multiple (Decrement Before, Full Descending) STMDB, STMFD on page A7-424
10 0 11101 Push Multiple Registers to the stack. PUSH on page A7-350
10 1 Load Multiple (Decrement Before, Empty Ascending) LDMDB, LDMEA on page A7-250
A5-142 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b

Non-Confidential ID120114

A5.3.6

Load/store dual or exclusive, table branch

A5 The Thumb Instruction Set Encoding
A5.3 32-bit Thumb instruction encoding

The encoding of Load/store dual or exclusive instructions, and table branch instructions, is:

1514131211109 8 7 6 56 4 3 2 10

1514131211109 8 7 6 56 4 3 2 1 0

11 1[0 1 0 0]opt[1]op2] Rn

| op3 |

Table A5-17 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.

Table A5-17 Load/store dual or exclusive, table branch

opl op2 op3 Instruction See

00 00 xxxx Store Register Exclusive STREX on page A7-438

00 01 xxxx Load Register Exclusive LDREX on page A7-270

0x 10 xxxx Store Register Dual STRD (immediate) on page A7-436
Ix x0 XXXX

0x 11 xxxx Load Register Dual LDRD (immediate) on page A7-266, LDRD (literal)
I " o on page A7-268

01 00 0100 Store Register Exclusive Byte STREXB on page A7-439

01 00 0101 Store Register Exclusive Halfword ~ STREXH on page A7-440

01 01 0000 Table Branch Byte TBB, TBH on page A7-462

01 01 0001 Table Branch Halfword TBB, TBH on page A7-462

01 01 0100 Load Register Exclusive Byte LDREXB on page A7-271

01 01 0101 Load Register Exclusive Halfword ~LDREXH on page A7-272

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved.

Non-Confidential

A5-143

A5 The Thumb Instruction Set Encoding
Ab.3 32-bit Thumb instruction encoding

A5.3.7 Load word
The encoding of load word instructions is:
1514131211109 8 7 6 5 4 3 2 1 0(1514131211109 8 7 6 5 4 3 2 1 0
11 1)1 10 0fopt[1 0[1] Rn | op2 |
Table A5-18 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.
Table A5-18 Load word
op1 op2 Rn Instruction See
01 xxxxxx not 1111 Load Register LDR (immediate) on page A7-252
00 IxxIxx not 1111
00 1100xx not 1111
00 1110xx not 1111 Load Register Unprivileged ~ LDRT on page A7-297
00 000000 not 1111 Load Register LDR (register) on page A7-256
0x xxxxxx 1111 Load Register LDR (literal) on page A7-254
A5-144 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b

Non-Confidential

ID120114

A5.3.8

Load halfword, memory hints

A5 The Thumb Instruction Set Encoding
A5.3 32-bit Thumb instruction encoding

The encoding of load halfword instructions, and unallocated memory hints, is:

1514131211109 8 7 6 56 4 3 2 10

1514131211109 8 7 6 56 4 3 2 1 0

11 1[1 1 0 0fJopt]O 1[1] Rn Rt |

op2

Table A5-19 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.

Table A5-19 Load halfword, memory hints

opl op2 Rn Rt Instruction See

0x xxxxxx 1111 not 1111 Load Register Halfword LDRH (literal) on page A7-276

00 Ixx1xx not1111 not1111 Load Register Halfword LDRH (immediate) on page A7-274

00 1100xx not 1111 not 1111

01 xxxxxx not 1111 not 1111

00 000000 not1111 not1111 Load Register Halfword LDRH (register) on page A7-278

00 1110xx not 1111 not 1111 Load Register Halfword Unprivileged =~ LDRHT on page A7-280

00 000000 not 1111 1111 Unallocated memory hint, treat as NOP2 -

00 1100xx not 1111 1111

01 xxxxxx not 1111 1111

00 Ixxlxx notllll 1111 UNPREDICTABLE -

00 1110xx not 1111 1111

0x xxxxxx 1111 1111

10 Ixx1lxx not1111 not1111 Load Register Signed Halfword LDRSH (immediate) on page A7-290

10 1100xx not 1111 not 1111

11 xxxxxx not 1111 not 1111

1x xxxxxx 1111 not 1111 Load Register Signed Halfword LDRSH (literal) on page A7-292

10 000000 not 1111 not 1111 Load Register Signed Halfword LDRSH (register) on page A7-294

10 1110xx not 1111 not 1111 Load Register Signed Halfword LDRSHT on page A7-296
Unprivileged

10 000000 not 1111 1111 Unallocated memory hint, treat as NOP2 -

10 1100xx not 1111 1111

1x xxxxxx 1111 1111

10 Ixxlxx not 1111 1111 unpredictable -

10 1110xx not 1111 1111

11 xxxxxx not 1111 1111 Unallocated memory hint, treat as NOP2 -

a. Software must not use these encodings.

ARM DDI 0403E.

ID120114

b

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved.

Non-Confidential

A5-145

A5 The Thumb Instruction Set Encoding
Ab.3 32-bit Thumb instruction encoding

A5.3.9 Load byte, memory hints
The encoding of load byte instructions, and memory hits, is
1514131211109 8 7 6 5 4 3 2 1 0(1514131211109 8 7 6 5 4 3 2 1 0
11 1[1 1 0 0]opt]O O[1] Rn Rt | op2 |
Table A5-20 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.
Table A5-20 Load byte, memory hints
opl op2 Rn Rt Instruction See
0x xxxxxx 1111 not 1111 Load Register Byte LDRB (literal) on page A7-260
01 xxxxxx not 1111 not 1111 Load Register Byte LDRB (immediate) on page A7-258
00 Ixxlxx not1111 not 1111
00 1100xx not 1111 not 1111
00 1110xx not 1111 not 1111 Load Register Byte Unprivileged LDRBT on page A7-264
00 000000 not1111 not1111 Load Register Byte LDRB (register) on page A7-262
1x xxxxxx 1111 not 1111 Load Register Signed Byte LDRSB (literal) on page A7-284
11 xxxxxx not 1111 not 1111 Load Register Signed Byte LDRSB (immediate) on page A7-282
10 Ixxlxx not1111 not 1111
10 1100xx not 1111 not 1111
10 1110xx not 1111 not 1111 Load Register Signed Byte Unprivileged =~ LDRSBT on page A7-288
10 000000 not 1111 not 1111 Load Register Signed Byte LDRSB (register) on page A7-286
0x xxxxxx 1111 1111 Preload Data PLD (literal) on page A7-341
00 1100xx not 1111 1111 Preload Data PLD (immediate) on page A7-340
01 xxxxxx not 1111 1111
00 000000 mnot 1111 1111 Preload Data PLD (register) on page A7-342
00 Ixxlxx notl1111 1111 UNPREDICTABLE -
00 1110xx not 1111 1111
1x xxxxxx 1111 1111 Preload Instruction PLI (immediate, literal) on
1 xooxx ot 1111 1111 page AT
10 1100xx not 1111 1111
10 000000 mnot 1111 1111 Preload Instruction PLI (register) on page A7-346
10 Ixxlxx not1l111 1111 UNPREDICTABLE -
10 1110xx not 1111 1111
A5-146 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b

Non-Confidential

ID120114

A5.3.10 Store single data item

The encoding of store single data item instructions is:

1514131211109 8 7 6 5 4 3 2 1 0|151413121110 9

A5 The Thumb Instruction Set Encoding
A5.3 32-bit Thumb instruction encoding

876543210

11 1]1 1 0 o[o] opt

[0]

| op2 |

Table A5-21 show the allocation of encodings in this space. Other encodings in this space are UNDEFINED.

Table A5-21 Store single data item

op1 op2 Instruction See

100 xxxxxx Store Register Byte STRB (immediate) on page A7-430

000 Ixxxxx

000 Oxxxxx Store Register Byte STRB (register) on page A7-432

101 xxxxxx Store Register Halfword = STRH (immediate) on page A7-442

001 1XXXXX

001 Oxxxxx Store Register Halfword STRH (register) on page A7-444

110 xxxxxx Store Register STR (immediate) on page A7-426

010 Ixxxxx

010 Oxxxxx Store Register STR (register) on page A7-428
ARM DDI 0403E.b Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A5-147

ID120114

Non-Confidential

A5 The Thumb Instruction Set Encoding
Ab.3 32-bit Thumb instruction encoding

A5.3.11 Data processing (shifted register)
The encoding of data processing (shifted register) instructions is:
1514131211109 8 7 6 5 4 3 2 1 0(1514131211109 8 7 6 5 4 3 2 1 0
11101 01] op [S] Rn | Rd |
Table A5-22 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.
Table A5-22 Data-processing (shifted register)
op Rn Rd S Instruction See Variant
0000 - not 1111 x Bitwise AND AND (register) on page A7-201 All
1111 0 UNPREDICTABLE - -
1 Test TST (register) on page A7-466 All
0001 - - - Bitwise Bit Clear BIC (register) on page A7-213 All
0010 not 1111 - - Bitwise OR ORR (register) on page A7-336 All
1111 - - - Move register and immediate shifts -
0011 not 1111 - - Bitwise OR NOT ORN (register) on page A7-333 All
1111 - - Bitwise NOT MYVN (register) on page A7-328 All
0100 - not 1111 - Bitwise Exclusive OR EOR (register) on page A7-239 All
1111 0 UNPREDICTABLE - -
1 Test Equivalence TEQ (register) on page A7-464 All
0110 - - - Pack Halfword PKHBT, PKHTB on page A7-338 v7E-M
1000 - not 1111 - Add ADD (register) on page A7-191 All
1111 0 UNPREDICTABLE - -
1 Compare Negative CMN (register) on page A7-227 All
1010 - - - Add with Carry ADC (register) on page A7-187 All
1011 - - - Subtract with Carry SBC (register) on page A7-380 All
1101 - not 1111 - Subtract SUB (register) on page A7-450 All
1111 0 UNPREDICTABLE - -
1 Compare CMP (register) on page A7-231 All
1110 - - - Reverse Subtract RSB (register) on page A7-374 All
Move register and immediate shifts
The encoding of move register and immediate shift instructions is:
1514131211109 8 7 6 5 4 3 2 1 0(1514131211109 8 7 6 5 4 3 2 1 0
1 11]o 10 1[0o01 0] J1 11 1] [imm3 [imm2] type |
A5-148 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b

Non-Confidential

ID120114

A5 The Thumb Instruction Set Encoding

Table A5-23 shows the allocation of encodings in this space.

A5.3 32-bit Thumb instruction encoding

Table A5-23 Move register and immediate shifts

type imm3:imm2 Instruction See
00 00000 Move MOV (register) on page A7-314
not 00000 Logical Shift Left LSL (immediate) on page A7-298
01 - Logical Shift Right LSR (immediate) on page A7-302
10 - Arithmetic Shift Right ASR (immediate) on page A7-203
11 00000 Rotate Right with Extend ~ RRX on page A7-370
not 00000 Rotate Right ROR (immediate) on page A7-366
ARM DDI 0403E.b Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A5-149

ID120114

Non-Confidential

A5 The Thumb Instruction Set Encoding
Ab.3 32-bit Thumb instruction encoding

A5.3.12 Data processing (register)
The encoding of data processing (register) instructions is:
151413121109 8 7 6 5 4 3 2 1 0(1514131211109 8 7 6 5 4 3 2 1 0
11 1)1 10 1[0] opt | Rn 111 1] | op2 |
If, in the second halfword of the instruction, bits[15:12] != 0b1111, the instruction is UNDEFINED.
Table A5-24 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.
Table A5-24 Data processing (register)
opl op2 Rn Instruction See Variant
000x 0000 Logical Shift Left LSL (register) on page A7-300 All
001x 0000 Logical Shift Right LSR (register) on page A7-304 All
010x 0000 Arithmetic Shift Right ASR (register) on page A7-205 All
011x 0000 Rotate Right ROR (register) on page A7-368 All
0000 1xxx notllll Signed Extend and Add Halfword SXTAH on page A7-458 v7E-M
1111 Signed Extend Halfword SXTH on page A7-461 All
0001 Ixxx mnotllll Unsigned Extend and Add Halfword =~ UXTAH on page A7-497 v7E-M
1111 Unsigned Extend Halfword UXTH on page A7-500 All
0010 Ixxx mnotll11l Signed Extend and Add Byte 16 SXTABI6 on page A7-457 v7E-M
1111 Signed Extend Byte 16 SXTB16 on page A7-460 v7E-M
0011 1Ixxx notllll Unsigned Extend and Add Byte 16 UXTAB16 on page A7-496 v7E-M
1111 Unsigned Extend Byte 16 UXTBI16 on page A7-499 v7E-M
0100 Ixxx mnotl1l11l Signed Extend and Add Byte SXTAB on page A7-456 v7E-M
1111 Signed Extend Byte SXTB on page A7-459 All
0101 Ixxx mnot1111 Unsigned Extend and Add Byte UXTAB on page A7-495 v7E-M
1111 Unsigned Extend Byte UXTB on page A7-498 All
Ixxx 00xx - - Parallel addition and subtraction, -
signed
Ixxx Olxx - - Parallel addition and subtraction, -
unsigned on page A5-151
10xx 10xx - - Miscellaneous operations on -
page AS5-153
A5.3.13 Parallel addition and subtraction, signed
The encoding of the signed parallel addition and subtraction instructions is:
151413121109 8 7 6 5 4 3 2 1 0(1514131211109 8 7 6 5 4 3 2 1 0
11 1]1 10 1[0 1] opt | 111 1] [0 0] op2 |
If, in the second halfword of the instruction, bits[15:12] !=0b1111, the instruction is UNDEFINED.
A5-150 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b

Non-Confidential

ID120114

A5 The Thumb Instruction Set Encoding
A5.3 32-bit Thumb instruction encoding

Table A5-25 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.

Table A5-25 Signed parallel addition and subtraction instructions

op1 op2 Instruction See Variant
001 00 Add 16-bit SADD16 on page A7-376 v7E-M
010 00 Add, Subtract SASX on page A7-378 v7E-M
110 00 Subtract, Add SSAX on page A7-417 v7E-M
101 00 Subtract 16-bit SSUBI16 on page A7-418 v7E-M
000 00 Add 8-bit SADDS on page A7-377 v7E-M
100 00 Subtract 8-bit SSUBS on page A7-419 v7E-M

Saturating instructions

001 01 Saturating Add 16-bit QADDI16 on page A7-353 v7E-M
010 01 Saturating Add, Subtract QASX on page A7-355 v7E-M
110 01 Saturating Subtract, Add ~ OSAX on page A7-358 v7E-M

101 01 Saturating Subtract 16-bit OSUBI6 on page A7-360 v7E-M

000 01 Saturating Add 8-bit QADDS on page A7-354 v7E-M

100 01 Saturating Subtract 8-bit QOSUBS on page A7-361 v7E-M

Halving instructions

001 10 Halving Add 16-bit SHADDI6 on page A7-386 v7E-M

010 10 Halving Add, Subtract SHASX on page A7-388 v7E-M

110 10 Halving Subtract, Add SHSAX on page A7-389 v7E-M

101 10 Halving Subtract 16-bit SHSUBI6 on page A7-390 v7E-M

000 10 Halving Add 8-bit SHADDS on page A7-387 v7E-M

100 10 Halving Subtract 8-bit SHSUBS on page A7-391 v7E-M

A5.3.14 Parallel addition and subtraction, unsigned

The encoding of the unsigned parallel addition and subtraction instructions is:

1514131211109 8 7 6 5 4 3 2 1 0[1514131211109 8 7 6 5 4 3 2 1 0
11 1[1 10 1]J0 1] op1 | 11 1 1] [0 1] op2]

If, in the second halfword of the instruction, bits[15:12] != 0b1111, the instruction is UNDEFINED.

ARM DDI 0403E.b Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A5-151
ID120114 Non-Confidential

A5 The Thumb Instruction Set Encoding
Ab.3 32-bit Thumb instruction encoding

Table A5-26 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.

Table A5-26 Unsigned parallel addition and subtraction instructions

op1 op2 Instruction See Variant
001 00 Add 16-bit UADDI6 on page A7-467 v7E-M
010 00 Add, Subtract UASX on page A7-469 v7E-M
110 00 Subtract, Add USAX on page A7-492 v7E-M
101 00 Subtract 16-bit USUBI16 on page A7-493 v7E-M
000 00 Add 8-bit UADDS on page A7-468 v7E-M
100 00 Subtract 8-bit USUBS on page A7-494 v7E-M
Saturating instructions

001 01 Saturating Add 16-bit UQADDI16 on page A7-482 v7E-M
010 01 Saturating Add, Subtract UQASX on page A7-484 v7E-M
110 01 Saturating Subtract, Add ~ UQSAX on page A7-485 v7E-M
101 01 Saturating Subtract 16-bit UQSUBI6 on page A7-486 v7E-M
000 01 Saturating Add 8-bit UQADDS on page A7-483 v7E-M
100 01 Saturating Subtract 8-bit UQSUBS on page A7-487 v7E-M
Halving instructions

001 10 Halving Add 16-bit UHADDI16 on page A7-473 v7E-M
010 10 Halving Add, Subtract UHASX on page A7-475 v7E-M
110 10 Halving Subtract, Add UHSAX on page A7-476 v7E-M
101 10 Halving Subtract 16-bit UHSUBI16 on page A7-477 Vv7E-M
000 10 Halving Add 8-bit UHADDS on page A7-474 v7E-M
100 10 Halving Subtract 8-bit UHSUBS on page A7-478 v7E-M

A5-152

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved.

Non-Confidential

ARM DDI 0403E.b

ID120114

A5.3.15 Miscellaneous operations

A5 The Thumb Instruction Set Encoding
A5.3 32-bit Thumb instruction encoding

The encoding of some miscellaneous instructions is:

1514131211109 8 7 6 56 4 3 2 1 0

1514131211109 8 7 6 56 4 3 2 1 0

11 1[1 10 1]Jo 1 0]opt]

11 1 1] [1 0] op2]

If, in the second halfword of the instruction, bits[15:12] !=0b1111, the instruction is UNDEFINED.

Table A5-27 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.

Table A5-27 Miscellaneous operations

op1 op2 Instruction See Variant
00 00 Saturating Add OADD on page A7-352 v7E-M
01 Saturating Double and Add ODADD on page A7-356 v7E-M
10 Saturating Subtract OSUB on page A7-359 v7E-M
11 Saturating Double and Subtract ~ QODSUB on page A7-357 v7E-M
01 00 Byte-Reverse Word REYV on page A7-363 All
01 Byte-Reverse Packed Halfword ~ REV16 on page A7-364 All
10 Reverse Bits RBIT on page A7-362 All
11 Byte-Reverse Signed Halfword ~ REVSH on page A7-365 All
10 00 Select Bytes SEL on page A7-384 v7E-M
11 00 Count Leading Zeros CLZ on page A7-224 All
ARM DDI 0403E.b Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A5-153

ID120114

Non-Confidential

A5 The Thumb Instruction Set Encoding
Ab.3 32-bit Thumb instruction encoding

A5.3.16 Multiply, multiply accumulate, and absolute difference
The encoding of multiply, multiply accumulate, and absolute difference instructions is:
1514131211109 8 7 6 5 4 3 2 1 0(1514131211109 8 7 6 5 4 3 2 1 0
11 1)1 10 1[1 0] opt | Ra | [0 0] op2]
If, in the second halfword of the instruction, bits[7:6] != 0b00, the instruction is UNDEFINED.
Table A5-28 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.
Table A5-28 Multiply, multiply accumulate, and absolute difference operations
op1 op2 Ra Instruction See Variant
000 00 not 1111 Multiply Accumulate MLA on page A7-310 All
1111 Multiply MUL on page A7-324 All
01 - Multiply and Subtract MLS on page A7-311 All
001 - not 1111 Signed Multiply Accumulate, Halfwords ~ SMLABB, SMLABT, SMLATB, SMLATT ~ v7E-M
on page A7-392
1111 Signed Multiply, Halfwords SMULBB, SMULBT, SMULTB, v7E-M
SMULTT on page A7-410
010 0x not 1111 Signed Multiply Accumulate Dual SMLAD, SMLADX on page A7-394 v7E-M
1111 Signed Dual Multiply Add SMUAD, SMUADX on page A7-409 v7E-M
011 0Ox not 1111 Signed Multiply Accumulate, Word by SMLAWB, SMLAWT on page A7-402 v7E-M
halfword
1111 Signed Multiply, Word by halfword SMULWB, SMULWT on page A7-413 v7E-M
100 Ox not 1111 Signed Multiply Subtract Dual SMLSD, SMLSDX on page A7-403 v7E-M
1111 Signed Dual Multiply Subtract SMUSD, SMUSDX on page A7-414 v7E-M
101 0Ox not 1111 Signed Most Significant Word Multiply =~ SMMLA, SMMLAR on page A7-406 v7E-M
Accumulate
1111 Signed Most Significant Word Multiply ~ SMMUL, SMMULR on page A7-408 v7E-M
110 0Ox - Signed Most Significant Word Multiply ~ SMMLS, SMMLSR on page A7-407 v7E-M
Subtract
111 00 1111 Unsigned Sum of Absolute Differences, = USADAS on page A7-489 v7E-M
Accumulate
not 1111 Unsigned Sum of Absolute Differences USADS on page A7-488 v7E-M
A5.3.17 Long multiply, long multiply accumulate, and divide
The encoding of long multiply, long multiply accumulate, and divide, instructions is:
151413121109 8 7 6 5 4 3 2 1 0(1514131211109 8 7 6 5 4 3 2 1 0
11 1]1 10 1[1 1] opt | | op2
A5-154 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b

Non-Confidential

ID120114

A5 The Thumb Instruction Set Encoding
A5.3 32-bit Thumb instruction encoding

Table A5-29 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.

Table A5-29 Long multiply, long multiply accumulate, and divide operations

op1 op2 Instruction See Variant
000 0000 Signed Multiply Long SMULL on page A7-412 All
001 1111 Signed Divide SDIV on page A7-383 All
010 0000 Unsigned Multiply Long UMULL on page A7-481 All
011 1111 Unsigned Divide UDIV on page A7-472 All
100 0000 Signed Multiply Accumulate Long SMLAL on page A7-396 All
10xx Signed Multiply Accumulate Long, SMLALBB, SMLALBT, SMLALTB, v7E-M
Halfwords SMLALTT on page A7-398
110x Signed Multiply Accumulate Long Dual ~ SMLALD, SMLALDX on page A7-400 v7E-M
101 110x Signed Multiply Subtract Long Dual SMLSLD, SMLSLDX on page A7-404 v7E-M
110 0000 Unsigned Multiply Accumulate Long UMLAL on page A7-480 All
0110 Unsigned Multiply Accumulate UMAAL on page A7-479 v7E-M
Accumulate Long
ARM DDI 0403E.b Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A5-155

ID120114

Non-Confidential

A5 The Thumb Instruction Set Encoding

Ab.3 32-bit Thumb instruction encoding

A5.3.18 Coprocessor instructions
The encoding of coprocessor instructions is:
1514131211109 8 7 6 5 4 3 2 1 0(1514131211109 8 7 6 5 4 3 2 1 0
11 1] [1 1] op1 | | coproc | [op]
Table A5-30 shows the allocation of encodings in this space. Other encodings in this space are UNDEFINED.
Note
A coprocessor instruction executes successfully or causes an Undefined Instruction UsageFault only if the targeted
coprocessor exists and is enabled for accesses at the appropriate privilege level, see Coprocessor Access Control
Register, CPACR on page B3-670. In all other cases, a coprocessor instruction causes a UsageFault exception with
the UFSR.NOCP bit set to 1, see UsageFault Status Register, UFSR on page B3-668.
Table A5-30 Coprocessor instructions
op1 op coproc Instructions See
Oxxxx02 X XXXX Store Coprocessor STC, STC2 on page A7-420
Oxxxxl2 X XXXX Load Coprocessor LDC, LDC?2 (immediate) on page A7-244
LDC, LDC? (literal) on page A7-246
000100 X XXXX Move to Coprocessor from two ARM core MCRR, MCRR?2 on page A7-308
registers
000101 X XXXX Move to two ARM core registers from MRRC, MRRC?2 on page A7-320
Coprocessor
10xxxx 0 XXXX Coprocessor data operations CDP, CDP2 on page A7-221
10xxx0 1 XXXX Move to Coprocessor from ARM core register MCR, MCR2 on page A7-306
10xxx1 1 XXXX Move to ARM core register from Coprocessor MRC, MRC2 on page A7-318
a. But not 000x0x.
A5-156 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b

Non-Confidential

ID120114

Chapter A6

The Floating-Point Instruction Set Encoding

The optional ARMv7-M floating-point extension provides a range of Floating Point (FP) instructions. These
instructions extend the ARMv7-M Thumb instructions. Implementing this extension does not affect the operating
states of the processor, see The optional floating-point extension on page A2-34. This chapter summarizes the
ARMVv7-M floating-point instruction set, and its encoding. It contains the following sections:

Overview on page A6-158.

Floating-point instruction syntax on page A6-159.

Register encoding on page A6-162.

Floating-point data-processing instructions on page A6-163.

Extension register load or store instructions on page A6-165.

32-bit transfer between ARM core and extension registers on page A6-166.
64-bit transfers between ARM core and extension registers on page A6-167.

Note

In the decode tables in this chapter, an entry of - for a field value means the value of the field does not affect the
decoding.

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. AB-157
Non-Confidential

A6 The Floating-Point Instruction Set Encoding
A6.1 Overview

A6.1 Overview

The ARMv7-M Floating-point extension adds floating-point (FP) instructions to the Thumb instruction set.
Implementing this extension does not affect the operating states of the processor. See The optional floating-point
extension on page A2-34.

The following sections give general information about the floating-point instructions:
. Floating-point instruction syntax on page A6-159.
. Register encoding on page A6-162.

The following sections describe the classes of instruction added by the FP extension:

. Floating-point data-processing instructions on page A6-163.
. Extension register load or store instructions on page A6-165.
. 32-bit transfer between ARM core and extension registers on page A6-166.
. 64-bit transfers between ARM core and extension registers on page A6-167.
A6-158 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b

Non-Confidential ID120114

A6 The Floating-Point Instruction Set Encoding
A6.2 Floating-point instruction syntax

A6.2 Floating-point instruction syntax

Floating-point instructions use the general conventions of the Thumb instruction set.
Floating-point data-processing instructions use the following general format:
V<operation>{<c>}{<g>}{.<dt>} {<dest>,} <srcl>, <src2>

All floating-point instructions begin with a V. This distinguishes instructions in the Floating-point instruction set
from Thumb instructions.

The main operation is specified in the <operation> field. It is usually a three letter mnemonic the same as or similar
to the corresponding Thumb integer instruction.

The <c> and <qg> fields are standard assembler syntax fields. For details see Standard assembler syntax fields on
page A7-175.

A6.2.1 Data type specifiers

The <dt> field normally contains one data type specifier. This indicates the data type contained in
. The second operand, if any.

. The operand, if there is no second operand.

. The result, if there are no operand registers.

The data types of the other operand and result are implied by the <dt> field combined with the instruction shape.
In the instruction syntax descriptions in Chapter A7 Instruction Details, the <dt> field is usually specified as a single
field. However, where more convenient, it is sometimes specified as a concatenation of two fields, <type><size>.
Syntax flexibility

There is some flexibility in the data type specifier syntax:

. An instruction can specify two data types, specifying the data types of the single operand and the result.

. Where an instruction requires a less specific data type, it can instead specify a more specific type, as shown
in Table A6-1.

. Where an instruction does not require a data type, it can provide one.

. The F32 data type can be abbreviated to F.
. The F64 data type can be abbreviated to D.

In all cases, if an instruction provides additional information, the additional information must match the instruction
shape. Disassembly does not regenerate this additional information.

Table A6-1 Data type specification flexibility

Specified data type Permitted more specific data types

None Any
.16 .516 .U16 .F16
.32 .S32 .U32 .F32 or .F
.64 - - .F64 or .D
ARM DDI 0403E.b Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A6-159

ID120114

Non-Confidential

A6 The Floating-Point Instruction Set Encoding
A6.2 Floating-point instruction syntax

A6.2.2 Register specifiers

The <dest>, <srcl>, and <src2> fields contain register specifiers, or in some cases register lists, see Register lists on
page A6-161. Table A6-2 shows the register specifier formats that appear in the instruction descriptions.

If <dest> is omitted, it is the same as <srcl>.

Table A6-2 Floating-point register specifier formats

<specifier> Usual meaning 2

<Dd> A double-precision destination register for the result.

<Dn> A double-precision source register for the first operand.

<Dm> A double-precision source register for the second operand.
<Sd> A single-precision destination register for the result.

<Sn> A single-precision source register for the first operand.

<Sm> A single-precision source register for the second operand.

<Rn> An ARM core register, used for an address.

<Rt> An ARM core register, used as a source or destination register.
<Rt2> An ARM core register, used as a source or destination register.

a. In some instructions the roles of registers are different.

AB6-160 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A6 The Floating-Point Instruction Set Encoding
A6.2 Floating-point instruction syntax

A6.2.3 Register lists

A register list is a list of register specifiers separated by commas and enclosed in brackets, { and }. There are
restrictions on what registers can appear in a register list. The individual instruction descriptions describe these
restrictions. Table A6-3 shows some register list formats, with examples of actual register lists corresponding to
those formats.

Note

Register lists must not wrap around the end of the register bank.

Syntax flexibility
There is some flexibility in the register list syntax:

. Where a register list contains consecutive registers, they can be specified as a range, instead of listing every
register, for example {S0-S3} instead of {S0,51,52,53}.

. Where a register list contains an even number of consecutive doubleword registers starting with an even
numbered register, it can be written as a list of quadword registers instead, for example {Q1,Q2} instead of
{D2-D5}.

. Where a register list contains only one register, the enclosing braces can be omitted, for example VLDM. 32 R2,

S5 instead of VLDM.32 R2, {S5}.

Table A6-3 Example register lists

Format Example Alternative
{<Sd>} {S3} S3
{<Sd>,<Sd+1>,<Sd+2>} {S3,54,S5} {S3-S5}

{<Dd[x]>,<Dd+2[x]} {D0[3],D2[3]1} -

{<Dd[]>} {p7(1} D7[]

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ABG-161
Non-Confidential

A6 The Floating-Point Instruction Set Encoding
AG6.3 Register encoding

A6.3 Register encoding

An FP extension register is either:

. A double-precision register, meaning it is 64 bits wide.
. A single-precision register, meaning it is 32 bits wide.
Note

Although the FP extension supports only single-precision arithmetic, it supports some doubleword data transfer
instructions, such as move, pop, and push.

The encoding of the floating-point registers in a Thumb floating-point instruction is:

1514131211109 8 7 6 5 4 3 2 1 0[1514131211109 8 7 6 5 4 3 2 1 0
[D] [Vvn vd | [sz[N] [M] | vm

When appropriate, the sz field, bit[8], encodes the register width, as sz == 1 for double-precision operations, or sz
== (0 for single-precision operations. Most FPv4-SP instructions are single-precision only, and for these instructions
bit[8] is 0.

Table A6-4 shows the encodings for the registers in this instruction.

Table A6-4 Encoding of register numbers

Register mnemonic Usual usage Register number encoded in
<Dd> Destination, double-precision D:Vd, bits[22,15:12]

<Dn> First operand, double-precision N:Vn, bits[7,19:16]

<Dm> Second operand, double-precision ~ M:Vm, bits[5,3:0]

<Sd> Destination, single-precision Vd:D, bits[15:12,22]

<Sn> First operand, single-precision Vn: N, bits[19:16,7]

<Sm> Second operand, single-precision ~ Vm: M, bits[3:0,5]

Some instructions use only one or two registers, and use the unused register fields as additional opcode bits.

AB-162 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A6.4

The encoding of floating-point data processing instructions is:

Floating-point data-processing instructions

1514131211109 8 7 6 56 4 3 2 1 0

1514131211109 8 7 6 56 4 3 2 1 0

A6 The Floating-Point Instruction Set Encoding
A6.4 Floating-point data-processing instructions

11 1[T[1 1 1 0] opct [opc2

[1 0 1]sz]opc3] [0] opc4

Table A6-5 shows the encodings for three-register floating-point data-processing instructions. Other encodings in
this space are UNDEFINED.

Table A6-6 on page A6-164 shows the immediate constants available in the VMOV (immediate) instruction.

These instructions are CDP instructions for coprocessors 10 and 11, see CDP, CDP2 on page A7-221.

Table A6-5 Three-register floating-point data-processing instructions

T opc1 opc2 opc3 Instruction See
I Oxxx - - FP Selection VSEL on page A7-551
0 0x00 - - FP Multiply Accumulate or Subtract ~ VMLA, VMLS on page A7-525
0 0x01 - - FP Negate Multiply Accumulate or VNMLA, VNMLS, VNMUL on page A7-539
Subtract
0 0x10 - x1
x0 FP Multiply VMUL on page A7-536
0 0OxI1 - x0 FP Add VADD on page A7-502
x1 FP Subtract VSUB on page A7-559
0 Ix00 - x0 FP Divide VDIV on page A7-515
T FP Max and Min Number VMAXNM, VMINNM on page A7-523
0 1xI1 - x0 FP Move VMOV (immediate) on page A7-527
0000 01 FP Move VMOV (register) on page A7-528
11 FP Absolute VABS on page A7-501
0001 01 FP Negate VNEG on page A7-537
11 FP Square Root VSORT on page A7-553
001x xlI FP Convert VCVTB, VCVTT on page A7-513
010x x1 FP Compare VCMP, VCMPE on page A7-503
011x xl FP Round to Integer VRINTZ, VRINTR on page A7-549
0111 11 FP Convert VCVT (between double-precision and

single-precision) on page A7-511

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved.
Non-Confidential

AG-163

A6 The Floating-Point Instruction Set Encoding
A6.4 Floating-point data-processing instructions

Table A6-5 Three-register floating-point data-processing instructions (continued)

T opc1 opc2 opc3 Instruction See

0 1x11 1000 x1 FP Convert VCVT, VCVTR (between floating-point and
integer) on page A7-507

1 10xx 01 FP Rounding to Integer VRINTA, VRINTN, VRINTP, and VRINTM on
page A7-545

Ixx x1 FP Convert with Rounding VCVTA, VCVTN, VCVTP, and VCVTM on

page A7-505

0 Ixlx x1 FP Convert VCVT (between floating-point and fixed-point)

on page A7-509

0 110x x1 FP Convert VCVT, VCVTR (between floating-point and
integer) on page A7-507

Table A6-6 Floating-point modified immediate constants

Datatype opc2 opc4 Constant?

F32 abcd efgh aBbbbbbc defgh000 00000000 00000000

F64 abcd efgh aBbbbbbb bbcdefgh 000

a. In this column, B = NOT(b). The bit pattern represents the floating-point number (—1)S * 2¢xp * mantissa, where
S =UInt(a), exp = UInt(NOT(b):c:d)-3 and mantissa = (16+UInt(e:f:g:h))/16.

A6.4.1 Operation of modified immediate constants in floating-point instructions

The VFPExpandImm() pseudocode function expands the modified immediate constant in a floating-point operation:

// VFPExpandImm()
/] ==m=m==m=me===

bits(N) VFPExpandImm(bits(8) imm8, integer N)
assert N IN {32,64};

if N == 32 then
E=38;
else
E = 11;
F=N-E-1;

sign = imm8<7>;

exp = NOT(imm8<6>):Replicate(imm8<6>,E-3):imm8<5:4>;
frac = imm8<3:0>:Zeros(F-4);

return sign:exp:frac;

A6-164 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A6.5

A6 The Floating-Point Instruction Set Encoding

AG6.5 Extension register load or store instructions

Extension register load or store instructions

The encoding of an FP extension register load or store instructions is:

1514131211109 8 7 6 56 4 3 2 1 0

1514131211109 8 7 6 56 4 3 2 1 0

11 1]T[1 1 0]

Opcode | Rn

[1 0 1]

If T==1 the instruction is UNDEFINED.

Otherwise, Table A6-7 shows the allocation of encodings in this space. Other encodings in this space are

UNDEFINED.

These instructions are LDC and STC instructions for coprocessors 10 and 11, see LDC, LDC?2 (immediate) on
page A7-244, LDC, LDC2 (literal) on page A7-246, and STC, STC?2 on page A7-420.

Table A6-7 FP extension register load and store instructions

Opcode Rn Instruction See
0010x - - 64-bit transfers between ARM core and
extension registers on page A6-167
01x00 - FP Store Multiple (Increment After, no writeback) VSTM on page A7-555
01x10 - FP Store Multiple (Increment After, writeback) VSTM on page A7-555
1xx00 - FP Store Register VSTR on page A7-557
10x10 not 1101 FP Store Multiple (Decrement Before, writeback) VSTM on page A7-555
1101 FP Push Registers VPUSH on page A7-543
01x01 - FP Load Multiple (Increment After, no writeback) ~ VLDM on page A7-519
01x11 not 1101 FP Load Multiple (Increment After, writeback) VLDM on page A7-519
1101 FP Pop Registers VPOP on page A7-541
1xx01 - FP Load Register VLDR on page A7-521
10x11 - FP Load Multiple (Decrement Before, writeback) ~ VLDM on page A7-519

ARM DDI 0403E.b

ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved.

Non-Confidential

AB-165

A6 The Floating-Point Instruction Set Encoding
AG6.6 32-bit transfer between ARM core and extension registers

A6.6 32-bit transfer between ARM core and extension registers

The encoding of floating-point 8-bit, 16-bit, and 32-bit register data transfer instructions is:

1514131211109 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0
11 1[T[1 11 0] A L] [1 0 1]c] [B [1]

If T==1 the instruction is UNDEFINED.

Otherwise, Table A6-8 shows the allocation of encodings in this space. Other encodings in this space are
UNDEFINED.

These instructions are MRC and MCR instructions for coprocessors 10 and 11, see MRC, MRC2 on page A7-318 and
MCR, MCR?2 on page A7-306.

Table A6-8 Instructions for 32-bit data transfers to or from FP extension registers

L C A B Instruction See
0 0 000 - FP Move VMOV (between ARM core register and
single-precision register) on page A7-531
1t - Move to FP Special Register from VMSR on page A7-535
ARM core register
0 1 00x 00 FPMove VMOV (ARM core register to scalar) on page A7-529
1 0 000 - FP Move VMOV (between ARM core register and
single-precision register) on page A7-531
1t - Move to ARM core register from VMRS on page A7-534
FP Special Register
1 00x 00 FPMove VMOV (scalar to ARM core register) on page A7-530
A6-166 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b

Non-Confidential ID120114

A6 The Floating-Point Instruction Set Encoding
AG6.7 64-bit transfers between ARM core and extension registers

A6.7 64-bit transfers between ARM core and extension registers

The encoding of FP extension 64-bit register data transfer instructions is:

1514131211109 8 7 6 5 4 3 2 1 0[1514131211109 8 7 6 5 4 3 2 1 0
11 1[T[1 1 0 0o]o 1 0] [1 0 1]c] op |

If T==1 the instruction is UNDEFINED.

Otherwise, Table A6-9 shows the allocation of encodings in this space. Other encodings in this space are
UNDEFINED.

These instructions are MRRC and MCRR instructions for coprocessors 10 and 11, see MRRC, MRRC2 on page A7-320
and MCRR, MCRR?2 on page A7-308.

Table A6-9 64-bit data transfer instructions

C op Instruction

0 00x1 VMOV (between two ARM core registers and two single-precision registers) on page A7-532

1 00x1 VMOV (between two ARM core registers and a doubleword register) on page A7-533.

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. AB-167
Non-Confidential

A6 The Floating-Point Instruction Set Encoding
AG6.7 64-bit transfers between ARM core and extension registers

A6-168 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

Chapter A7

Instruction Details

This chapter describes each instruction in the ARMv7-M Thumb instruction sets, including the floating-point

instructions provided by the ARMv7-M Floating-point extension. It contains the following sections:

Format of instruction descriptions on page A7-170.

Standard assembler syntax fields on page A7-175.

Conditional execution on page A7-176.

Shifts applied to a register on page A7-180.

Memory accesses on page A7-182.

Hint Instructions on page A7-183.

Alphabetical list of ARMv7-M Thumb instructions on page A7-184.

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved.
Non-Confidential

A7-169

A7 Instruction Details

A7.1 Format of instruction descriptions

A7 Format of instruction descriptions

The instruction descriptions in the alphabetical lists of instructions in Alphabetical list of ARMv7-M Thumb
instructions on page A7-184 normally use the following format:

. Instruction section title.

. Introduction to the instruction.

. Instruction encoding(s) with architecture information.
. Assembler syntax.

. Pseudocode describing how the instruction operates.
. Exception information.

. Notes (where applicable).
Each of these items is described in more detail in the following subsections.

A few instruction descriptions describe alternative mnemonics for other instructions and use an abbreviated and
modified version of this format.

A7.1.1 Instruction section title

The instruction section title gives the base mnemonic for the instructions described in the section. When one
mnemonic has multiple forms described in separate instruction sections, this is followed by a short description of
the form in parentheses. The most common use of this is to distinguish between forms of an instruction in which
one of the operands is an immediate value and forms in which it is a register.

Parenthesized text is also used to document the former mnemonic in some cases where a mnemonic has been
replaced entirely by another mnemonic in the new assembler syntax.

A7.1.2 Introduction to the instruction

The instruction section title is followed by text that briefly describes the main features of the instruction. This
description is not necessarily complete and is not definitive. If there is any conflict between it and the more detailed
information that follows, the latter takes priority.

A7-170

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A7 Instruction Details
A7.1 Format of instruction descriptions

A71.3 Instruction encodings

The Encodings subsection contains a list of one or more instruction encodings. For reference purposes, each Thumb
instruction encoding has a numbered label, T1, T2, and so on.

Each instruction encoding description consists of:

Information about which architecture variants include the particular encoding of the instruction. Thumb
instructions present since ARMVAT are labelled as all versions of the Thumb instruction set, otherwise:

— ARMvVST* means all variants of ARM Architecture version 5 that include Thumb instruction support.

— ARMv6-M means a Thumb-only variant of the ARM architecture microcontroller profile that is
compatible with ARMv6 Thumb support prior to the introduction of Thumb-2 technology.

— ARMv7-M means a Thumb-only variant of the ARM architecture microcontroller profile that
provides enhanced performance and functionality with respect to ARMv6-M through Thumb-2
technology and additional system features such as fault handling support.

Note

This manual does not provide architecture variant information about non-M profile variants of ARMv6 and
ARMV7. For such information, see the ARM Architecture Reference Manual, ARMv7-A and ARMv7-R
edition.

An assembly syntax that ensures that the assembler selects the encoding in preference to any other encoding.
In some cases, multiple syntaxes are given. The correct one to use is sometimes indicated by annotations to
the syntax, such as Inside IT block and Outside IT block. In other cases, the correct one to use can be
determined by looking at the assembler syntax description and using it to determine which syntax
corresponds to the instruction being disassembled.

There is usually more than one syntax that ensures re-assembly to any particular encoding, and the exact set
of syntaxes that do so usually depends on the register numbers, immediate constants and other operands to
the instruction. For example, when assembling to the Thumb instruction set, the syntax AND R@,R0,R8 ensures
selection of a 32-bit encoding but AND R@,R0,R1 selects a 16-bit encoding.

The assembly syntax documented for the encoding is chosen to be the simplest one that ensures selection of
that encoding for all operand combinations supported by that encoding. This often means that it includes
elements that are only necessary for a small subset of operand combinations. For example, the assembler
syntax documented for the 32-bit Thumb AND (register) encoding includes the .W qualifier to ensure that the
32-bit encoding is selected even for the small proportion of operand combinations for which the 16-bit
encoding is also available.

The assembly syntax given for an encoding is therefore a suitable one for a disassembler to disassemble that
encoding to. However, disassemblers may wish to use simpler syntaxes when they are suitable for the
operand combination, in order to produce more readable disassembled code.

An encoding diagram. This is half-width for 16-bit Thumb encodings and full-width for 32-bit Thumb
encodings. Thumb encodings use the byte order of a sequence of two halfwords rather than of a word, as
described in Instruction alignment and byte ordering on page A3-68.

Encoding-specific pseudocode. This is pseudocode that translates the encoding-specific instruction fields
into inputs to the encoding-independent pseudocode in the later Operation subsection, and that picks out any
special cases in the encoding. For a detailed description of the pseudocode used and of the relationship
between the encoding diagram, the encoding-specific pseudocode and the encoding-independent
pseudocode, see Appendix D6 Pseudocode Definition.

A71.4 Assembler syntax

The Assembly syntax subsection describes the standard UAL syntax for the instruction.

Each syntax description consists of the following elements:

One or more syntax prototype lines written in a typewriter font, using the conventions described in Assembler
syntax prototype line conventions on page A7-172. Each prototype line documents the mnemonic and (where
appropriate) operand parts of a full line of assembler code. When there is more than one such line, each

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-171
Non-Confidential

A7 Instruction Details

A7.1 Format of instruction descriptions

prototype line is annotated to indicate required results of the encoding-specific pseudocode. For each
instruction encoding, this information can be used to determine whether any instructions matching that
encoding are available when assembling that syntax, and if so, which ones.

The line where: followed by descriptions of all of the variable or optional fields of the prototype syntax line.

Some syntax fields are standardized across all or most instructions. These fields are described in Standard
assembler syntax fields on page A7-175.

By default, syntax fields that specify registers (such as <Rd>, <Rn>, or <Rt>) are permitted to be any of RO-R12
or LR in Thumb instructions. These require that the encoding-specific pseudocode should set the
corresponding integer variable (such as d, n, or t) to the corresponding register number (0-12 for RO-R12, 14
for LR). This can normally be done by setting the corresponding bitfield in the instruction, for example, Rd,
Rn, or Rt, to the binary encoding of that number. In the case of 16-bit Thumb encodings, this bitfield is
normally of length 3 and so the encoding is only available when one of R0-R7 was specified in the assembler
syntax. It is also common for such encodings to use a bitfield name such as Rdn. This indicates that the
encoding is only available if <Rd> and <Rn> specify the same register, and that the register number of that
register is encoded in the bitfield if they do.

The description of a syntax field that specifies a register sometimes extends or restricts the permitted range
of registers or documents other differences from the default rules for such fields. Typical extensions are to
permit the use of one or both of the SP and the PC, using register numbers 13 and 15 respectively.

Note

The pre-UAL Thumb assembler syntax is incompatible with UAL and is not documented in the instruction sections.

Asse

The fo

< >

{1}

spaces

+/-

mbler syntax prototype line conventions
llowing conventions are used in assembler syntax prototype lines and their subfields:

Any item bracketed by < and > is a short description of a type of value to be supplied by the user in
that position. A longer description of the item is normally supplied by subsequent text. Such items
often correspond to a similarly named field in an encoding diagram for an instruction. When the
correspondence simply requires the binary encoding of an integer value or register number to be
substituted into the instruction encoding, it is not described explicitly. For example, if the assembler
syntax for a Thumb instruction contains an item <Rn> and the instruction encoding diagram contains
a 4-bit field named Rn, the number of the register specified in the assembler syntax is encoded in
binary in the instruction field.

If the correspondence between the assembler syntax item and the instruction encoding is more
complex than simple binary encoding of an integer or register number, the item description indicates
how it is encoded. This is often done by specifying a required output from the encoding-specific
pseudocode, such as add = TRUE. The assembler must only use encodings that produce that output.

Any item bracketed by { and } is optional. A description of the item and of how its presence or
absence is encoded in the instruction is normally supplied by subsequent text.

Many instructions have an optional destination register. Unless otherwise stated, if such a
destination register is omitted, it is the same as the immediately following source register in the
instruction syntax.

Single spaces are used for clarity, to separate items. When a space is obligatory in the assembler
syntax, two or more consecutive spaces are used.

This indicates an optional + or - sign. If neither is coded, + is assumed.

All other characters must be encoded precisely as they appear in the assembler syntax. Apart from { and }, the
special characters described above do not appear in the basic forms of assembler instructions documented in this

manua

1. The { and } characters need to be encoded in a few places as part of a variable item. When this happens,

the description of the variable item indicates how they must be used.

A7-172

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A7 Instruction Details
A7.1 Format of instruction descriptions

A7.1.5 Pseudocode describing how the instruction operates

The Operation subsection contains encoding-independent pseudocode that describes the main operation of the
instruction. For a detailed description of the pseudocode used and of the relationship between the encoding diagram,
the encoding-specific pseudocode and the encoding-independent pseudocode, see Appendix D6 Pseudocode
Definition.

ARM DDI 0403E.b Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-173
ID120114 Non-Confidential

A7 Instruction Details
A7.1 Format of instruction descriptions

A7.1.6 Exception information

The Exceptions subsection contains a list of the exceptional conditions that can be caused by execution of the

instruction.

Processor exceptions are listed as follows:

. Resets and interrupts, including NMI, PendSV, and SysTick, are not listed. They can occur before or after the
execution of any instruction, and in some cases during the execution of an instruction, but they are not in
general caused by the instruction concerned.

. MemManage and BusFault exceptions are listed for all instructions that perform explicit data memory
accesses.

All instruction fetches can cause MemManage and BusFault exceptions. These are not caused by execution
of the instruction and so are not listed.

. UsageFault exceptions can occur for a variety of reasons and are listed against instructions as appropriate.
UsageFault exceptions also occur when pseudocode indicates that the instruction is UNDEFINED. These
UsageFaults are not listed.

. The SVCall exception is listed for the SVC instruction.

. The DebugMonitor exception is listed for the BKPT instruction.

. HardFault exceptions can arise from escalation of faults listed against an instruction, but are not themselves
listed.

Note
For a summary of the different types of MemManage, BusFault and UsageFault exceptions see Fault behavior on
page B1-608.
A7A1.7 Notes

Where appropriate, additional notes about the instruction appear under further subheadings.

A7-174 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b

Non-Confidential ID120114

A7 Instruction Details
A7.2 Standard assembler syntax fields

A7.2 Standard assembler syntax fields

The following assembler syntax fields are standard across all or most instructions:

<Cc>

<q>

Is an optional field. It specifies the condition under which the instruction is executed. If <c> is
omitted, it defaults to always (AL). For details see Conditional instructions on page A4-102.

Specifies optional assembler qualifiers on the instruction. The following qualifiers are defined:

N Meaning narrow, specifies that the assembler must select a 16-bit encoding for the
instruction. If this is not possible, an assembler error is produced.

W Meaning wide, specifies that the assembler must select a 32-bit encoding for the
instruction. If this is not possible, an assembler error is produced.

If neither .W nor .N is specified, the assembler can select either 16-bit or 32-bit encodings. If both
are available, it must select a 16-bit encoding. In a few cases, more than one encoding of the same
length can be available for an instruction. The rules for selecting between such encodings are
instruction-specific and are part of the instruction description.

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-175
Non-Confidential

A7 Instruction Details
A7.3 Conditional execution

A7.3 Conditional execution
Most Thumb instructions in ARMv7-M can be executed conditionally, based on the values of the APSR condition
flags. The available conditions are listed in Table A7-1.
In Thumb instructions, the condition (if it is not AL) is normally encoded in a preceding IT instruction, see
Conditional instructions on page A4-102, ITSTATE on page A7-177 and IT on page A7-242 for details. Some
conditional branch instructions do not require a preceding IT instruction, and include a condition code in their
encoding.
Table A7-1 Condition codes
i i i Meaning, floating-poin
cond Mnemc'mlc M(_eanmg', integer (Iea g., oating-point Condition flags
extension arithmetic arithmetica
0000 EQ Equal Equal Z==1
0001 NE Not equal Not equal, or unordered Z==
0010 csb Carry set Greater than, equal, or unordered C==
0011 cCce Carry clear Less than C==
0100 MI Minus, negative Less than N=1
0101 PL Plus, positive or zero Greater than, equal, or unordered N==
0110 VS Overflow Unordered V==
0111 VC No overflow Not unordered V==
1000 HI Unsigned higher Greater than, or unordered C=landZ==
1001 LS Unsigned lower or same Less than or equal C=0o0rZ==
1010 GE Signed greater than or equal ~ Greater than or equal N=V
1011 LT Signed less than Less than, or unordered N!I=V
1100 GT Signed greater than Greater than Z==0and N==V
1101 LE Signed less than or equal Less than, equal, or unordered Z==1lorN!=V
1110 None (AL) ¢ Always (unconditional) Always (unconditional) Any
a. Unordered means at least one NaN operand.
b. HS (unsigned higher or same) is a synonym for CS.
c. LO (unsigned lower) is a synonym for CC.
d. AL is an optional mnemonic extension for always, except in IT instructions. See /7 on page A7-242 for details.
A7.3.1 Pseudocode details of conditional execution
The CurrentCond() pseudocode function has prototype:
bits(4) CurrentCond()
and returns a 4-bit condition specifier as follows:
. For the T1 and T3 encodings of the Branch instruction shown in B on page A7-207, it returns the 4-bit cond
field of the encoding.
. For all other Thumb instructions:
— If ITSTATE.IT<3:0> !='0000" it returns ITSTATE.IT<7:4>
— If ITSTATE.IT<7:0> == '00000000" it returns '1110'
A7-176 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b

Non-Confidential

ID120114

A7 Instruction Details
A7.3 Conditional execution

— Otherwise, execution of the instruction is UNPREDICTABLE.

For more information, see ITSTATE.

The ConditionPassed() function uses this condition specifier and the APSR condition flags to determine whether
the instruction must be executed:

// ConditionPassed()
e —

boolean ConditionPassed()
cond = CurrentCond();

// Evaluate base condition.
case cond<3:1> of

when '000' result = (APSR.Z == '1'"); // EQ or NE
when '001' result = (APSR.C == '1"); // CS or CC
when '010' result = (APSR.N == '1'"); // MI or PL
when '011' result = (APSR.V == '1"); // VS or VC
when '100' result = (APSR.C == '1') && (APSR.Z == '0'); // HI or LS
when '101"' result = (APSR.N == APSR.V); // GE or LT
when '110' result = (APSR.N == APSR.V) && (APSR.Z == '0'); // GT or LE
when '111"' result = TRUE; // AL

// Condition flag values in the set '111x' indicate the instruction is always executed.
// Otherwise, invert condition if necessary.
if cond<@> == '1' && cond != '1111" then

result = !result;

return result;

A7.3.2 Conditional execution of undefined instructions

If an undefined instruction fails a condition check in ARMv7-M, the instruction behaves as a NOP and does not
cause an exception.

Note

The Branch (B) instruction with a conditional field of *1110° is UNDEFINED and takes an exception unless qualified
by a condition check failure from an IT instruction.

A7.3.3 ITSTATE

The bit assignments of the ITSTATE register are:
76543210

IT[7:0]

This register holds the If-Then execution state bits for the Thumb IT instruction. See /7 on page A7-242 for a
description of the IT instruction and the associated IT block.

ITSTATE divides into two subfields:

IT[7:5] Holds the base condition for the current IT block. The base condition is the top 3 bits of the
condition specified by the IT instruction.

This subfield is 0b000 when no IT block is active.

IT[4:0] Encodes:

. The size of the IT block. This is the number of instructions that are to be conditionally
executed. The size of the block is implied by the position of the least significant 1 in this field,
as shown in Table A7-2 on page A7-178.

. The value of the least significant bit of the condition code for each instruction in the block.

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. AT-177
Non-Confidential

A7 Instruction Details

A7.3 Conditional execution

Note

Changing the value of the least significant bit of a condition code from 0 to 1 has the effect

of inverting the condition code.

This subfield is 0b00000 when no IT block is active.

When an IT instruction is executed, these bits are set according to the condition in the instruction, and the Then and
Else (T and E) parameters in the instruction, see /7 on page A7-242 for more information.

An instruction in an IT block is conditional, see Conditional instructions on page A4-102. The condition used is the
current value of IT[7:4]. When an instruction in an IT block completes its execution normally, ITSTATE is advanced

to the next line of Table A7-2.

See Exception entry behavior on page B1-587 for details of what happens if such an instruction takes an exception.

Note

Instructions that can complete their normal execution by branching are only permitted in an IT block as its last

instruction, and so always result in ITSTATE advancing to normal execution.

Table A7-2 Effect of IT execution state bits

IT bits 2
[7:5] [4 [B1 [21 [11 [0]
cond base P1 P2 P3 P4 1 Entry point for 4-instruction IT block
cond base Pl P2 P3 1 0 Entry point for 3-instruction IT block
cond base Pl P2 1 0 0 Entry point for 2-instruction IT block
cond base Pl 1 0 0 0 Entry point for 1-instruction IT block
000 0 0 0 0 0 Normal execution, not in an IT block

a. Combinations of the IT bits not shown in this table are reserved.

Pseudocode details of ITSTATE operation

ITSTATE advances after normal execution of an IT block instruction. This is described by the ITAdvance() pseudocode

function:

// ITAdvance()
/e

ITAdvance()
if ITSTATE<2:0> == '000' then
ITSTATE.IT = '00000000';
else

ITSTATE.IT<4:0> = LSL(ITSTATE.IT<4:0>, 1);

The following functions test whether the current instruction is in an IT block, and whether it is the last instruction

of an IT block:

// InITBlock()
e

boolean InITBlock()
return (ITSTATE.IT<3:0> != '0000');
// LastInITBlock()

A7-178

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved.
Non-Confidential

ARM DDI 0403E.b
ID120114

A7 Instruction Details
A7.3 Conditional execution

boolean LastInITBlock()
return (ITSTATE.IT<3:0> == '1000');

ARM DDI 0403E.b Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-179
ID120114 Non-Confidential

A7 Instruction Details
A7.4 Shifts applied to a register

A7.4 Shifts applied to a register
Thumb data-processing instructions can apply a range of constant shifts to the second operand register. See Constant
shifts for details.
A7.41 Constant shifts
<shift> is an optional shift to be applied to <Rm>. It can be any one of:
(omitted) Equivalent to LSL #0.

LSL #<n> logical shift left <n> bits. 0 <= <n> <=31.

LSR #<n> logical shift right <n> bits. 1 <= <n> <= 32.

ASR #<n> arithmetic shift right <n> bits. 1 <= <n> <=32.

ROR #<n> rotate right <n> bits. 1 <=<n> <=31.

RRX rotate right one bit, with extend. bit [0] is written to shifter_carry_out, bits [31:1] are shifted right

one bit, and the Carry Flag is shifted into bit [31].

Encoding

The assembler encodes <shift> into two type bits and five immediate bits, as follows:
(omitted) type = 0b00, immediate = 0.

LSL #<n> type = 0b00, immediate = <n>.

LSR #<n> type = 0b01.
If <n> < 32, immediate = <n>.

If <n> == 32, immediate = 0.

ASR #<n> type = 0b10.
If <n> < 32, immediate = <n>.

If <n> == 32, immediate = 0.
ROR #<n> type = 0b1l, immediate = <n>.

RRX type = 0b1l, immediate = 0.

A7-180 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A7 Instruction Details
A7.4 Shifts applied to a register

A7.4.2 Shift operations

// DecodeImmShift()
R ——

(SRType, integer) DecodeImmShift(bits(2) type, bits(5) imm5)

case type of
when '00'
shift_t
when '01'
shift_t
when '10'
shift_t
when '11'
if imm5 == '00000' then
shift_t = SRType_RRX; shift_n = 1;
else
shift_t = SRType_ROR; shift_n

SRType_LSL; shift_n = UInt(imm5);

SRType_LSR; shift_n = if imm5 == '00000' then 32 else UInt(imm5);

SRType_ASR; shift_n = if imm5 == '00000' then 32 else UInt(imm5);

UInt(imm5);

return (shift_t, shift_n);
// Shift()
/] =======

bits(N) Shift(bits(N) value, SRType type, integer amount, bit carry_in)
(result, -) = Shift_C(value, type, amount, carry_in);
return result;

// Shift_C()
/] mmmmmmmmn

(bits(N), bit) Shift_C(bits(N) value, SRType type, integer amount, bit carry_in)
assert !(type == SRType_RRX && amount != 1);

if amount == @ then
(result, carry_out) = (value, carry_in);
else
case type of
when SRType_LSL
(result, carry_out) = LSL_C(value, amount);
when SRType_LSR
(result, carry_out) = LSR_C(value, amount);
when SRType_ASR
(result, carry_out) = ASR_C(value, amount);
when SRType_ROR
(result, carry_out) = ROR_C(value, amount);
when SRType_RRX
(result, carry_out) = RRX_C(value, carry_in);

return (result, carry_out);

ARM DDI 0403E.b Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-181
ID120114 Non-Confidential

A7 Instruction Details

A7.5 Memory accesses

A7.5 Memory accesses

The following addressing modes are commonly permitted for memory access instructions:

Offset addressing

The offset value is added to or subtracted from an address obtained from the base register. The result
is used as the address for the memory access. The base register is unaltered.

The assembly language syntax for this mode is:

[<Rn>,<offset>]

Pre-indexed addressing

The offset value is applied to an address obtained from the base register. The result is used as the
address for the memory access, and written back into the base register.

The assembly language syntax for this mode is:

[<Rn>,<offset>]!

Post-indexed addressing

The address obtained from the base register is used, unaltered, as the address for the memory access.
The offset value is applied to the address, and written back into the base register.

The assembly language syntax for this mode is:

[<Rn>],<offset>

In each case, <Rn> is the base register. <offset> can be:

. An immediate constant, such as <imm8> or <imm12>.
. An index register, <Rm>.
. A shifted index register, such as <Rm>, LSL #<shift>.

For information about unaligned access, endianness, and exclusive access, see:
. Alignment support on page A3-65.

. Endian support on page A3-67.

. Synchronization and semaphores on page A3-70.

A7-182

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A7 Instruction Details
A7.6 Hint Instructions

A7.6 Hint Instructions

The Thumb instruction set includes the following classes of hint instruction:

Memory hints.
NOP-compatible hints.

A7.6.1 Memory hints

Some load instructions with Rt == @b1111 are memory Aints. Memory hints enable you to provide advance
information to memory systems about future memory accesses, without actually loading or storing any data.

PLD and PLI are the only memory hint instructions currently defined, see Load byte, memory hints on page AS5-146.
For instruction details, see:

PLD (immediate) on page A7-340.

PLD (literal) on page A7-341.

PLD (register) on page A7-342.

PLI (immediate, literal) on page A7-344.
PLI (register) on page A7-346.

Other memory hints are currently unallocated, see Load halfword, memory hints on page A5-145. The effect of a
memory hint instruction is IMPLEMENTATION DEFINED. Unallocated memory hints must be implemented as NOP, and
software must not use them.

A7.6.2 NOP-compatible hints

Hint instructions that are not associated with memory accesses are part of a separate category of hint instructions
known as NOP-compatible hints. NOP-compatible hints provide IMPLEMENTATION DEFINED behavior or act as a
NOP. Both 16-bit and 32-bit encodings are reserved:

For information on the 16-bit encodings see If-Then, and hints on page A5-133.
For information on the 32-bit encodings see Hint instructions on page A5-141.

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-183
Non-Confidential

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7 Alphabetical list of ARMv7-M Thumb instructions

Every ARMv7-M Thumb instruction is listed in this section. See Format of instruction descriptions on page A7-170
for details of the format used.

A7-184 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.71 ADC (immediate)

Add with Carry (immediate) adds an immediate value and the carry flag value to a register value, and writes the
result to the destination register. It can optionally update the condition flags based on the result.

Encoding T1 ARMv7-M
ADC{S}<c> <Rd>,<Rn>,#<const>

1514131211109 8 7 6 5 4 3 2 1 0151413121109 8 7 6 5 4 3 2 1 0
111 10[iJo[1 01 0[S[Rn 0] imm3 | Rd | imm8

d = UInt(Rd); n = UInt(Rn); setflags = (S == '1"); 1imm32 = ThumbExpandImm(i:imm3:imm8);
if d IN {13,15} || n IN {13,15} then UNPREDICTABLE;

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-185
Non-Confidential

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

Assembler syntax

ADC{S}<c><g> {<Rd>,} <Rn>, #<const>

where:

S If present, specifies that the instruction updates the flags. Otherwise, the instruction does not update
the flags.

<C><g> See Standard assembler syntax fields on page A7-175.

<Rd> Specifies the destination register. If <Rd> is omitted, this register is the same as <Rn>.

<Rn> Specifies the register that contains the first operand.

<const> Specifies the immediate value to be added to the value obtained from <Rn>. See Modified immediate

constants in Thumb instructions on page A5-137 for the range of permitted values.

The pre-UAL syntax ADC<c>S is equivalent to ADCS<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
(result, carry, overflow) = AddwithCarry(R[n], imm32, APSR.C);
R[d] = result;
if setflags then
APSR.N = result<31l>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
APSR.V = overflow;

Exceptions

None.

A7-186 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.2 ADC (register)

Add with Carry (register) adds a register value, the carry flag value, and an optionally-shifted register value, and
writes the result to the destination register. It can optionally update the condition flags based on the result.

Encoding T1 All versions of the Thumb instruction set.
ADCS <Rdn>, <Rm> Outside IT block.
ADC<c> <Rdn>,<Rm> Inside IT block.

1514131211109 8 7 6 5 4 3 2 1 0
010000[010 1 Rm [Rdn

d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();
(shift_t, shift_n) = (SRType_LSL, 0);

Encoding T2 ARMv7-M
ADC{S}<c>.W <Rd>,<Rn>,<Rm>{,<shift>}

1514131211109 8 7 6 5 4 3 2 1 0[1514131211109 8 7 6 5 4 3 2 1 0
1110 1/o 1[1 01 0[s[Rn Jo] imm3 | Rd [imm2[type[Rm

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1");
(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);
if d IN {13,15} || n IN {13,215} || m IN {13,15} then UNPREDICTABLE;

ARM DDI 0403E.b Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-187
ID120114 Non-Confidential

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

Assembler syntax

ADC{S}<c><g> {<Rd>,} <Rn>, <Rm> {,<shift>}

where:

S If present, specifies that the instruction updates the flags. Otherwise, the instruction does not update
the flags.

<C><g> See Standard assembler syntax fields on page A7-175.

<Rd> Specifies the destination register. If <Rd> is omitted, this register is the same as <Rn>.

<Rn> Specifies the register that contains the first operand.

<Rm> Specifies the register that is optionally shifted and used as the second operand.

<shift> Specifies the shift to apply to the value read from <Rm>. If <shift> is omitted, no shift is applied and

both encodings are permitted. If <shift> is specified, only encoding T2 is permitted. The possible
shifts and how they are encoded are described in Shifts applied to a register on page A7-180.

A special case is that if ADC<c> <Rd>,<Rn>,<Rd> is written with <Rd> and <Rn> both in the range R0-R7, it will be
assembled using encoding T2 as though ADC<c> <Rd>,<Rn> had been written. To prevent this happening, use the . W
qualifier.

The pre-UAL syntax ADC<c>S is equivalent to ADCS<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
shifted = Shift(R[m], shift_t, shift_n, APSR.C);
(result, carry, overflow) = AddwithCarry(R[n], shifted, APSR.C);
R[d] = result;
if setflags then

APSR.N = result<31l>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;

APSR.V = overflow;

Exceptions

None.

A7-188 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.3 ADD (immediate)

This instruction adds an immediate value to a register value, and writes the result to the destination register. It can
optionally update the condition flags based on the result.

Encoding T1 All versions of the Thumb instruction set.
ADDS <Rd>,<Rn>,#<imm3> Outside IT block.
ADD<c> <Rd>,<Rn>,#<imm3> Inside IT block.

1514131211109 8 7 6 5 4 3 2 1 0
0 0 0f[1 1[1]0o] imm3 | Rn Rd

d = UInt(Rd); n = UInt(Rn); setflags = !InITBlock(); 1imm32 = ZeroExtend(imm3, 32);

Encoding T2 All versions of the Thumb instruction set.
ADDS <Rdn>,#<imm8> Outside IT block.
ADD<c> <Rdn>,#<imm8> Inside IT block.

1514131211109 8 7 6 5 4 3 2 1 0
0 0 1[1 0] Rdn | imm8

d = UInt(Rdn); n = UInt(Rdn); setflags = !InITBlock(); 1imm32 = ZeroExtend(imm8, 32);

Encoding T3 ARMvV7-M
ADD{S}<c>.W <Rd>,<Rn>,#<const>

1514131211109 8 7 6 5 4 3 2 1 0[1514131211109 8 7 6 5 4 3 2 1 0
111 10[ilo]1 00 0[S] Rn 0] imm3 | Rd imm8

if Rd == '1111" && S == '1' then SEE CMN (immediate);

if Rn == '1101' then SEE ADD (SP plus immediate);

d = UInt(Rd); n = UInt(Rn); setflags = (S == '1'); imm32 = ThumbExpandImm(i:imm3:imm8);
ifd==13 1] (d==158 S == '0") || n == 15 then UNPREDICTABLE;

Encoding T4 ARMvV7-M
ADDW<c> <Rd>,<Rn>,#<imml2>

1514131211109 8 7 6 5 4 3 2 1 0[|1514131211109 8 7 6 5 4 3 2 1 0
1111 0][i][1[o 00 ofo] Rn 0] imm3 Rd imm8

if Rn == '1111"' then SEE ADR;

if Rn == '1101' then SEE ADD (SP plus immediate);

d = UInt(Rd); n = UInt(Rn); setflags = FALSE; 1imm32 = ZeroExtend(i:imm3:imm8, 32);
if d IN {13,15} then UNPREDICTABLE;

ARM DDI 0403E.b Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-189
ID120114 Non-Confidential

A7 Instruction Details

A7.7 Alphabetical list of ARMv7-M Thumb instructions

Assembler syntax

ADD{S}<c><q> {<Rd>,} <Rn>, #<const> All encodings permitted

ADDW<c><g> {<Rd>,} <Rn>, #<const> Only encoding T4 permitted

where:

S If present, specifies that the instruction updates the flags. Otherwise, the instruction does not update
the flags.

<C><g> See Standard assembler syntax fields on page A7-175.

<Rd> Specifies the destination register. If <Rd> is omitted, this register is the same as <Rn>.

<Rn> Specifies the register that contains the first operand. If the SP is specified for <Rn>, see ADD (SP
plus immediate) on page A7-193. If the PC is specified for <Rn>, see ADR on page A7-197.

<const> Specifies the immediate value to be added to the value obtained from <Rn>. The range of permitted

values is 0-7 for encoding T1, 0-255 for encoding T2 and 0-4095 for encoding T4. See Modified
immediate constants in Thumb instructions on page A5-137 for the range of permitted values for
encoding T3.

When multiple encodings of the same length are available for an instruction, encoding T3 is
preferred to encoding T4 (if encoding T4 is required, use the ADDW syntax). Encoding T'1 is preferred
to encoding T2 if <Rd> is specified and encoding T2 is preferred to encoding T1 if <Rd> is omitted.

The pre-UAL syntax ADD<c>S is equivalent to ADDS<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
(result, carry, overflow) = AddwWithCarry(R[n], imm32, '0");
R[d] = result;
if setflags then

APSR.N = result<31l>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
APSR.V = overflow;
Exceptions
None.
A7-190 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b

Non-Confidential ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.4 ADD (register)

ADD (register) adds a register value and an optionally-shifted register value, and writes the result to the destination
register. It can optionally update the condition flags based on the result.

Encoding T1 All versions of the Thumb instruction set.
ADDS <Rd>,<Rn>, <Rm> Outside IT block.
ADD<c> <Rd>,<Rn>,<Rm> Inside IT block.

1514131211109 8 7 6 5 4 3 2 1 0
0 00[1 1]ofo] Rm | Rn [Rd

d = UInt(Rd); n

= UInt(Rn); m = UInt(Rm); setflags = !InITBlock();
(shift_t, shift_n) =

(SRType_LSL, 0);

Encoding T2 All versions of the Thumb instruction set.
ADD<c> <Rdn>, <Rm>

1514131211109 8 7 6 5 4 3 2 1 0
01000 1[0 0] [Rm Rdn

DN

if (DN:Rdn) == '1101' || Rm == '1101"' then SEE ADD (SP plus register);
d = UInt(DN:Rdn); n = UInt(DN:Rdn); m = UInt(Rm); setflags = FALSE;
(shift_t, shift_n) = (SRType_LSL, 0);

if d == 15 && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

if d == 15 & m == 15 then UNPREDICTABLE;

Encoding T3 ARMv7-M
ADD{S}<c>.W <Rd>,<Rn>,<Rm>{,<shift>}

1514131211109 8 7 6 5 4 3 2 1 0[1514131211109 8 7 6 56 4 3 2 1 0
1110 1[0 1J1 00 0[S[Rn O] imm3 | Rd [mm2[type] Rm

if Rd == '1111' && S == '1' then SEE CMN (register);

if Rn == '1101' then SEE ADD (SP plus register);

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1");

(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);

ifd==131]] (d==158 S =="0") || n==15 || m IN {13,15} then UNPREDICTABLE;

ARM DDI 0403E.b Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-191
ID120114 Non-Confidential

A7 Instruction Details

A7.7 Alphabetical list of ARMv7-M Thumb instructions

Assembler syntax

ADD{S}<c><qg>
where:

S

<C><0p>

<Rd>

<Rn>

<Rm>

<shift>

{<Rd>,} <Rn>, <Rm> {,<shift>}

If present, specifies that the instruction updates the flags. Otherwise, the instruction does not update
the flags.

See Standard assembler syntax fields on page A7-175.

Specifies the destination register. If <Rd> is omitted, this register is the same as <Rn> and encoding
T2 is preferred to encoding T1 if both are available. This can only happen inside an IT block. If <Rd>
is specified, encoding T1 is preferred to encoding T2. If <Rm> is not the PC, the PC can be used in
encoding T2.

Specifies the register that contains the first operand. If the SP is specified for <Rn>, see ADD (SP
plus register) on page A7-195. If <Rm> is not the PC, the PC can be used in encoding T2.

Specifies the register that is optionally shifted and used as the second operand. The PC can be used
in encoding T2.

Specifies the shift to apply to the value read from <Rm>. If <shift> is omitted, no shift is applied and
all encodings are permitted. If <shift> is specified, only encoding T3 is permitted. The possible
shifts and how they are encoded are described in Shifis applied to a register on page A7-180.

Inside an IT block, if ADD<c> <Rd>, <Rn>, <Rd> cannot be assembled using encoding T1, it is assembled using encoding
T2 as though ADD<c> <Rd>,<Rn> had been written. To prevent this happening, use the .W qualifier.

The pre-UAL syntax ADD<c>S is equivalent to ADDS<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
shifted = Shift(R[m], shift_t, shift_n, APSR.C);
(result, carry, overflow) = AddwithCarry(R[n], shifted, '0");

ifd =15

then

ALUWritePC(result); // setflags is always FALSE here

else
R[d] =

result;

if setflags then
APSR.N = result<31l>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
APSR.V = overflow;

Exceptions

None.

A7-192

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.5 ADD (SP plus immediate)

ADD (SP plus immediate) adds an immediate value to the SP value, and writes the result to the destination register.

Encoding T1 All versions of the Thumb instruction set.
ADD<c> <Rd>,SP,#<imm8>

1514131211109 8 7 6 5 4 3 2 1 0
101 0[1] Rd imm8

d = UInt(Rd); setflags = FALSE; 1imm32 = ZeroExtend(imm8:'00', 32);

Encoding T2 All versions of the Thumb instruction set.
ADD<c> SP,SP,#<imm7>

1514131211109 8 7 6 5 4 3 2 1 0
101 1[0 0 0 0f0] imm7

d = 13; setflags = FALSE; imm32 = ZeroExtend(imm7:'00', 32);

Encoding T3 ARMv7-M
ADD{S}<c>.W <Rd>,SP,#<const>

1514131211109 8 7 6 5 4 3 2
1

0151413121110 9 8 7 6 5 4 3 2 1 0
1111 0[i]o]1 00 ofs]1 1

1
0 1/0] imm3 | Rd | imm8

if Rd == '1111' && S == '1' then SEE CMN (immediate);
d = UInt(Rd); setflags = (S == '1"); dimm32 = ThumbExpandImm(i:imm3:imm8);
if d == 15 & S == '0' then UNPREDICTABLE;

Encoding T4 ARMvV7-M
ADDW<c> <Rd>,SP,#<imml12>

1514131211109 8 7 6 5 4 3 2
1

0151413121110 9 8 7 6 5 4 3 2 1 0
111 10[i][1]Jo 0o o0 ofo[1 1

1
0 1/0] imm3 | Rd | imm8

d = UInt(Rd); setflags = FALSE; imm32 = ZeroExtend(i:imm3:imm8, 32);
if d == 15 then UNPREDICTABLE;

ARM DDI 0403E.b Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-193
ID120114 Non-Confidential

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

Assembler syntax

ADD{S}<c><q> {<Rd>,} SP, #<const> All encodings permitted

ADDW<c><g> {<Rd>,} SP, #<const> Only encoding T4 is permitted

where:

S If present, specifies that the instruction updates the flags. Otherwise, the instruction does not update
the flags.

<C><g> See Standard assembler syntax fields on page A7-175.

<Rd> Specifies the destination register. If <Rd> is omitted, this register is SP.

<const> Specifies the immediate value to be added to the value obtained from <Rn>. Permitted values are

multiples of 4 in the range 0-1020 for encoding T1, multiples of 4 in the range 0-508 for encoding
T2 and any value in the range 0-4095 for encoding T4. See Modified immediate constants in Thumb
instructions on page A5-137 for the range of permitted values for encoding T3.

When both 32-bit encodings are available for an instruction, encoding T3 is preferred to encoding
T4 (if encoding T4 is required, use the ADDW syntax).

The pre-UAL syntax ADD<c>S is equivalent to ADDS<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
(result, carry, overflow) = AddwithCarry(SP, imm32, '0');
R[d] = result;
if setflags then
APSR.N = result<3l>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
APSR.V = overflow;

Exceptions

None.

A7-194 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.6 ADD (SP plus register)

ADD (SP plus register) adds an optionally-shifted register value to the SP value, and writes the result to the
destination register.

Encoding T1 All versions of the Thumb instruction set.
ADD<c> <Rdm>, SP, <Rdm>

1514131211109 8 7 6 5 4 3 2 1 0
01000100[[110 1] Rdm
DM—

d = UInt(DM:Rdm); m = UInt(DM:Rdm); setflags = FALSE;
if d == 15 && InITBTock() && !LastInITBlock() then UNPREDICTABLE;
(shift_t, shift_n) = (SRType_LSL, 0);

Encoding T2 All versions of the Thumb instruction set.
ADD<c> SP,<Rm>

1514131211109 8 7 6 5 4 3 2 1 0
01000100[1] Rm 101

if Rm == '1101' then SEE encoding T1;
d = 13; m = UInt(Rm); setflags = FALSE;
(shift_t, shift_n) = (SRType_LSL, 0);

Encoding T3 ARMv7-M
ADD{S}<c>.W <Rd>,SP,<Rm>{,<shift>}

151413121109 8 7 6 5 4 3 2 1 0
0| imm3| Rd |imm2|type| Rm

151413121110 9 8
11

3 2
111010 11

~lo

1
0

7654
0 0 0]s]

if Rd == '1111' && S == '1' then SEE CMN (register);

d = UInt(Rd); m = UInt(Rm); setflags = (S == '1");

(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);

if d == 13 && (shift_t != SRType_LSL || shift_n > 3) then UNPREDICTABLE;
if (d==15& S == "0") || m IN {13,15} then UNPREDICTABLE;

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-195
Non-Confidential

A7 Instruction Details

A7.7 Alphabetical list of ARMv7-M Thumb instructions

Assembler syntax

ADD{S}<c><qg>
where:

S

<C><0p>

<Rd>

<Rm>

<shift>

{<Rd>,} SP, <Rm>{, <shift>}

If present, specifies that the instruction updates the flags. Otherwise, the instruction does not update
the flags.

See Standard assembler syntax fields on page A7-175.

Specifies the destination register. If <Rd> is omitted, this register is SP.

The use of the PC as <Rd> in encoding T1 is deprecated.

Specifies the register that is optionally shifted and used as the second operand.

The use of the SP as <Rm> in encoding T1 is deprecated.

The use of the PC as <Rm> in encoding T1 and encoding T2 is deprecated.

Specifies the shift to apply to the value read from <Rm>. If <shift> is omitted, no shift is applied and

all encodings are permitted. If <shift> is specified, only encoding T3 is permitted. The possible
shifts and how they are encoded are described in Shifis applied to a register on page A7-180.

If <Rd> is SP or omitted, <shift> is only permitted to be LSL #0, LSL #1, LSL #2 or LSL #3.

The pre-UAL syntax ADD<c>S is equivalent to ADDS<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
shifted = Shift(R[m], shift_t, shift_n, APSR.C);
(result, carry, overflow) = AddwithCarry(SP, shifted, '0");
if d == 15 then
ALUWritePC(result); // setflags is always FALSE here

else

RId] =

result;

if setflags then
APSR.N = result<31>;

APSR.Z
APSR.C

IsZeroBit(result);
carry;

APSR.V = overflow;

Exceptions

None.

A7-196

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A7.7.7 ADR

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

Address to Register adds an immediate value to the PC value, and writes the result to the destination register.

Encoding T1 All versions of the Thumb instruction set.
ADR<c> <Rd>,<label>

1514131211109 8 7 6 5 4 3 2 1 0
101 0o Rd imm8

d = UInt(Rd); 1imm32 = ZeroExtend(imm8:'00', 32); add = TRUE;

Encoding T2 ARMV7-M.
ADR<c>.W <Rd>,<Tabel> <label> before current instruction
SUB <Rd>,PC,#0 Special case for zero offset

1514131211109 8 7 6 5 4
1111 0[i[1 010 1]0]

321 0[1514131211109 8 7 6 54 3 2 10
111 1[0 imm3 [Rd | imm8

1
1

d = UInt(Rd); 1imm32 = ZeroExtend(i:imm3:imm8, 32); add = FALSE;
if d IN {13,15} then UNPREDICTABLE;

Encoding T3 ARMv7-M

ADR<c>.W <Rd>,<1abel> <label> after current instruction
1514131211109 8 7 6 5 4 3 2 1 0(1514131211109 8 7 6 56 4 3 2 1 0
111 10[iJ]1t0000f0[1 11 1]0]imm3 Rd | imm8

d = UInt(Rd); 1imm32 = ZeroExtend(i:imm3:imm8, 32); add = TRUE;
if d IN {13,15} then UNPREDICTABLE;

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-197
Non-Confidential

A7 Instruction Details

A7.7 Alphabetical list of ARMv7-M Thumb instructions

Assembler syntax

ADR<c><q> <Rd>, <label> Normal syntax

ADD<c><g> <Rd>, PC, #<const> Alternative for encodings T1, T3

SUB<c><q> <Rd>, PC, #<const> Alternative for encoding T2

where:

<C><g> See Standard assembler syntax fields on page A7-175.

<Rd> Specifies the destination register.

<label> Specifies the label of an instruction or literal data item whose address is to be loaded into <Rd>. The

assembler calculates the required value of the offset from the Align(PC,4) value of the ADR
instruction to this label.

If the offset is positive, encodings T1 and T3 are permitted with imm32 equal to the offset. Permitted
values of the offset are multiples of four in the range 0 to 1020 for encoding T1 and any value in the
range 0 to 4095 for encoding T3.

If the offset is negative, encoding T2 is permitted with imm32 equal to minus the offset. Permitted
values of the offset are -4095 to -1.

In the alternative syntax forms:

<const>

Operation

Specifies the offset value for the ADD form and minus the offset value for the SUB form. Permitted
values are multiples of four in the range 0 to 1020 for encoding T1 and any value in the range 0 to
4095 for encodings T2 and T3.

Note

It is recommended that the alternative syntax forms are avoided where possible. However, the only
possible syntax for encoding T2 with all immediate bits zero is SUB<c><g> <Rd>, PC, #0.

if ConditionPassed() then
EncodingSpecificOperations();
result = if add then (ATign(PC,4) + imm32) else (Align(PC,4) - imm32);
R[d] = result;

Exceptions

None.

A7-198

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.8 AND (immediate)

AND (immediate) performs a bitwise AND of a register value and an immediate value, and writes the result to the
destination register.

Encoding T1 ARMvV7-M
AND{S}<c> <Rd>,<Rn>,#<const>

1514131211109 8 7 6 5 4 3 2 1 0[1514131211109 8 7 6 5 4 3 2 1 0
1111 0[iJoJo 0oo00f[S[Rn 0] imm3 | Rd imm8

if Rd == '1111" && S == '1' then SEE TST (immediate);

d = UInt(Rd); n = UInt(Rn); setflags = (S == '1");

(imm32, carry) = ThumbExpandImm_C(i:imm3:imm8, APSR.C);

ifd==13 1] (d==158 S =="0") || n IN {13,15} then UNPREDICTABLE;

ARM DDI 0403E.b Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-199
ID120114 Non-Confidential

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

Assembler syntax

AND{S}<c><g> {<Rd>,} <Rn>, #<const>

where:

S If present, specifies that the instruction updates the flags. Otherwise, the instruction does not update
the flags.

<C><g> See Standard assembler syntax fields on page A7-175.

<Rd> Specifies the destination register. If <Rd> is omitted, this register is the same as <Rn>.

<Rn> Specifies the register that contains the first operand.

<const> Specifies the immediate value to be added to the value obtained from <Rn>. See Modified immediate

constants in Thumb instructions on page A5-137 for the range of permitted values.

The pre-UAL syntax AND<c>S is equivalent to ANDS<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
result = R[n] AND imm32;
R[d] = result;
if setflags then
APSR.N = result<31l>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged

Exceptions

None.

A7-200 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.9 AND (register)

AND (register) performs a bitwise AND of a register value and an optionally-shifted register value, and writes the
result to the destination register. It can optionally update the condition flags based on the result.

Encoding T1 All versions of the Thumb instruction set.
ANDS <Rdn>, <Rm> Outside IT block.
AND<c> <Rdn>, <Rm> Inside IT block.

1514131211109 8 7 6 5 4 3 2 1 0
010000[0000] Rm [Rdn

d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();
(shift_t, shift_n) = (SRType_LSL, 0);

Encoding T2 ARMv7-M
AND{S}<c>.W <Rd>,<Rn>,<Rm>{,<shift>}

1514131211109 8 7 6 5 4 3 2 1 0[1514131211109 8 7 6 5 4 3 2 1 0
1110 1/o 1o 00 0fs[Rn Jo] imm3 | Rd [imm2[type[Rm

if Rd == '1111' && S == '1' then SEE TST (register);

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1");

(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);

if d==13 || (d ==15&& S =="0") || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

ARM DDI 0403E.b Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-201
ID120114 Non-Confidential

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

Assembler syntax

AND{S}<c><g> {<Rd>,} <Rn>, <Rm> {,<shift>}

where:

S If present, specifies that the instruction updates the flags. Otherwise, the instruction does not update
the flags.

<C><g> See Standard assembler syntax fields on page A7-175.

<Rd> Specifies the destination register. If <Rd> is omitted, this register is the same as <Rn>.

<Rn> Specifies the register that contains the first operand.

<Rm> Specifies the register that is optionally shifted and used as the second operand.

<shift> Specifies the shift to apply to the value read from <Rm>. If <shift> is omitted, no shift is applied and

both encodings are permitted. If <shift> is specified, only encoding T2 is permitted. The possible
shifts and how they are encoded are described in Shifts applied to a register on page A7-180.

A special case is that if AND<c> <Rd>,<Rn>,<Rd> is written with <Rd> and <Rn> both in the range R0-R7, it will be
assembled using encoding T2 as though AND<c> <Rd>,<Rn> had been written. To prevent this happening, use the . W
qualifier.

The pre-UAL syntax AND<c>S is equivalent to ANDS<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
(shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
result = R[n] AND shifted;
R[d] = result;
if setflags then
APSR.N = result<31l>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged

Exceptions

None.

A7-202 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.10 ASR (immediate)

Arithmetic Shift Right (immediate) shifts a register value right by an immediate number of bits, shifting in copies
of its sign bit, and writes the result to the destination register. It can optionally update the condition flags based on

the result.

Encoding T1 All versions of the Thumb instruction set.

ASRS <Rd>, <Rm>, #<imm5> Outside IT block.
ASR<c> <Rd>,<Rm>,#<imm5> Inside IT block.

1514131211109 8 7 6 5 4 3 2 1 0
000[10] imm5 | Rm [Rd

d = UInt(Rd); m = UInt(Rm); setflags = !InITBlock();
(-, shift_n) = DecodeImmShift('10', imm5);

Encoding T2 ARMv7-M
ASR{S}<c>.W <Rd>,<Rm>,#<imm5>

1514131211109 8 7 6 5 4 3 2
1

0[1514131211109 8 7 6 5 4 3 2 1 0
1110 1o 1]o 0 1 ofs][H1 1

1
1 1) imm3 | Rd [imm2[1 0] Rm

d = UInt(Rd); m = UInt(Rm); setflags = (S == '1");
(-, shift_n) = DecodeImmShift('10', imm3:imm2);
if d IN {13,15} || m IN {13,15} then UNPREDICTABLE;

ARM DDI 0403E.b Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-203
ID120114 Non-Confidential

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

Assembler syntax

ASR{S}<c><g> <Rd>, <Rm>, #<imm5>

where:

S If present, specifies that the instruction updates the flags. Otherwise, the instruction does not update
the flags.

<C><g> See Standard assembler syntax fields on page A7-175.

<Rd> Specifies the destination register.

<Rm> Specifies the register that contains the first operand.

<imm5> Specifies the shift amount, in the range 1 to 32. See Shifts applied to a register on page A7-180.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
(result, carry) = Shift_C(R[m], SRType_ASR, shift_n, APSR.C);
R[d] = result;
if setflags then
APSR.N = result<3l>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged

Exceptions

None.

A7-204 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.11 ASR (register)

Arithmetic Shift Right (register) shifts a register value right by a variable number of bits, shifting in copies of its
sign bit, and writes the result to the destination register. The variable number of bits is read from the bottom byte of
a register. It can optionally update the condition flags based on the result.

Encoding T1 All versions of the Thumb instruction set.
ASRS <Rdn>,<Rm> Outside IT block.
ASR<c> <Rdn>,<Rm> Inside IT block.

1514131211109 8 7 6 5 4 3 2 1 0
010000[0100[] Rm [Rdn

d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();

Encoding T2 ARMvV7-M
ASR{S}<c>.W <Rd>,<Rn>,<Rm>

1514131211109 8 7 6 5 4 3 2 1 0151413121109 8 7 6 56 4 3 2 1 0
1111 1[0 1 ofo]1 0o[S] Rn 111 1] Rd JoJo o 0] Rm

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == "1");
if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-205
Non-Confidential

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

Assembler syntax

ASR{S}<c><g> <Rd>, <Rn>, <Rm>

where:

S If present, specifies that the instruction updates the flags. Otherwise, the instruction does not update
the flags.

<C><g> See Standard assembler syntax fields on page A7-175.

<Rd> Specifies the destination register.

<Rn> Specifies the register that contains the first operand.

<Rm> Specifies the register whose bottom byte contains the amount to shift by.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
shift_n = UInt(R[m]<7:0>);
(result, carry) = Shift_C(R[n], SRType_ASR, shift_n, APSR.C);
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged

Exceptions

None.

A7-206 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.712 B

Branch causes a branch to a target address.

Encoding T1 All versions of the Thumb instruction set.

B<c> <label> Not permitted in IT block.
151413121109 8 7 6 5 4 3 2 1 0

1101 cond imm8

if cond == '1110' then SEE UDF;

if cond == '1111' then SEE SVC;

imm32 = SignExtend(imm8:'Q', 32);

if InITBlock() then UNPREDICTABLE;

Encoding T2 All versions of the Thumb instruction set.

B<c> <label> Outside or last in IT block
1514131211109 8 7 6 5 4 3 2 1 0

1110 0] imm11

imm32 = SignExtend(immll:'Q', 32);

if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Encoding T3 ARMv7-M

B<c>.W <Tabel> Not permitted in IT block.
1514131211109 8 7 6 5 4 3 2 1 0(1514131211109 8 7 6 5 4 3 2 1 0
1111 0[s] cond imm6 1 0[s1]o]s2] imm11

if cond<3:1> == '111' then SEE "Related encodings";

imm32 = SignExtend(S:J2:J1:imm6:immll:'Q", 32);

if InITBlock() then UNPREDICTABLE;

Encoding T4 ARMv7-M

B<c>.W <label> Outside or last in IT block
1514131211109 8 7 6 5 4 3 2 1 0(1514131211109 8 7 6 56 4 3 2 1 0
1111 0][s] imm10 1 0[J1] 1]02] imm11

I1 = NOT(J1 EOR S); I2 = NOT(J2 EOR S); 1imm32 = SignExtend(S:I1:12:imml1Q:imm11:'Q", 32);

if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Related encodings See Branches and miscellaneous control on page A5-140.

ARM DDI 0403E.b Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-207

ID120114 Non-Confidential

A7 Instruction Details

A7.7 Alphabetical list of ARMv7-M Thumb instructions

Assembler syntax

B<c><g> <label>

where:

<C><0p>

<label>

Operation

See Standard assembler syntax fields on page A7-175.
Note

Encodings T1 and T3 are conditional in their own right, and do not require an IT instruction to make
them conditional.

For encodings T1 and T3, <c> is not permitted to be AL or omitted. The 4-bit encoding of the
condition is placed in the instruction and not in a preceding IT instruction, and the instruction is not
permitted to be in an IT block. As a result, encodings T1 and T2 are never both available to the
assembler, nor are encodings T3 and T4.

Specifies the label of the instruction that is to be branched to. The assembler calculates the required
value of the offset from the PC value of the B instruction to this label, then selects an encoding that
will set imm32 to that offset.

Permitted offsets are even numbers in the range -256 to 254 for encoding T1, -2048 to 2046 for
encoding T2, -1048576 to 1048574 for encoding T3, and -16777216 to 16777214 for encoding T4.

if ConditionPassed() then
EncodingSpecificOperations();
BranchWritePC(PC + imm32);

Exceptions

None.

A7-208

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.713 BFC

Bit Field Clear clears any number of adjacent bits at any position in a register, without affecting the other bits in the
register.

Encoding T1 ARMvV7-M
BFC<c> <Rd>,#<1sb>,#<width>

1514131211109 8 7 6 5 4 3 2
1

1 0[1514131211109 8 7 6 5 4 3 2 1 0
1111 0Jof1 1]o 1 1]of1 1 11

0] imm3 | Rd [imm2[0)] msb

d = UInt(Rd); msbit = UInt(msb); Tsbit = UInt(imm3:imm2);
if d IN {13,15} then UNPREDICTABLE;

Assembler syntax

BFC<c><g> <Rd>, #<1sb>, #<width>

where:

<C><g> See Standard assembler syntax fields on page A7-175.

<Rd> Specifies the destination register.

<1sb> Specifies the least significant bit that is to be cleared, in the range 0 to 31. This determines the
required value of Tshit.

<width> Specifies the number of bits to be cleared, in the range 1 to 32-<1sb>. The required value of msbit is
<Isb>+<width>-1.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
if msbit >= 1sbit then
R[{d]<msbit:Tsbit> = Replicate('Q', mshit-Tsbit+l);
// Other bits of R[d] are unchanged
else
UNPREDICTABLE;

Exceptions

None.

ARM DDI 0403E.b Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-209
ID120114 Non-Confidential

A7 Instruction Details

A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.714

BFI

Bit Field Insert copies any number of low order bits from a register into the same number of adjacent bits at any
position in the destination register.

Encoding T1 ARMvV7-M
BFI<c> <Rd>,<Rn>,#<1sb>,#<width>

1514131211109 8 7 6 5 4 3 2 1 0[1514131211109 8 7 6 5 4 3 2 1 0
1111 0Jof1 1]o 1 1]o] Rn 0] imm3 | Rd [imm2[0)] msb

if Rn == '1111"' then SEE BFC;

d = UInt(Rd); n = UInt(Rn); msbit = UInt(msb); Tsbit = UInt(imm3:imm2);
if d IN {13,15} || n == 13 then UNPREDICTABLE;

Assembler syntax

BFI<c><g> <Rd>, <Rn>, #<1sb>, #<width>

where:

<C><g> See Standard assembler syntax fields on page A7-175.

<Rd> Specifies the destination register.

<Rn> Specifies the source register.

<1sh> Specifies the least significant destination bit, in the range 0 to 31. This determines the required value
of Tsbhit.

<width> Specifies the number of bits to be copied, in the range 1-32-<1sb>. The required value of msbit is
<Isb>+<width>-1.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
if msbit >= 1sbit then
R[d]<msbit:1sbit> = R[n]<(msbit-Tsbit):0>;
// Other bits of R[d] are unchanged
else
UNPREDICTABLE;

Exceptions

None.

A7-210

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.715 BIC (immediate)

Bit Clear (immediate) performs a bitwise AND of a register value and the complement of an immediate value, and
writes the result to the destination register. It can optionally update the condition flags based on the result.

Encoding T1 ARMvV7-M
BIC{S}<c> <Rd>,<Rn>,#<const>

1514131211109 8 7 6 5 4 3 2 1 0151413121109 8 7 6 5 4 3 2 1 0
111 10[iJoJo oo 1[S[Rn 0] imm3 | Rd imm8

d = UInt(Rd); n = UInt(Rn); setflags = (S == '1");
(imm32, carry) = ThumbExpandImm_C(i:imm3:imm8, APSR.C);
if d IN {13,15} || n IN {13,15} then UNPREDICTABLE;

ARM DDI 0403E.b Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-211
ID120114 Non-Confidential

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

Assembler syntax

BIC{S}<c><g> {<Rd>,} <Rn>, #<const>

where:

S If present, specifies that the instruction updates the flags. Otherwise, the instruction does not update
the flags.

<C><g> See Standard assembler syntax fields on page A7-175.

<Rd> Specifies the destination register. If <Rd> is omitted, this register is the same as <Rn>.

<Rn> Specifies the register that contains the operand.

<const> Specifies the immediate value to be added to the value obtained from <Rn>. See Modified immediate

constants in Thumb instructions on page A5-137 for the range of permitted values.

The pre-UAL syntax BIC<c>S is equivalent to BICS<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
result = R[n] AND NOT(imm32);
R[d] = result;
if setflags then
APSR.N = result<31l>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged

Exceptions

None.

A7-212 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.16 BIC (register)

Bit Clear (register) performs a bitwise AND of a register value and the complement of an optionally-shifted register
value, and writes the result to the destination register. It can optionally update the condition flags based on the result.

Encoding T1 All versions of the Thumb instruction set.
BICS <Rdn>,<Rm> Outside IT block.
BIC<c> <Rdn>,<Rm> Inside IT block.

1514131211109 8 7 6 5 4 3 2 1 0
0100001110 Rm [Rdn

d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();
(shift_t, shift_n) = (SRType_LSL, 0);

Encoding T2 ARMv7-M
BIC{S}<c>.W <Rd>,<Rn>,<Rm>{,<shift>}

1514131211109 8 7 6 5 4 3 2 1 0[1514131211109 8 7 6 5 4 3 2 1 0
1110 1/o 1o 00 1[sS[Rn Jo] imm3 | Rd [imm2[type[Rm

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1");
(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);
if d IN {13,15} || n IN {13,215} || m IN {13,15} then UNPREDICTABLE;

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-213
Non-Confidential

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

Assembler syntax

BIC{S}<c><g> {<Rd>,} <Rn>, <Rm> {,<shift>}

where:

S If present, specifies that the instruction updates the flags. Otherwise, the instruction does not update
the flags.

<C><g> See Standard assembler syntax fields on page A7-175.

<Rd> Specifies the destination register. If <Rd> is omitted, this register is the same as <Rn>.

<Rn> Specifies the register that contains the first operand.

<Rm> Specifies the register that is optionally shifted and used as the second operand.

<shift> Specifies the shift to apply to the value read from <Rm>. If <shift> is omitted, no shift is applied and

both encodings are permitted. If <shift> is specified, only encoding T2 is permitted. The possible
shifts and how they are encoded are described in Shifts applied to a register on page A7-180.

The pre-UAL syntax BIC<c>S is equivalent to BICS<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
(shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
result = R[n] AND NOT(shifted);
R[d] = result;
if setflags then
APSR.N = result<3l>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged

Exceptions

None.

A7-214 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.717 BKPT

Breakpoint causes a DebugMonitor exception or a debug halt to occur depending on the configuration of the debug
support.

Note

BKPT is an unconditional instruction and executes as such both inside and outside an IT instruction block.

Encoding T1 ARMvV5T*, ARMv6-M, ARMv7-M M profile-specific behavior
BKPT #<imm8>

1514131211109 8 7 6 5 4 3 2 1 0
101 1[1 11 0] imm8

imm32 = ZeroExtend(imm8, 32);
// imm32 is for assembly/disassembly only and is ignored by hardware.

Assembler syntax

BKPT<qg>#<imm8>

where:

<q> See Standard assembler syntax fields on page A7-175.

<imm8> Specifies an 8-bit value that is stored in the instruction. This value is ignored by the ARM hardware,

but can be used by a debugger to store additional information about the breakpoint.

Operation

EncodingSpecificOperations();
BKPTInstrDebugEvent();

Exceptions

DebugMonitor.

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-215
Non-Confidential

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.718 BL

Branch with Link (immediate) calls a subroutine at a PC-relative address.

Encoding T1 All versions of the Thumb instruction set.
BL<c> <label> Outside or last in IT block

1514131211109 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0
1111 0[s] imm10 1 1]u1]1]92] imm11

I1 = NOT(J1 EOR S); 1I2 = NOT(J2 EOR S); 1imm32 = SignExtend(S:I1:I2:imm1@:imm11:'Q"', 32);
if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Assembler syntax

BL<c><g> <label>

where:

<C><g> See Standard assembler syntax fields on page A7-175.

<label> Specifies the label of the instruction that is to be branched to.
The assembler calculates the required value of the offset from the PC value of the BL instruction to
this label, then selects an encoding that will set imm32 to that offset. Permitted offsets are even
numbers in the range -16777216 to 16777214.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
next_instr_addr = PC;
LR = next_instr_addr<31:1> : '1l";
BranchWritePC(PC + imm32);

Exceptions

None.

Note

Before the introduction of Thumb-2 technology, J1 and J2 in encodings T1 and T2 were both 1, resulting in a smaller
branch range. The instruction could be executed as two separate 16-bit instructions, with the first instruction instrl
setting LR to PC + SignExtend(instrl<10:0>:'000000000000', 32) and the second instruction completing the
operation. It is not possible to split the BL instruction into two 16-bit instructions in ARMv6-M and ARMv7-M.

A7-216 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.719 BLX (register)

Branch with Link and Exchange calls a subroutine at an address and instruction set specified by a register.
ARMV7-M only supports the Thumb instruction set. An attempt to change the instruction execution state causes the
processor to take an exception on the instruction at the target address.

Encoding T1 ARMvV5T*, ARMv6-M, ARMv7-M
BLX<c> <Rm> Outside or last in IT block

1514131211109 8 7 6 5 4 3 2 1 0
01000 1[1 1[1] Rm]0)(0)(0)

m = UInt(Rm);

if m == 15 then UNPREDICTABLE;

if InITBlock() && !LastInITBlock() then UNPREDICTABLE;
Assembler syntax

BLX<c><q> <Rm>

where:

<C><g> See Standard assembler syntax fields on page A7-175.

<Rm> Specifies the register that contains the branch target address and instruction set selection bit.
Operation

if ConditionPassed() then
EncodingSpecificOperations();
target = R[m];
next_instr_addr = PC - 2;
LR = next_instr_addr<31:1> : '1l";
BLXWritePC(target);

Exceptions

UsageFault.

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-217
Non-Confidential

A7 Instruction Details

A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.20

BX

Branch and Exchange causes a branch to an address and instruction set specified by a register. ARMv7-M only
supports the Thumb instruction set. An attempt to change the instruction execution state causes the processor to take
an exception on the instruction at the target address.

BX can also be used for an exception return, see Exception return behavior on page B1-595.

Encoding T1 All versions of the Thumb instruction set.
BX<c> <Rm> Outside or last in IT block

1514131211109 8 7 6 5 4 3 2 1 0
01000 1[1 1]o] Rm]0)(0)(0)

m = UInt(Rm);
if InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Assembler syntax

BX<c><q> <Rm>

where:

<C><g> See Standard assembler syntax fields on page A7-175.

<Rm> Specifies the register that contains the branch target address and instruction set selection bit.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
BXWritePC(R[m]);

Exceptions

UsageFault.

A7-218

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.21 CBNZ, CBZ

Compare and Branch on Non-Zero and Compare and Branch on Zero compares the value in a register with zero,
and conditionally branches forward a constant value. They do not affect the condition flags.

Encoding T1 ARMvV7-M
(B{N}Z <Rn>,<label> Not permitted in IT block.

1514131211109 8 7 6 5 4 3 2 1 0
1.0 1 1fop[0o]i[1] imm5 | Rn

n = UInt(Rn); 1imm32 = ZeroExtend(i:imm5:'@", 32); nonzero = (op == '1');
if InITBlock() then UNPREDICTABLE;

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-219
Non-Confidential

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

Assembler syntax

CB{N}Z<g> <Rn>, <label>

where:

<q> See Standard assembler syntax fields on page A7-175.

<Rn> The first operand register.

<label> The label of the instruction that is to be branched to. The assembler calculates the required value of
the offset from the PC value of the CB{N}Z instruction to this label, then selects an encoding that will
set imm32 to that offset. Permitted offsets are even numbers in the range 0 to 126.

Operation

EncodingSpecificOperations();
if nonzero != IsZero(R[n]) then

BranchWritePC(PC + imm32);
Exceptions

None.

A7-220 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A7.7.22

CDP, CDP2

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

Coprocessor Data Processing tells a coprocessor to perform an operation that is independent of ARM registers and

memory.

If no coprocessor can execute the instruction, a UsageFault exception is generated.

Encoding T1 ARMv7-M

CDP<c> <coproc>,<opcl>,<CRd>,<CRn>, <CRm>, <opc2>

1514131211109 8 7 6 5 4 3 2 1

0

1514131211109 8 7 6 56 4 3 2 1 0

111 0[1 11 0] opct CRn CRd coproc | opc2 [0] CRm
cp = UInt(coproc);
Encoding T2 ARMvV7-M

(DP2<c> <coproc>,<opcl>,<CRd>,<CRn>, <CRm>, <opc2>

1514131211109 8 7 6 5 4 3 2 1

0

1514131211109 8 7 6 56 4 3 2 1 0

111 1[1 1 1 0] opct CRn

CRd coproc opc2 [0 CRm

cp = UInt(coproc);

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved.
Non-Confidential

A7-221

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

Assembler syntax

(DP{2}<c><g> <coproc>, #<opcl>, <CRd>, <CRn>, <CRm> {,#<opc2>}

where:

2 If specified, selects the opcO == 1 form of the encoding. If omitted, selects the opcO == 0 form.

<C><g> See Standard assembler syntax fields on page A7-175.

<coproc> Specifies the name of the coprocessor, and causes the corresponding coprocessor number to be
placed in the cp_num field of the instruction. The standard generic coprocessor names are p0-p15.

<opcl> Is a coprocessor-specific opcode, in the range 0 to 15.

<CRd> Specifies the destination coprocessor register for the instruction.

<CRn> Specifies the coprocessor register that contains the first operand.

<CRm> Specifies the coprocessor register that contains the second operand.

<opc2> Is a coprocessor-specific opcode in the range 0 to 7. If it is omitted, <opc2> is assumed to be 0.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
if !Coproc_Accepted(cp, ThisInstr()) then
GenerateCoprocessorException();
else
Coproc_InternalOperation(cp, ThisInstr());

Exceptions

UsageFault.

Notes

Coprocessor fields Only instruction bits<31:24>, bits<11:8>, and bit<4> are architecturally defined. The
remaining fields are recommendations.

A7-222 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.23 CLREX

Clear Exclusive clears the local record of the executing processor that an address has had a request for an exclusive
access.

Encoding T1 ARMvV7-M
CLREX<c>

1514131211109 8 7 6 5 4 3 2 1 0[1514131211109 8 7 6 5 4 3 2 1 0
11 1 1 0[o]1 1 1]Jo 1[1{nHnnM[1 oJojoJn o o 1 ofnlnln])

// No additional decoding required

Assembler syntax
CLREX<c><q>
where:

<C><g> See Standard assembler syntax fields on page A7-175.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
ClearExclusivelLocal(ProcessorID());

Exceptions

None.

ARM DDI 0403E.b Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-223
ID120114 Non-Confidential

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.24 CLz

Count Leading Zeros returns the number of binary zero bits before the first binary one bit in a value.

Encoding T1 ARMv7-M
CLZ<c> <Rd>,<Rm>

1514131211109 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5 4 3 2 1 0
1111 1[0 1 0[1]0 1 1 Rm [1111 Rd [1]o 0 0] Rm

if !Consistent(Rm) then UNPREDICTABLE;

d = UInt(Rd); m = UInt(Rm);

if d IN {13,15} || m IN {13,15} then UNPREDICTABLE;
Assembler syntax

CLZ<c><q> <Rd>, <Rm>

where:

<C><g> See Standard assembler syntax fields on page A7-175.

<Rd> Specifies the destination register.

<Rm> Specifies the register that contains the operand. Its number must be encoded twice in encoding T1,
in both the Rm and Rm2 fields.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
result = CountlLeadingZeroBits(R[m]);
R[d] = result<31:0>;

Exceptions

None.

A7-224 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.25 CMN (immediate)

Compare Negative (immediate) adds a register value and an immediate value. It updates the condition flags based
on the result, and discards the result.

Encoding T1 ARMvV7-M
CMN<c> <Rn>,#<const>

1514131211109 8 7 6 5 4 3 2 1 0151413121109 8 7 6 5 4 3 2 1 0
111 10[iJo[1 00 0[1] Rn o] imm3 [1 1 1 1 imm8

n = UInt(Rn); dimm32 = ThumbExpandImm(i:imm3:imm8);
if n == 15 then UNPREDICTABLE;

ARM DDI 0403E.b Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-225
ID120114 Non-Confidential

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

Assembler syntax

CMN<c><g> <Rn>, #<const>

where:

<C><g> See Standard assembler syntax fields on page A7-175.

<Rn> Specifies the register that contains the operand. This register is permitted to be the SP.

<const> Specifies the immediate value to be added to the value obtained from <Rn>. See Modified immediate
constants in Thumb instructions on page A5-137 for the range of permitted values.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
(result, carry, overflow) = AddwWithCarry(R[n], imm32, '0");
APSR.N = result<31>;

APSR.Z = IsZeroBit(result);
APSR.C = carry;
APSR.V = overflow;
Exceptions
None.
A7-226 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b

Non-Confidential ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.26 CMN (register)

Compare Negative (register) adds a register value and an optionally-shifted register value. It updates the condition
flags based on the result, and discards the result.

Encoding T1 All versions of the Thumb instruction set.
CMN<c> <Rn>, <Rm>

1514131211109 8 7 6 5 4 3 2 10
0100001011 Rm [Rn

n = UInt(Rn); m

= UInt(Rm);
(shift_t, shift_n) =

(SRType_LSL, 0);

Encoding T2 ARMv7-M
CMN<c>.W <Rn>,<Rm>{,<shift>}

1514131211109 8 7 6 5 4 3 2 1 0[1514131211109 8 7 6 5 4 3 2 1 0
1110 1fo 1[1 00 0[1] Rn [0 imm3 1 1 1 1[imm2[type[Rm

n = UInt(Rn); m = UInt(Rm);
(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);
if n == 15 || m IN {13,15} then UNPREDICTABLE;

ARM DDI 0403E.b Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. AT7-227
ID120114 Non-Confidential

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

Assembler syntax

(MN<c><g> <Rn>, <Rm> {,<shift>}

where:

<C><g> See Standard assembler syntax fields on page A7-175.

<Rn> Specifies the register that contains the first operand. This register is permitted to be the SP.

<Rm> Specifies the register that is optionally shifted and used as the second operand.

<shift> Specifies the shift to apply to the value read from <Rm>. If <shift> is omitted, no shift is applied and
both encodings are permitted. If <shift> is specified, only encoding T2 is permitted. The possible
shifts and how they are encoded are described in Shifis applied to a register on page A7-180.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
shifted = Shift(R[m], shift_t, shift_n, APSR.C);
(result, carry, overflow) = AddwithCarry(R[n], shifted, '0');
APSR.N = result<3l>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
APSR.V = overflow;

Exceptions

None.

A7-228 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.27 CMP (immediate)

Compare (immediate) subtracts an immediate value from a register value. It updates the condition flags based on
the result, and discards the result.

Encoding T1 All versions of the Thumb instruction set.
CMP<c> <Rn>, #<imm8>

1514131211109 8 7 6 5 4 3 2 1 0
00 1[0 1] Rn imm8

n = UInt(Rn); 1imm32 = ZeroExtend(imm8, 32);
Encoding T2 ARMvV7-M

CMP<c>.W <Rn>, #<const>

1514131211109 8 7 6 5 4 3 2 1 0[1514131211109 8 7 6 56 4 3 2 1 0
111 10[ilo]J1 10 1[1] Rn of imm3 [1 1 1 1 imm8

n = UInt(Rn); imm32 = ThumbExpandImm(i:imm3:imm8);
if n == 15 then UNPREDICTABLE;

ARM DDI 0403E.b Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-229
ID120114 Non-Confidential

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

Assembler syntax

CMP<c><g> <Rn>, #<const>

where:

<C><g> See Standard assembler syntax fields on page A7-175.

<Rn> Specifies the register that contains the operand. This register is permitted to be the SP.

<const> Specifies the immediate value to be added to the value obtained from <Rn>. The range of permitted
values is 0-255 for encoding T1. See Modified immediate constants in Thumb instructions on
page A5-137 for the range of permitted values for encoding T2.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
(result, carry, overflow) = AddwithCarry(R[n], NOT(imm32), '1');
APSR.N = result<3l>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
APSR.V = overflow;

Exceptions

None.

A7-230 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.28 CMP (register)

Compare (register) subtracts an optionally-shifted register value from a register value. It updates the condition flags
based on the result, and discards the result.

Encoding T1 All versions of the Thumb instruction set.
CMP<c> <Rn>, <Rm> <Rn> and <Rm> both from RO-R7

1514131211109 8 7 6 5 4 3 2 10
0100001010 Rm [Rn

n = UInt(Rn); m

= UInt(Rm);
(shift_t, shift_n) =

(SRType_LSL, 0);

Encoding T2 All versions of the Thumb instruction set.
(MP<c> <Rn>,<Rm> <Rn> and <Rm> not both from R0O-R7

1514131211109 8 7 6 5 4 3 2 1 0
01000 1[0 1[N[Rm [Rn

n = UInt(N:Rn); m = UInt(Rm);

(shift_t, shift_n) = (SRType_LSL, 0);

if n < 8 & m < 8 then UNPREDICTABLE;

if n == 15 || m == 15 then UNPREDICTABLE;

Encoding T3 ARMv7-M
(MP<c>.W <Rn>, <Rm> {,<shift>}

1514131211109 8 7 6 5 4 3 2 1 0[1514131211109 8 7 6 5 4 3 2 1 0
1110 1[0 1[1 10 1[1] Rn O] imm3 [1 1 1 1]imm2[type[Rm

n = UInt(Rn); m
(shift_t, shift_n

= UInt(Rm);
)
ifn==151| mIN

U
= DecodeImmShift(type, imm3:imm2);
{13,15} then UNPREDICTABLE;

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-231
Non-Confidential

A7 Instruction Details

A7.7 Alphabetical list of ARMv7-M Thumb instructions

Assembler syntax

(MP<c><@> <Rn>, <Rm> {,<shift>}

where:

<C><0p>

<Rn>

<Rm>

<shift>

Operation

See Standard assembler syntax fields on page A7-175.
Specifies the register that contains the first operand. The SP can be used.

Specifies the register that is optionally shifted and used as the second operand. The SP can be used,
but use of the SP is deprecated.

Specifies the shift to apply to the value read from <Rm>. If <shift> is omitted, no shift is applied and
all encodings are permitted. If shift is specified, only encoding T3 is permitted. The possible shifts
and how they are encoded are described in Shifts applied to a register on page A7-180.

if ConditionPassed() then
EncodingSpecificOperations();
shifted = Shift(R[m], shift_t, shift_n, APSR.C);
(result, carry, overflow) = AddwWithCarry(R[n], NOT(shifted), '1');

APSR.N = result<3l>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
APSR.V = overflow;
Exceptions
None.

A7-232

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A7.7.29 CPS

A7.7.30 CPY

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

Change Processor State. The instruction modifies the PRIMASK and FAULTMASK special-purpose register
values.

Encoding T1 ARMv6-M, ARMv7-M Enhanced functionality in ARMv7-M.
CPS<effect> <iflags> Not permitted in IT block.

1514131211109 8 7 6 5 4 3 2 10
101 1[0 1 1 0o 1 1[mfo)Jo)!I][F

Note

CPS is a system level instruction with ARMv7-M specific behavior. For the complete instruction definition see CPS
on page B5-731.

Copy is a pre-UAL synonym for MOV (register).

Assembler syntax
CPY <Rd>, <Rn>
This is equivalent to:

MOV <Rd>, <Rn>

Exceptions

None.

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-233
Non-Confidential

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.31 DBG

Debug Hint provides a hint to debug trace support and related debug systems. See debug architecture documentation
for what use (if any) is made of this instruction.

This is a NOP-compatible hint. See NOP-compatible hints on page A7-183 for general hint behavior.

Encoding T1 ARMvV7-M
DBG<c> #<option>

1514131211109 8 7 6 5 4 3 2 1 0[1514131211109 8 7 6 5 4 3 2 1 0
11 1 1 0[of1 1 1]Jo 1[0 @M1 ofo]ofoJo o of1 1 1 1] option

// Any decoding of 'option' is specified by the debug system

Assembler syntax

DBG<c><g> #<option>

where:

<C><g> See Standard assembler syntax fields on page A7-175.

<option> Provides extra information about the hint, and is in the range 0 to 15.
Operation

if ConditionPassed() then
EncodingSpecificOperations();
Hint_Debug(option);

Exceptions

None.

A7-234 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A7.7.32 DMB

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

Data Memory Barrier acts as a memory barrier. It ensures that all explicit memory accesses that appear in program
order before the DMB instruction are observed before any explicit memory accesses that appear in program order after
the DMB instruction. It does not affect the ordering of any other instructions executing on the processor.

Encoding T1 ARMv6-M, ARMv7-M
DMB<c> #<option>

1514131211109 8 7 6 5 4 3 2 1 0[1514131211109 8 7 6 5 4 3 2 1 0
11 1 1 0[of[1 1 1]Jo 1[1|nHn@M[1 ofo]of)y)()[o 1 0 1] option

// No additional decoding required

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-235
Non-Confidential

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

Assembler syntax

DMB<c><q> {<opt>}

where:

<C><g> See Standard assembler syntax fields on page A7-175.

<opt> Specifies an optional limitation on the DMB operation.
Sy DMB operation ensures ordering of all accesses, encoded as option =="1111". Can be

omitted.

All other encodings of option are reserved. The corresponding instructions execute as system (SY)
DMB operations, but software must not rely on this behavior.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
DataMemoryBarrier(option);

Exceptions

None.

A7-236 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A7.7.33 DSB

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

Data Synchronization Barrier acts as a special kind of memory barrier. No instruction in program order after this
instruction can execute until this instruction completes. This instruction completes only when both:

. Any explicit memory access made before this instruction is complete
. The side-effects of any SCS access that performs a context-altering operation are visible.
Note

See Synchronization requirements for System Control Space updates on page A3-95 for more information about
synchronization of SCS updates.

Encoding T1 ARMv6-M, ARMv7-M
DSB<c> #<option>

1514131211109 8 7 6 5 4 3 2 1 0[1514131211109 8 7 6 5 4 3 2 1 0
111 1 0[o]1 1 1]o 1]t @@1 ofo]of)y)o 1 0 of option

// No additional decoding required

Assembler syntax

DSB<c><q> {<opt>}

where:

<C><g> See Standard assembler syntax fields on page A7-175.

<opt> Specifies an optional limitation on the DSB operation. Values are:
SY DSB operation ensures completion of all accesses, encoded as option =="1111". Can be

omitted.

All other encodings of option are reserved. The corresponding instructions execute as system (SY)
DSB operations, but software must not rely on this behavior.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
DataSynchronizationBarrier(option);

Exceptions

None.

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-237
Non-Confidential

A7 Instruction Details

A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.34 EOR (immediate)

Exclusive OR (immediate) performs a bitwise Exclusive OR of a register value and an immediate value, and writes
the result to the destination register. It can optionally update the condition flags based on the result.

Encoding T1 ARMvV7-M
EOR{S}<c> <Rd>,<Rn>,#<const>

1514131211109 8 7 6 5 4 3 2 1 0151413121109 8 7 6 5 4 3 2 1 0
111 10[iJoJo 1 00[S[Rn 0] imm3 | Rd imm8

if Rd == '1111" && S == '1' then SEE TEQ (immediate);

d = UInt(Rd); n = UInt(Rn); setflags = (S == '1");

(imm32, carry) = ThumbExpandImm_C(i:imm3:imm8, APSR.C);

ifd==13 1] (d==158 S =="0") || n IN {13,15} then UNPREDICTABLE;

Assembler syntax

EOR{S}<c><g> {<Rd>,} <Rn>, #<const>

where:

S If present, specifies that the instruction updates the flags. Otherwise, the instruction does not update
the flags.

<C><g> See Standard assembler syntax fields on page A7-175.

<Rd> Specifies the destination register. If <Rd> is omitted, this register is the same as <Rn>.

<Rn> Specifies the register that contains the operand.

<const> Specifies the immediate value to be added to the value obtained from <Rn>. See Modified immediate

constants in Thumb instructions on page A5-137 for the range of permitted values.

The pre-UAL syntax EOR<c>S is equivalent to EORS<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
result = R[n] EOR imm32;
R[d] = result;
if setflags then
APSR.N = result<31l>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged

Exceptions

None.

A7-238

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.35 EOR (register)

Exclusive OR (register) performs a bitwise Exclusive OR of a register value and an optionally-shifted register value,
and writes the result to the destination register. It can optionally update the condition flags based on the result.

Encoding T1 All versions of the Thumb instruction set.
EORS <Rdn>, <Rm> Outside IT block.
EOR<c> <Rdn>, <Rm> Inside IT block.

1514131211109 8 7 6 5 4 3 2 1 0
010000[000 1 Rm | Rdn

d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();
(shift_t, shift_n) = (SRType_LSL, 0);

Encoding T2 ARMv7-M
EOR{S}<c>.W <Rd>,<Rn>,<Rm>{,<shift>}

1514131211109 8 7 6 5 4 3 2 1 0[1514131211109 8 7 6 5 4 3 2 1 0
1110 1/o 1o 1 0 0[S[Rn Jo] imm3 | Rd [imm2[type[Rm

if Rd == '1111' && S == '1' then SEE TEQ (register);

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1");

(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);

if d==13 || (d ==15&& S =="0") || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

ARM DDI 0403E.b Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-239
ID120114 Non-Confidential

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

Assembler syntax

EOR{S}<c><g> {<Rd>,} <Rn>, <Rm> {,<shift>}

where:

S If present, specifies that the instruction updates the flags. Otherwise, the instruction does not update
the flags.

<C><g> See Standard assembler syntax fields on page A7-175.

<Rd> Specifies the destination register. If <Rd> is omitted, this register is the same as <Rn>.

<Rn> Specifies the register that contains the first operand.

<Rm> Specifies the register that is optionally shifted and used as the second operand.

<shift> Specifies the shift to apply to the value read from <Rm>. If <shift> is omitted, no shift is applied and

both encodings are permitted. If <shift> is specified, only encoding T2 is permitted. The possible
shifts and how they are encoded are described in Shifts applied to a register on page A7-180.

A special case is that if EOR<c> <Rd>,<Rn>,<Rd> is written with <Rd> and <Rn> both in the range R0-R7, it will be
assembled using encoding T2 as though EOR<c> <Rd>,<Rn> had been written. To prevent this happening, use the . W
qualifier.

The pre-UAL syntax EOR<c>S is equivalent to EORS<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
(shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
result = R[n] EOR shifted;
R[d] = result;
if setflags then
APSR.N = result<31l>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged

Exceptions

None.

A7-240 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A7.7.36 ISB

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

Instruction Synchronization Barrier flushes the pipeline in the processor, so that all instructions following the ISB
are fetched from cache or memory after the instruction has completed. It ensures that the effects of context altering
operations, such as those resulting from read or write accesses to the system control space (SCS), that completed

before the ISB instruction are visible to the instructions fetched after the ISB.

Note

See Synchronization requirements for System Control Space updates on page A3-95 for more information about
synchronization of SCS updates.

In addition, the ISB instruction ensures that any branches that appear in program order after it are always written into
the branch prediction logic with the context that is visible after the ISB instruction. This is required to ensure correct
execution of the instruction stream.

Encoding T1 ARMv6-M, ARMv7-M
ISB<c> {#<option>}

1514131211109 8 7 6 5 4 3 2 1 0[1514131211109 8 7 6 5 4 3 2 1 0
111 1 0[o]1 1 1]o 1]t @1 ofo]ofmy@) o 1 1 o] option

if InITBlock() then UNPREDICTABLE;

Assembler syntax

ISB<c><g> {<opt>}

where:

<C><g> See Standard assembler syntax fields on page A7-175.

<opt> Specifies an optional limitation on the ISB operation. Permitted values are:
SY Full system ISB operation, encoded as option =="'1111". Can be omitted.
All other encodings of option are RESERVED. The corresponding instructions execute as full system
ISB operations, but should not be relied upon by software.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
InstructionSynchronizationBarrier(option);

Exceptions

None.

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-241
Non-Confidential

A7 Instruction Details

A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.37 IT

If Then makes up to four following instructions (the /7 block) conditional. The conditions for the instructions in the

IT block can be the same, or some of them can be the inverse of others.

IT does not affect the condition code flags. Branches to any instruction in the IT block are not permitted, apart from

those performed by exception returns.

16-bit instructions in the IT block, other than CMP, CMN, and TST, do not set the condition code flags. The AL condition

can be specified to get this changed behavior without conditional execution.

Encoding T1 ARMvV7-M

IT{x{y{z}}} <firstcond> Not permitted in IT block

1514131211109 8 7 6 5 4 3 2 1 0
10 1 1[1 1 1 1] firstcond mask

if mask == '0000' then SEE "Related encodings";

if firstcond == "1111" || (firstcond == '1110' && BitCount(mask) != 1) then UNPREDICTABLE;

if InITBlock() then UNPREDICTABLE;

Related encodings See If-Then, and hints on page A5-133.

Assembler syntax

IT{x{y{z}}}<g> <firstcond>

where:

<> Specifies the condition for the second instruction in the IT block.

<y> Specifies the condition for the third instruction in the IT block.

<z> Specifies the condition for the fourth instruction in the IT block.

<> See Standard assembler syntax fields on page A7-175.

<firstcond> Specifies the condition for the first instruction in the IT block.

Each of <x>, <y>, and <z> can be either:

T Then. The condition attached to the instruction is <firstcond>.

E Else. The condition attached to the instruction is the inverse of <firstcond>. The condition code is
the same as <firstcond>, except that the least significant bit is inverted. E must not be specified if
<firstcond> is AL.

Table A7-3 shows how the values of <x>, <y>, and <z> determine the value of the mask field.

Table A7-3 Determination of maska field
<x> <y> <z> mask[3] mask[2] mask[1] mask[0]
omitted omitted omitted 1 0 0 0
T omitted omitted firstcond[0] 1 0 0
E omitted omitted NOT firstcond[0] 1 0 0
T T omitted firstcond[0] firstcond[0] 1 0
E T omitted NOT firstcond[0] firstcond[0] 1 0
T E omitted firstcond[0] NOT firstcond[0] 1 0

AT7-242 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b

Non-Confidential ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

Table A7-3 Determination of maska field (continued)

<Xx> <y> <z> mask[3] mask[2] mask[1] mask[0]
E E omitted NOT firstcond[0] NOT firstcond[0] 1 0
T T T firstcond[0] firstcond[0] firstcond[0] 1
E T T NOT firstcond[0] firstcond[0] firstcond[0] 1
T E T firstcond[0] NOT firstcond[0] firstcond[0] 1
E E T NOT firstcond[0] NOT firstcond[0] firstcond[0] 1
T T E firstcond[0] firstcond[0] NOT firstcond[0] 1
E T E NOT firstcond[0] firstcond[0] NOT firstcond[0] 1
T E E firstcond[0] NOT firstcond[0] NOT firstcond[0] 1
E E E NOT firstcond[0] NOT firstcond[0] = NOT firstcond[0] 1
a. Inany mask, at least one bit must be 1.
See also /TSTATE on page A7-177.
Operation
EncodingSpecificOperations();
ITSTATE.IT<7:0> = firstcond:mask;
Exceptions
None.
ARM DDI 0403E.b Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-243

ID120114

Non-Confidential

A7 Instruction Details

A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.38 LDC, LDC2 (immediate)
Load Coprocessor loads memory data from a sequence of consecutive memory addresses to a coprocessor. If no
coprocessor can execute the instruction, an UsageFault exception is generated.
This is a generic coprocessor instruction. Some of the fields have no functionality defined by the architecture and
are free for use by the coprocessor instruction set designer. These fields are the D bit, the CRd field, and in the
Unindexed addressing mode only, the immS§ field.
Encoding T1 ARMvV7-M
LDC{L}<c> <coproc>,<CRd>, [<Rn>{,#+/-<imm>}]
LDC{L}<c> <coproc>,<CRd>, [<Rn>,#+/-<imm>]!
LDC{L}<c> <coproc>,<CRd>, [<Rn>],#+/-<imm>
LDC{L}<c> <coproc>,<CRd>,[<Rn>],<option>
1514131211109 8 7 6 5 4 3 2 1 0(1514131211109 8 7 6 5 4 3 2 1 0
11 1 0[1 1 o]P[u[D]W[1] Rn CRd coproc imm8
if Rn == '1111"' then SEE LDC (literal);
if P=="0"8 U=="0" 8 D == '0' & W == '0"' then UNDEFINED;
ifP=="0"8& U=="0" & D == "1l' & W == '0" then SEE MRRC, MRRC2;
n = UInt(Rn); cp = UInt(coproc); 1imm32 = ZeroExtend(imm8:'00', 32);
index = (P == "1"); add = (U=="1"); wback = (W=="1");
Encoding T2 ARMvV7-M
LDC2{L}<c> <coproc>,<CRd>, [<Rn>{,#+/-<imm>}]
LDC2{L}<c> <coproc>,<CRd>, [<Rn>,#+/-<imm>]!
LDC2{L}<c> <coproc>,<CRd>, [<Rn>],#+/-<imm>
LDC2{L}<c> <coproc>,<CRd>, [<Rn>],<option>
1514131211109 8 7 6 5 4 3 2 1 0(1514131211109 8 7 6 5 4 3 2 1 0
111 1)1 1 o|[PJU[D[W[1] Rn CRd coproc imm8
if Rn == '1111"' then SEE LDC (literal);
if P=="0"8& U=="0" & D == '0' & W == '0"' then UNDEFINED;
if P=="0"8& U=="0"&& D == '1l' & W == '0" then SEE MRRC, MRRC2;
n = UInt(Rn); cp = UInt(coproc); 1imm32 = ZeroExtend(imm8:'00', 32);
index = (P == '1"); add = (U =="1"); whack = (W=="1");
A7-244 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b

Non-Confidential

ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

Assembler syntax

LDC{2}{L}<c><qg> <coproc>,<CRd>, [<Rn>{,#+/-<imm>}] Offset. P=1, W=0.

LDC{2}{L}<c><q> <coproc>,<CRd>, [<Rn>,#+/-<imm>]! Pre-indexed. P=1, W =1.

LDC{2}{L}<c><q> <coproc>,<CRd>,[<Rn>],#+/-<imm> Post-indexed. P=0, W= 1.

LDC{2}{L}<c><g> <coproc>,<CRd>, [<Rn>],<option> Unindexed. P=0, W=0,U=1.

where:

L If specified, selects the D == 1 form of the encoding. If omitted, selects the D == 0 form.

<C><g> See Standard assembler syntax fields on page A7-175.

<coproc> The name of the coprocessor. The standard generic coprocessor names are p0-p15.

<CRd> The coprocessor destination register.

<Rn> The base register. This register is permitted to be the SP or PC.

+/- Is + or omitted if the immediate offset is to be added to the base register value (add == TRUE), or — if
it is to be subtracted (add == FALSE). #0 and #-0 generate different instructions.

<imm> The immediate offset applied to the value of <Rn> to form the address. Permitted values are multiples
of 4 in the range 0-1020. For the offset addressing syntax, <imm> can be omitted, meaning an offset
of +0.

<option> An additional instruction option to the coprocessor. An integer in the range 0-255 enclosed in { }.

Encoded in imm8.

The pre-UAL syntax LDC<csL is equivalent to LDCL<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
if !Coproc_Accepted(cp, ThisInstr()) then

else

Exceptions

GenerateCoprocessorException();

offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
address = if index then offset_addr else R[n];

Coproc_SendLoadedWord(MemA[address,4], cp, ThisInstr()); address = address + 4;
until Coproc_DonelLoading(cp, ThisInstr());
if wback then R[n] = offset_addr;

UsageFault, MemManage, BusFault.

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-245
Non-Confidential

A7 Instruction Details

A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.39 LDC, LDC2 (literal)
Load Coprocessor loads memory data from a sequence of consecutive memory addresses to a coprocessor. If no
coprocessor can execute the instruction, a UsageFault exception is generated.
This is a generic coprocessor instruction. The D bit and the CRd field have no functionality defined by the
architecture and are free for use by the coprocessor instruction set designer.
Encoding T1 ARMv7-M
LDC{L}<c> <coproc>,<CRd>,Tabel
LDC{L}<c> <coproc>,<CRd>, [PC,#-0] Special case LDC{L}<c> <coproc>,<CRd>, [PC],<option>
1514131211109 8 7 6 5 4 3 2 1 0(1514131211109 8 7 6 56 4 3 2 1 0
111 0[1 1 o]PJu[D|W[1]1 1 1 1] CRd | coproc | imm8
if P=="0"8& U=="0" & D == '0' & W == '0"' then UNDEFINED;
if P=="0"8 U=="0" & D == "1' & W == '0" then SEE MRRC, MRRC2;
index = (P == '1"); // Always TRUE in the Thumb instruction set
add = (U =="1"); cp = UInt(coproc); imm32 = ZeroExtend(imm8:'00', 32);
if W=="1" || P =="0" then UNPREDICTABLE;
Encoding T2 ARMv7-M
LDC2{L}<c> <coproc>,<CRd>, Tabel
LDC2{L}<c> <coproc>,<CRd>, [PC,#-0] Special case LDC{L}<c> <coproc>,<CRd>, [PC],<option>
1514131211109 8 7 6 5 4 3 2 1 0(1514131211109 8 7 6 56 4 3 2 1 0
11 1 1[1 1 o|[PJu[D|W[1]1 1 1 1] CRd | coproc | imm8
if P=="0"8& U=="0" & D == '0' & W == '0" then UNDEFINED;
if P=="0"8 U=="0" & D == '1l' & W == '@" then SEE MRRC, MRRC2;
index = (P == '1"); // Always TRUE in the Thumb instruction set
add = (U =="1"); cp = UInt(coproc); imm32 = ZeroExtend(imm8:'00', 32);
if W=="1" || P=="0" then UNPREDICTABLE;
A7-246 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b

Non-Confidential

ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

Assembler syntax

LDC{2}{L}<c><q> <coproc>,<CRd>,Tabel Normal form withP=1, W=0

LDC{2}{L}<c><q> <coproc>,<CRd>, [PC,#-0] Alternative form withP=1, W=0

where:

L If specified, selects the D == 1 form of the encoding. If omitted, selects the D == 0 form.

<C><g> See Standard assembler syntax fields on page A7-175.

<coproc> The name of the coprocessor. The standard generic coprocessor names are pO-p15.

<CRd> The coprocessor destination register.

<label> The label of the literal data item that is to be loaded into <Rt>. The assembler calculates the required

value of the offset from the PC value of this instruction to the label. Permitted values of the offset
are multiples of 4 in the range -1020 to 1020.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE.
If the offset is negative, imm32 is equal to minus the offset and add == FALSE.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be specified
separately, including permitting a subtraction of 0 that cannot be specified using the normal syntax. For more
information, see Use of labels in UAL instruction syntax on page A4-102.

The pre-UAL syntax LDC<c>L is equivalent to LDCL<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
if !Coproc_Accepted(cp, ThisInstr()) then
GenerateCoprocessorException();

else

offset_addr = if add then (Align(PC,4) + imm32) else (Align(PC,4) - imm32);
address = if index then offset_addr else Align(PC,4);

repeat

Coproc_SendLoadedWord(MemA[address,4], cp, ThisInstr()); address = address + 4;
until Coproc_Doneloading(cp, ThisInstr());

Exceptions

UsageFault, MemManage, BusFault.

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. AT7-247
Non-Confidential

A7 Instruction Details

A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.40 LDM, LDMIA, LDMFD

Load Multiple loads multiple registers from consecutive memory locations using an address from a base register.
The sequential memory locations start at this address, and the address just above the last of those locations can
optionally be written back to the base register.

The registers loaded can include the PC. If they do, the word loaded for the PC is treated as a branch address or an
exception return value. Bit<0> complies with the ARM architecture interworking rules for branches to Thumb state
execution and must be 1. If bit<0> is 0, a UsageFault exception occurs.

Encoding T1 All versions of the Thumb instruction set.
LDM<c> <Rn>!,<registers> <Rn> not included in <registers>
LDM<c> <Rn>,<registers> <Rn> included in <registers>

1514131211109 8 7 6 56 4 3 2 10
110 0[1] Rn] register_list

n = UInt(Rn); registers = '00000000':register_list; whack = (registers<n> == '0");
if BitCount(registers) < 1 then UNPREDICTABLE;

Encoding T2 ARMv7-M
LDM<c>.W <Rn>{!},<registers>

1514131211109 8 7 6 5 4 3 2 1 0151413121109 8 7 6 56 4 3 2 1 0
1110 1[0 0fJo 1 oJw[1] Rn P [Mm]0)] register_list

if W=="1" & Rn == '1101' then SEE POP (Thumb);

n = UInt(Rn); registers = P:M:'0':register_Tist; whack = (W == "1");

if n == 15 || BitCount(registers) <2 || (P == "1" & M == '1') then UNPREDICTABLE;
if registers<15> == '1' & InITBlock() && !LastInITBlock() then UNPREDICTABLE;

if wback & registers<n> == '1' then UNPREDICTABLE;

A7-248

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

Assembler syntax

LDM<c><g> <Rn>{!}, <registers>

where:
<C><0>

<Rn>

<registers>

See Standard assembler syntax fields on page A7-175.

The base register. If it is the SP and ! is specified, the instruction is treated as described in
POP on page A7-348.

Causes the instruction to write a modified value back to <Rn>. If ! is omitted, the instruction
does not change <Rn> in this way.

Is a list of one or more registers to be loaded, separated by commas and surrounded by
{ and }. The lowest-numbered register is loaded from the lowest memory address, through
to the highest-numbered register from the highest memory address. If the PC is specified in
the register list, the instruction causes a branch to the address (data) loaded into the PC.

Encoding T2 does not support a list containing only one register. If an LDMIA instruction with
just one register <Rt> in the list is assembled to Thumb and encoding T1 is not available, it
is assembled to the equivalent LDR<c><q> <Rt>, [<Rn>]{,#4} instruction.

The SP cannot be in the list.

If the PC is in the list, the LR must not be in the list and the instruction must either be outside
an IT block or the last instruction in an IT block.

LDMIA and LDMFD are pseudo-instructions for LDM. LDMFD refers to its use for popping data from Full Descending stacks.

The pre-UAL syntaxes LDM<c>IA and LDM<c>FD are equivalent to LDM<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();

address = R[n];

for i =0 to 14

if registers<i> == '1' then

R[i1] = MemA[address,4]; address = address + 4;

if registers<l5> == 'l' then
LoadWritePC(MemA[address,4]);

if wback && registers<n> == '@' then R[n] = R[n] + 4«BitCount(registers);

Exceptions

UsageFault, MemManage, BusFault.

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-249

Non-Confidential

A7 Instruction Details

A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.41 LDMDB, LDMEA

Load Multiple Decrement Before (Load Multiple Empty Ascending) loads multiple registers from sequential
memory locations using an address from a base register. The sequential memory locations end just below this
address, and the address of the first of those locations can optionally be written back to the base register.

The registers loaded can include the PC. If they do, the word loaded for the PC is treated as a branch address or an
exception return value. Bit<0> complies with the ARM architecture interworking rules for branches to Thumb state
execution and must be 1. If bit<0> is 0, a UsageFault exception occurs.

Encoding T1 ARMv7-M
LDMDB<c> <Rn>{!},<registers>

1514131211109 8 7 6 5 4 3 2 1 0[1514131211109 8 7 6 56 4 3 2 1 0
1110 1[0 0]1 0 OJwW[1] Rn P [Mm]0)] register_list

n = UInt(Rn); registers = P:M:'0':register_Tist; whack = (W == "1");

if n == 15 || BitCount(registers) <2 || (P == "1l"'" & M == '1") then UNPREDICTABLE;
if registers<15> == '1' && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

if whack && registers<n> == '1' then UNPREDICTABLE;

A7-250

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

Assembler syntax

LDMDB<c><qg>

where:
<C><0>
<Rn>

<registers>

<Rn>{!}, <registers>

See Standard assembler syntax fields on page A7-175.
The base register. The SP can be used.

Causes the instruction to write a modified value back to <Rn>. Encoded as W = 1.

If ! is omitted, the instruction does not change <Rn> in this way. Encoded as W = 0.

Is a list of one or more registers, separated by commas and surrounded by { and }. It specifies the
set of registers to be loaded. The registers are loaded with the lowest-numbered register from the
lowest memory address, through to the highest-numbered register from the highest memory address.
If the PC is specified in the register list, the instruction causes a branch to the address (data) loaded
into the PC.

Encoding T1 does not support a list containing only one register. If an LDMDB instruction with just
one register <Rt> in the list is assembled to Thumb, it is assembled to the equivalent LDR<c><g>
<Rt>, [<Rn>,#-4]{!} instruction.

The SP cannot be in the list.

If the PC is in the list, the LR must not be in the list and the instruction must either be outside an IT
block or the last instruction in an IT block.

LDMEA is a pseudo-instruction for LDMDB, referring to its use for popping data from Empty Ascending stacks.

The pre-UAL syntaxes LDM<c>DB and LDM<c>EA are equivalent to LDMDB<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
address = R[n] - 4xBitCount(registers);

for i = 0 to 14
if registers<i> == '1' then

R[i1] = MemA[address,4]; address = address + 4;

if registers<15> == 'l' then
LoadWritePC(MemA[address,4]);

if wback && registers<n> == 'Q' then R[n] = R[n] - 4«BitCount(registers);

Exceptions

UsageFault, MemManage, BusFault.

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-251
Non-Confidential

A7 Instruction Details

A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.42 LDR (immediate)

Load Register (immediate) calculates an address from a base register value and an immediate offset, loads a word
from memory, and writes it to a register. It can use offset, post-indexed, or pre-indexed addressing. See Memory
accesses on page A7-182 for information about memory accesses.

The register loaded can be the PC. If it is, the word loaded for the PC is treated as a branch address or an exception
return value. Bit<0> complies with the ARM architecture interworking rules for branches to Thumb state execution
and must be 1. If bit<0> is 0, a UsageFault exception occurs.

Encoding T1 All versions of the Thumb instruction set.
LDR<c> <Rt>, [<Rn>{,#<imm5>}]

1514131211109 8 7 6 56 4 3 2 1 0
0 1 1]0oJ1] imm5 | Rn Rt

t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm5:'00', 32);
index = TRUE; add = TRUE; wback = FALSE;

Encoding T2 All versions of the Thumb instruction set.
LDR<c> <Rt>, [SP{,#<imm8>}]

1514131211109 8 7 6 5 4 3 2 1 0
100 1[1] Rt | imm8

t = UInt(Rt); n = 13; 1imm32 = ZeroExtend(imm8:'00', 32);
index = TRUE; add = TRUE; wback = FALSE;

Encoding T3 ARMv7-M
LDR<c>.W <Rt>, [<Rn>{,#<imm12>}]

1514131211109 8 7 6 5 4 3 2 1 0[1514131211109 8 7 6 5 4 3 2 1 0
1111 1[0 ofo[1]1 of1] Rn Rt | imm12

if Rn == '1111"' then SEE LDR (literal);
t = UInt(Rt); n = UInt(Rn); dimm32 = ZeroExtend(imml2, 32); index = TRUE; add = TRUE;
wback = FALSE; if t == 15 && InITBlock() && !'LastInITBlock() then UNPREDICTABLE;

Encoding T4 ARMv7-M
LDR<c> <Rt>, [<Rn>,#-<imm8>]
LDR<c> <Rt>, [<Rn>],#+/-<imm8>
LDR<c> <Rt>, [<Rn>,#+/-<imm8>]!

1514131211109 8 7 6 5 4 3 2 1 0151413121109 8 7 6 5 4 3 2 1 0
111 1 1[0 oJo[o]1 of1] Rn Rt [1]PJulw] imm8

if Rn == '1111" then SEE LDR (Titeral);

if P=="1"8& U == "1" & W == 'Q' then SEE LDRT;

if Rn == '1101" && P == '0' & U == "1"' & W == '1' && imm8 == '00000100' then SEE POP;
if P=="0" & W == '0' then UNDEFINED;

t = UInt(Rt); n = UInt(Rn);

imm32 = ZeroExtend(imm8, 32); index = (P == '1l'); add = (U == "1"); wback = (W=="1");
if (wback & n == t) || (t == 15 && InITBlock() && 'LastInITBlock()) then UNPREDICTABLE;

A7-252

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

Assembler syntax

LDR<c><g> <Rt>, [<Rn> {, #+/-<imm>}] Offset: index==TRUE, whack==FALSE

LDR<c><g> <Rt>, [<Rn>, #+/-<imm>]! Pre-indexed: index==TRUE, wback==TRUE

LDR<c><q> <Rt>, [<Rn>], #+/-<imm> Post-indexed: index==FALSE, whack==TRUE

where:

<C><g> See Standard assembler syntax fields on page A7-175.

<Rt> Specifies the destination register. This register is permitted to be the SP. It is also permitted to be the
PC, provided the instruction is either outside an IT block or the last instruction of an IT block. If it
is the PC, it causes a branch to the address (data) loaded into the PC.

<Rn> Specifies the base register. This register is permitted to be the SP. If this register is the PC, see LDR
(literal) on page A7-254.

+/- Is + or omitted to indicate that the immediate offset is added to the base register value (add == TRUE),
or — to indicate that the offset is to be subtracted (add == FALSE). Different instructions are generated
for #0 and #-0.

<imm> Specifies the immediate offset added to or subtracted from the value of <Rn> to form the address.
Permitted values are multiples of 4 in the range 0-124 for encoding T1, multiples of 4 in the range
0-1020 for encoding T2, any value in the range 0-4095 for encoding T3, and any value in the range
0-255 for encoding T4. For the offset addressing syntax, <imm> can be omitted, meaning an offset of
0.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
address = if index then offset_addr else R[n];
data = MemU[address,4];
if wback then R[n] = offset_addr;
if t == 15 then
if address<1:0> == '00' then LoadWritePC(data); else UNPREDICTABLE;

else

R[t] = data;

Exceptions

UsageFault, MemManage, BusFault.

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-253
Non-Confidential

A7 Instruction Details

A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.43 LDR (literal)

Load Register (literal) calculates an address from the PC value and an immediate offset, loads a word from memory,
and writes it to a register. See Memory accesses on page A7-182 for information about memory accesses.

The register loaded can be the PC. If it is, the word loaded for the PC is treated as a branch address or an exception
return value. Bit<0> complies with the ARM architecture interworking rules for branches to Thumb state execution
and must be 1. If bit<0> is 0, a UsageFault exception occurs.

Encoding T1 All versions of the Thumb instruction set.
LDR<c> <Rt>,<label>

1514131211109 8 7 6 56 4 3 2 10
0100 1] Rt imm8

t = UInt(Rt); 1imm32 = ZeroExtend(imm8:'00', 32); add = TRUE;

Encoding T2 ARMv7-M
LDR<c>.W <Rt>,<label>
LDR<c>.W <Rt>, [PC,#-0] Special case

1514131211109 8 7 6 5 4 3 2 1 0[1514131211109 8 7 6 56 4 3 2 1 0
11 1 1 1[0 oJoJu]1 of1]1 1 1 1 Rt | imm12

t = UInt(Rt); 1imm32 = ZeroExtend(imml2, 32); add = (U == '1');
if t == 15 & InITBlock() && !LastInITBTock() then UNPREDICTABLE;

A7-254

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

Assembler syntax

LDR<c><q> <Rt>, <label> Normal form

LDR<c><q> <Rt>, [PC, #+/-<imm>] Alternative form
where:
<C><g> See Standard assembler syntax fields on page A7-175.

<Rt> The destination register. The SP can be used. The PC can be used, provided the instruction is either
outside an IT block or the last instruction of an IT block. If the PC is used, the instruction branches
to the address (data) loaded into the PC.

<label> The label of the literal data item that is to be loaded into <Rt>. The assembler calculates the required
value of the offset from the PC value of this instruction to the label. Permitted values of the offset
are:

Encoding T1 multiples of four in the range 0 to 1020
Encoding T2 any value in the range -4095 to 4095.
If the offset is zero or positive, imm32 is equal to the offset and add == TRUE.

If the offset is negative, imm32 is equal to minus the offset and add == FALSE. Negative offset is not
available in encoding T1.

Note

In code examples in this manual, the syntax =<value> is used for the label of a memory word whose
contents are constant and equal to <value>. The actual syntax for such a label is
assembler-dependent.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be specified
separately, including permitting a subtraction of 0 that cannot be specified using the normal syntax. For more
information, see Use of labels in UAL instruction syntax on page A4-102.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
base = Align(PC,4);
address = if add then (base + imm32) else (base - imm32);
data = MemU[address,4];
if t == 15 then
if address<1:0> == '00' then LoadWritePC(data); else UNPREDICTABLE;
else
R[t] = data;

Exceptions

UsageFault, MemManage, BusFault.

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-255
Non-Confidential

A7 Instruction Details

A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.44

LDR (register)

Load Register (register) calculates an address from a base register value and an offset register value, loads a word
from memory, and writes it to a register. The offset register value can be shifted left by 0, 1, 2, or 3 bits. See Memory
accesses on page A7-182 for information about memory accesses.

The register loaded can be the PC. If it is, the word loaded for the PC is treated as a branch address or an exception
return value. Bit<0> complies with the ARM architecture interworking rules for branches to Thumb state execution
and must be 1. If bit<0> is 0, a UsageFault exception occurs.

Encoding T1
LDR<c> <Rt>, [<Rn>,<Rm>]

1514131211109 8 7 6 5 4 3 2 1 0

010 1]100] Rm | Rn | Rt

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; whback = FALSE;
(shift_t, shift_n) = (SRType_LSL, 0);

Encoding T2 ARMv7-M
LDR<c>.W <Rt>, [<Rn>,<Rm>{,LSL #<imm2>}]

1514131211109 8 7 6 56 4 3 2 1 0

All versions of the Thumb instruction set.

1514131211109 8 7 6 56 4 3 2 1 0

11 1 1 1[0 oJoJo]1 o[1] Rn

Rt Jo[o 0 0 0 Of]mm2] Rm

if Rn == '1111" then SEE LDR (Titeral);

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
(shift_t, shift_n) = (SRType_LSL, UInt(imm2));
if m IN {13,15} then UNPREDICTABLE;

if t == 15 && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

A7-256

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved.

Non-Confidential

ARM DDI 0403E.b

ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

Assembler syntax

LDR<c><g> <Rt>, [<Rn>, <Rm> {, LSL #<shift>}]

where:

<C><g> See Standard assembler syntax fields on page A7-175.

<Rt> Specifies the destination register. This register is permitted to be the SP. It is also permitted to be the
PC, provided the instruction is either outside an IT block or the last instruction of an IT block. If it
is the PC, it causes a branch to the address (data) loaded into the PC.

<Rn> Specifies the register that contains the base value. This register is permitted to be the SP.

<Rm> Contains the offset that is shifted left and added to the value of <Rn> to form the address.

<shift> Specifies the number of bits the value from <Rm> is shifted left, in the range 0-3. If this option is
omitted, a shift by 0 is assumed and both encodings are permitted. If this option is specified, only
encoding T2 is permitted.

Operation

if ConditionPassed() then

EncodingSpecificOperations();
offset = Shift(R[m], shift_t, shift_n, APSR.C);
offset_addr = if add then (R[n] + offset) else (R[n] - offset);
address = if index then offset_addr else R[n];
data = MemU[address,4];
if wback then R[n] = offset_addr;
if t == 15 then
if address<1:0> == '00' then LoadWritePC(data); else UNPREDICTABLE;
else
R[t] = data;

Exceptions

UsageFault, MemManage, BusFault.

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-257
Non-Confidential

A7 Instruction Details

A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.45 LDRB (immediate)
Load Register Byte (immediate) calculates an address from a base register value and an immediate offset, loads a
byte from memory, zero-extends it to form a 32-bit word, and writes it to a register. It can use offset, post-indexed,
or pre-indexed addressing. See Memory accesses on page A7-182 for information about memory accesses.
Encoding T1 All versions of the Thumb instruction set.
LDRB<c> <Rt>, [<Rn>{,#<imm5>}]
1514131211109 8 7 6 5 4 3 2 1 0
01 1[1]1] imm5 | Rn Rt
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm5, 32);
index = TRUE; add = TRUE; wback = FALSE;
Encoding T2 ARMvV7-M
LDRB<c>.W <Rt>, [<Rn>{,#<imm12>}]
1514131211109 8 7 6 5 4 3 2 1 0151413121109 8 7 6 5 4 3 2 1 0
11 1 1 1[0 oJo[1]o o[1] Rn Rt imm12
if Rt == '1111' then SEE PLD;
if Rn == '1111' then SEE LDRB (literal);
t = UInt(Rt); n = UInt(Rn); dimm32 = ZeroExtend(imml2, 32);
index = TRUE; add = TRUE; wback = FALSE;
if t == 13 then UNPREDICTABLE;
Encoding T3 ARMv7-M
LDRB<c> <Rt>, [<Rn>,#-<imm8>]
LDRB<c> <Rt>, [<Rn>],#+/-<imm8>
LDRB<c> <Rt>, [<Rn>,#+/-<imm8>]!
1514131211109 8 7 6 5 4 3 2 1 0151413121109 8 7 6 5 4 3 2 1 0
1111 1[0 oJoJoJo of1] Rn Rt [1]PJulw] imm8
if Rt == '1111" @& P == '"1"' & U == '0' & W == '0"' then SEE PLD (immediate);
if Rn == '1111' then SEE LDRB (Titeral);
if P=="1"8 U=="1" & W == '0"' then SEE LDRBT;
if P=="'0" & W == '0"' then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
index = (P == '1l"); add = (U=="1"); wback = (W=="1");
if t == 13 || (wback & n == t) then UNPREDICTABLE;
ift==158& (P=="0" || U=="1" || W=="1") then UNPREDICTABLE;
A7-258 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b

Non-Confidential

ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

Assembler syntax

LDRB<cC><0>
LDRB<c><0>
LDRB<c><g>

where:
<C><0>
<Rt>

<Rn>

+/-

<imm>

<Rt>, [<Rn> {, #+/-<imm>}] Offset: index==TRUE, wback==FALSE
<Rt>, [<Rn>, #+/-<imm>]! Pre-indexed: index==TRUE, whack==TRUE
<Rt>, [<Rn>], #+/-<imm> Post-indexed: index==FALSE, wback==TRUE

See Standard assembler syntax fields on page A7-175.
Specifies the destination register.

Specifies the base register. This register is permitted to be the SP. If this register is the PC, see LDRB
(literal) on page A7-260.

Is + or omitted to indicate that the immediate offset is added to the base register value (add == TRUE),
or — to indicate that the offset is to be subtracted (add == FALSE). Different instructions are generated
for #0 and #-0.

Specifies the immediate offset added to or subtracted from the value of <Rn> to form the address.
The range of permitted values is 0-31 for encoding T1, 0-4095 for encoding T2, and 0-255 for
encoding T3. For the offset addressing syntax, <imm> can be omitted, meaning an offset of 0.

The pre-UAL syntax LDR<c>B is equivalent to LDRB<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
address = if index then offset_addr else R[n];
R[t] = ZeroExtend(MemU[address,1], 32);
if wback then R[n] = offset_addr;

Exceptions

MemManage, BusFault.

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-259
Non-Confidential

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.46 LDRB (literal)

Load Register Byte (literal) calculates an address from the PC value and an immediate offset, loads a byte from
memory, zero-extends it to form a 32-bit word, and writes it to a register. See Memory accesses on page A7-182 for
information about memory accesses.

Encoding T1 ARMvV7-M
LDRB<c> <Rt>,<label>

LDRB<c> <Rt>, [PC,#-0] Special case

1514131211109 8 7 6 5 4 3 2
1

1 0[1514131211109 8 7 6 5 4 3 2 1 0
1111 1]o ofofuJo of1[1 1 11

Rt | imm12

if Rt == '1111"' then SEE PLD;
t = UInt(Rt); 1imm32 = ZeroExtend(imml2, 32); add = (U == '1");
if t == 13 then UNPREDICTABLE;

A7-260 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

Assembler syntax

LDRB<c><g> <Rt>, <label> Normal form

LDRB<c><g> <Rt>, [PC, #+/-<imm>] Alternative form

where:

<C><g> See Standard assembler syntax fields on page A7-175.

<Rt> The destination register.

<label> The label of the literal data item that is to be loaded into <Rt>. The assembler calculates the required

value of the offset from the PC value of this instruction to the label. Permitted values of the offset
are -4095 to 4095.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE.

If the offset is negative, imm32 is equal to minus the offset and add == FALSE.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be specified
separately, including permitting a subtraction of 0 that cannot be specified using the normal syntax. For more
information, see Use of labels in UAL instruction syntax on page A4-102.

The pre-UAL syntax LDR<c>B is equivalent to LDRB<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
base = Align(PC,4);
address = if add then (base + imm32) else (base - imm32);
R[t] = ZeroExtend(MemU[address,1], 32);

Exceptions

MemManage, BusFault.

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-261
Non-Confidential

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.47 LDRB (register)

Load Register Byte (register) calculates an address from a base register value and an offset register value, loads a
byte from memory, zero-extends it to form a 32-bit word, and writes it to a register. The offset register value can be
shifted left by 0, 1, 2, or 3 bits. See Memory accesses on page A7-182 for information about memory accesses.

Encoding T1 All versions of the Thumb instruction set.
LDRB<c> <Rt>, [<Rn>,<Rm>]

1514131211109 8 7 6 5 4 3 2 1 0
010 1]1 10 Rm | Rn | Rt

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, 0);

Encoding T2 ARMv7-M
LDRB<c>.W <Rt>,[<Rn>,<Rm>{,LSL #<imm2>}]

1514131211109 8 7 6 5 4 3 2 1 0[1514131211109 8 7 6 5 4 3 2 1 0
1111 1]o ofofoJo of1] Rn Rt [o]o 0 0 0 ofmm2] Rm

if Rt == '1111"' then SEE PLD;

if Rn == '1111"' then SEE LDRB (literal);

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, UInt(imm2));
if t == 13 || m IN {13,15} then UNPREDICTABLE;

A7-262 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

Assembler syntax

LDRB<c><g> <Rt>, [<Rn>, <Rm> {, LSL #<shift>}]

where:

<C><g> See Standard assembler syntax fields on page A7-175.

<Rt> The destination register.

<Rn> Specifies the register that contains the base value. This register is permitted to be the SP.

<Rm> Contains the offset that is shifted left and added to the value of <Rn> to form the address.
<shift> Specifies the number of bits the value from <Rm> is shifted left, in the range 0-3. If this option is

omitted, a shift by 0 is assumed and both encodings are permitted. If this option is specified, only
encoding T2 is permitted.

The pre-UAL syntax LDR<c>B is equivalent to LDRB<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
offset = Shift(R[m], shift_t, shift_n, APSR.C);
offset_addr = if add then (R[n] + offset) else (R[n] - offset);
address = if index then offset_addr else R[n];
R[t] = ZeroExtend(MemU[address,1],32);

Exceptions

MemManage, BusFault.

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-263
Non-Confidential

A7 Instruction Details

A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.48 LDRBT

Load Register Byte Unprivileged calculates an address from a base register value and an immediate offset, loads a
byte from memory, zero-extends it to form a 32-bit word, and writes it to a register. See Memory accesses on
page A7-182 for information about memory accesses. When privileged software uses an LDRBT instruction, the
memory access is restricted as if the software was unprivileged. See also Effect of MPU CTRL settings on
unprivileged instructions on page B3-694.

Encoding T1 ARMv7-M
LDRBT<c> <Rt>, [<Rn>,#<imm8>]

1514131211109 8 7 6 5 4 3 2 1 0151413121109 8 7 6 56 4 3 2 1 0
11 1 1 1[0 oJoJoJo o[1] Rn Rt J1]1 10 imm8

if Rn == '1111"' then SEE LDRB (literal);

t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
register_form = FALSE; 1imm32 = ZeroExtend(imm8, 32);

if t IN {13,15} then UNPREDICTABLE;

A7-264

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

Assembler syntax

LDRBT<c><g> <Rt>, [<Rn> {, #<imm>}]

where:

<C><g> See Standard assembler syntax fields on page A7-175.

<Rt> Specifies the destination register.

<Rn> Specifies the base register. This register is permitted to be the SP.

<imm> Specifies the immediate offset added to the value of <Rn> to form the address. The range of permitted

values is 0-255. <imm> can be omitted, meaning an offset of 0.

The pre-UAL syntax LDR<c>BT is equivalent to LDRBT<c>.

Operation
if ConditionPassed() then
EncodingSpecificOperations();
address = R[n] + imm32;
R[t] = ZeroExtend(MemU_unpriv[address,1],32);
Exceptions

MemManage, BusFault.

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-265
Non-Confidential

A7 Instruction Details

A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.49 LDRD (immediate)

Load Register Dual (immediate) calculates an address from a base register value and an immediate offset, loads two
words from memory, and writes them to two registers. It can use offset, post-indexed, or pre-indexed addressing.

See Memory accesses on page A7-182 for information about memory accesses.

Encoding T1 ARMvV7-M
LDRD<c> <Rt>,<Rt2>, [<Rn>{,#+/-<imm8>}]
LDRD<c> <Rt>,<Rt2>,[<Rn>],#+/-<imm8>
LDRD<c> <Rt>,<Rt2>,[<Rn>,#+/-<imm8>]!

1514131211109 8 7 6 56 4 3 2 1 0|1514131211109 8 7 6 5 4 3 2 1 0

1110 1o of[P[u[1]w[1] Rn Rt Rt2 imm8

if P=="0" & W == "0"' then SEE "Related encodings";

if Rn == '1111"' then SEE LDRD (literal);

t = UInt(Rt); t2 = UInt(Rt2); n = UInt(Rn); imm32 = ZeroExtend(imm8:'00', 32);
index = (P == "'1"); add = (U=="1"); wback = (W=="1");

if wback & (n ==t || n == t2) then UNPREDICTABLE;

if t IN {13,15} || t2 IN {13,15} || t == t2 then UNPREDICTABLE;

Related encodings See Load/store dual or exclusive, table branch on page A5-143

A7-266

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved.
Non-Confidential

ARM DDI 0403E.b
ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

Assembler syntax

LDRD<c><q> <Rt>,<Rt2>, [<Rn>{,#+/-<imm>}] Offset: index==TRUE, wback==FALSE

LDRD<c><q> <Rt>,<Rt2>, [<Rn>,#+/-<imm>]! Pre-indexed: index==TRUE, wback==TRUE

LDRD<c><g> <Rt>,<Rt2>,[<Rn>],#+/-<imm> Post-indexed: index==FALSE, wback==TRUE

where:

<C><g> See Standard assembler syntax fields on page A7-175.

<Rt> Specifies the first destination register.

<Rt2> Specifies the second destination register.

<Rn> Specifies the base register. This register is permitted to be the SP. In the offset addressing form of
the syntax, it is also permitted to be the PC.

+/- Is + or omitted to indicate that the immediate offset is added to the base register value (add == TRUE),
or — to indicate that the offset is to be subtracted (add == FALSE). Different instructions are generated
for #0 and #-0.

<imm> Specifies the immediate offset added to or subtracted from the value of <Rn> to form the address.

Permitted values are multiples of 4 in the range 0-1020. For the offset addressing syntax, <imm> can
be omitted, meaning an offset of 0.

The pre-UAL syntax LDR<c>D is equivalent to LDRD<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
address = if index then offset_addr else R[n];
R[t] = MemA[address,4];
R[t2] = MemA[address+4,4];
if wback then R[n] = offset_addr;

Exceptions

UsageFault, MemManage, BusFault.

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-267
Non-Confidential

A7 Instruction Details

A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.50 LDRD (literal)

Load Register Dual (literal) calculates an address from the PC value and an immediate offset, loads two words from
memory, and writes them to two registers. See Memory accesses on page A7-182 for information about memory
accesses.

Note
For the M profile, the PC value must be word-aligned, otherwise the behavior of the instruction is UNPREDICTABLE.

Encoding T1 ARMvV7-M
LDRD<c> <Rt>,<Rt2>,<label>
LDRD<c> <Rt>,<Rt2>, [PC,#-0] Special case

1514131211109 8 7 6 5 4 3 2
1

1 0[1514131211109 8 7 6 5 4 3 2 1 0
1110 1]o ofPuft]w[1]1 1 11

Rt [R2 | imm8

if P=="0" & W == '0Q' then SEE "Related encodings";

t = UInt(Rt); t2 = UInt(Rt2);

imm32 = ZeroExtend(imm8:'00', 32); add = (U == "1");

if t IN {13,15} || t2 IN {13,15} || t == t2 then UNPREDICTABLE;
if W == "1" then UNPREDICTABLE;

Related encodings See Load/store dual or exclusive, table branch on page A5-143

A7-268

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

Assembler syntax

LDRD<c><g> <Rt>, <Rt2>, <label> Normal form

LDRD<c><q> <Rt>, <Rt2>, [PC, #+/-<imm>] Alternative form

where:

<C><g> See Standard assembler syntax fields on page A7-175.

<Rt> The first destination register.

<Rt2> The second destination register.

<label> The label of the literal data item that is to be loaded into <Rt>. The assembler calculates the required

value of the offset from the PC value of this instruction to the label. Permitted values of the offset
are multiples of 4 in the range -1020 to 1020.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE.
If the offset is negative, imm32 is equal to minus the offset and add == FALSE.
The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be specified

separately, including permitting a subtraction of 0 that cannot be specified using the normal syntax. For more
information, see Use of labels in UAL instruction syntax on page A4-102.

The pre-UAL syntax LDR<c>D is equivalent to LDRD<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
if PC<1:0> != '00' then UNPREDICTABLE;
address = if add then (PC + imm32) else (PC - imm32);
R[t] = MemA[address,4];
R[t2] = MemA[address+4,4];

Exceptions

MemManage, BusFault.

ARM DDI 0403E.b Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-269
ID120114 Non-Confidential

A7 Instruction Details

A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.51 LDREX

Load Register Exclusive calculates an address from a base register value and an immediate offset, loads a word from
memory, writes it to a register and:

. If the address has the Shareable Memory attribute, marks the physical address as exclusive access for the
executing processor in a global monitor.

. Causes the executing processor to indicate an active exclusive access in the local monitor.

See Memory accesses on page A7-182 for information about memory accesses.

Encoding T1 ARMv7-M
LDREX<c> <Rt>, [<Rn>{,#<imm8>}]

1514131211109 8 7 6 5 4 3 2 1 0[1514131211109 8 7 6 5 4 3 2 1 0
1110 1[0 oJo[oJ1]o[1] Rn Rt)1 (1)) imms8

t = UInt(Rt); n = UInt(Rn); dimm32 = ZeroExtend(imm8:'00', 32);
if t IN {13,15} || n == 15 then UNPREDICTABLE;

Assembler syntax

LDREX<c><g> <Rt>, [<Rn> {,#<imm>}]

where:

<C><g> See Standard assembler syntax fields on page A7-175.

<Rt> Specifies the destination register.

<Rn> Specifies the base register. This register is permitted to be the SP.

<imm> Specifies the immediate offset added to the value of <Rn> to form the address. Permitted values are
multiples of 4 in the range 0-1020. <imm> can be omitted, meaning an offset of 0.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
address = R[n] + imm32;
SetExclusiveMonitors(address,4);
R[t] = MemA[address,4];

Exceptions

UsageFault, MemManage, BusFault.

A7-270

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.52 LDREXB

Load Register Exclusive Byte derives an address from a base register value, loads a byte from memory, zero-extends
it to form a 32-bit word, writes it to a register and:

. If the address has the Shareable Memory attribute, marks the physical address as exclusive access for the
executing processor in a global monitor.

. Causes the executing processor to indicate an active exclusive access in the local monitor.

See Memory accesses on page A7-182 for information about memory accesses.

Encoding T1 ARMvV7
LDREXB<c> <Rt>, [<Rn>]

151413 12 11 10
1110 1]o0

9 87 6 4 32 10|1514131211109 8 7 6 5 4 3 2 1 0
0011 1

| Rn Rt [@@mmo 1 0 ofhm)

5
0]

t = UInt(Rt); n = UInt(Rn);
if t IN {13,15} || n == 15 then UNPREDICTABLE;

Assembler syntax

LDREXB<c><g> <Rt>, [<Rn>]

where:

<C><g> See Standard assembler syntax fields on page A7-175.

<Rt> Specifies the destination register.

<Rn> Specifies the base register. This register is permitted to be the SP.
Operation

if ConditionPassed() then
EncodingSpecificOperations();
address = R[n];
SetExclusiveMonitors(address,1);
R[t] = ZeroExtend(MemA[address,1], 32);

Exceptions

MemManage, BusFault.

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-271
Non-Confidential

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.53 LDREXH

Load Register Exclusive Halfword derives an address from a base register value, loads a halfword from memory,
zero-extends it to form a 32-bit word, writes it to a register and:

. If the address has the Shareable Memory attribute, marks the physical address as exclusive access for the
executing processor in a global monitor.

. Causes the executing processor to indicate an active exclusive access in the local monitor.
See Memory accesses on page A7-182 for information about memory accesses.
Encoding T1 ARMv7

LDREXH<c> <Rt>, [<Rn>]

151413 12 11 10
1110 1]o0

9 87 6 4 32 10|1514131211109 8 7 6 5 4 3 2 1 0
0011 1

| Rn Rt ()@ lo 1 0 1))

5
0]

t = UInt(Rt); n = UInt(Rn);
if t IN {13,15} || n == 15 then UNPREDICTABLE;

A7-272 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

Assembler syntax

LDREXH<c><g> <Rt>, [<Rn>]

where:

<C><g> See Standard assembler syntax fields on page A7-175.

<Rt> Specifies the destination register.

<Rn> Specifies the base register. This register is permitted to be the SP.
Operation

if ConditionPassed() then
EncodingSpecificOperations();
address = R[n];
SetExclusiveMonitors(address,2);
R[t] = ZeroExtend(MemA[address,2], 32);

Exceptions

UsageFault, MemManage, BusFault.

ARM DDI 0403E.b Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-273
ID120114 Non-Confidential

A7 Instruction Details

A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.54 LDRH (immediate)
Load Register Halfword (immediate) calculates an address from a base register value and an immediate offset, loads
a halfword from memory, zero-extends it to form a 32-bit word, and writes it to a register. It can use offset,
post-indexed, or pre-indexed addressing. See Memory accesses on page A7-182 for information about memory
accesses.
Encoding T1 All versions of the Thumb instruction set.
LDRH<c> <Rt>, [<Rn>{,#<imm5>}]
1514131211109 8 7 6 5 4 3 2 1 0
100 0[1] imm5 | Rn Rt
t = UInt(Rt); n = UInt(Rn); 1imm32 = ZeroExtend(imm5:'0", 32);
index = TRUE; add = TRUE; wback = FALSE;
Encoding T2 ARMv7-M
LDRH<c>.W <Rt>, [<Rn>{,#<imm12>}]
1514131211109 8 7 6 5 4 3 2 1 0(1514131211109 8 7 6 5 4 3 2 1 0
111 1 1[0 oJo[1]o 1[1] Rn Rt imm12
if Rt == '1111"' then SEE PLD (immediate);
if Rn == '1111' then SEE LDRH (literal);
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imml2, 32);
index = TRUE; add = TRUE; wback = FALSE;
if t == 13 then UNPREDICTABLE;
Encoding T3 ARMv7-M
LDRH<c> <Rt>, [<Rn>,#-<imm8>]
LDRH<c> <Rt>, [<Rn>],#+/-<imm8>
LDRH<c> <Rt>, [<Rn>,#+/-<imm8>]!
1514131211109 8 7 6 5 4 3 2 1 0|1514131211109 8 7 6 5 4 3 2 1 0
11 1 1 1[0 oJoJoJo 1[1] Rn Rt [1]PJulw] imm8
if Rn == '1111' then SEE LDRH (literal);
if Rt == "1111' @& P == '1' & U == '0' && W == '@' then SEE PLD;
if P=="1"& U =="1" & W == '0"' then SEE LDRHT;
if P=="0" & W == '0' then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
index = (P == "1"); add = (U=="1"); wback = (W=="1");
if t==13 || (t ==158& W=="1") || (wback & n == t) then UNPREDICTABLE;
AT7-274 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b

Non-Confidential

ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

Assembler syntax

LDRH<c><0>
LDRH<c><0>
LDRH<c><g>

where:
<C><0>
<Rt>

<Rn>

+/-

<imm>

<Rt>, [<Rn> {, #+/-<imm>}] Offset: index==TRUE, wback==FALSE
<Rt>, [<Rn>, #+/-<imm>]! Pre-indexed: index==TRUE, whack==TRUE
<Rt>, [<Rn>], #+/-<imm> Post-indexed: index==FALSE, wback==TRUE

See Standard assembler syntax fields on page A7-175.
Specifies the destination register.

Specifies the base register. This register is permitted to be the SP. If this register is the PC, see LDRH
(literal) on page A7-276.

Is + or omitted to indicate that the immediate offset is added to the base register value (add == TRUE),
or — to indicate that the offset is to be subtracted (add == FALSE). Different instructions are generated
for #0 and #-0.

Specifies the immediate offset added to or subtracted from the value of <Rn> to form the address.
Permitted values are multiples of 2 in the range 0-62 for encoding T1, any value in the range 0-4095
for encoding T2, and any value in the range 0-255 for encoding T3. For the offset addressing syntax,
<imm> can be omitted, meaning an offset of 0.

The pre-UAL syntax LDR<c>H is equivalent to LDRH<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
address = if index then offset_addr else R[n];
data = MemU[address,2];
if wback then R[n] = offset_addr;
R[t] = ZeroExtend(data, 32);

Exceptions

UsageFault, MemManage, BusFault.

Unallocated memory hints

If the Rt field is '1111" in encoding T2, or if the Rt field and P, U, and W bits in encoding T3 are '1111','1", '0" and
'0" respectively, the instruction is an unallocated memory hint.

Unallocated memory hints must be implemented as NOPs. Software must not use them, and they therefore have no
UAL assembler syntax.

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-275
Non-Confidential

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.55 LDRH (literal)

Load Register Halfword (literal) calculates an address from the PC value and an immediate offset, loads a halfword
from memory, zero-extends it to form a 32-bit word, and writes it to a register. See Memory accesses on
page A7-182 for information about memory accesses.

Encoding T1 ARMvV7-M
LDRH<c> <Rt>,<label>

LDRH<c> <Rt>, [PC,#-0] Special case

1514131211109 8 7 6 5 4 3 2
1

1 0[1514131211109 8 7 6 5 4 3 2 1 0
1111 1]o ofofuJo 1]1]1 1 11

Rt | imm12

if Rt == '1111' then SEE PLD (literal);
t = UInt(Rt); 1imm32 = ZeroExtend(imml2, 32); add = (U == '1");
if t == 13 then UNPREDICTABLE;

A7-276 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

Assembler syntax

LDRH<c><g> <Rt>, <label> Normal form

LDRH<c><g> <Rt>, [PC, #+/-<imm>] Alternative form

where:

<C><g> See Standard assembler syntax fields on page A7-175.

<Rt> The destination register.

<label> The label of the literal data item that is to be loaded into <Rt>. The assembler calculates the required

value of the offset from the PC value of the ADR instruction to this label. Permitted values of the offset
are -4095 to 4095.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE.
If the offset is negative, imm32 is equal to minus the offset and add == FALSE.
The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be specified

separately, including permitting a subtraction of 0 that cannot be specified using the normal syntax. For more
information, see Use of labels in UAL instruction syntax on page A4-102.

The pre-UAL syntax LDR<c>H is equivalent to LDRH<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
base = Align(PC,4);
address = if add then (base + imm32) else (base - imm32);
data = MemU[address,2];
R[t] = ZeroExtend(data, 32);

Exceptions

UsageFault, MemManage, BusFault.

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-277
Non-Confidential

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.56

LDRH (register)

Load Register Halfword (register) calculates an address from a base register value and an offset register value, loads
a halfword from memory, zero-extends it to form a 32-bit word, and writes it to a register. The offset register value
can be shifted left by 0, 1, 2, or 3 bits. See Memory accesses on page A7-182 for information about memory

accesses.

Encoding T1 All versions of the Thumb instruction set.

LDRH<c> <Rt>, [<Rn>,<Rm>]

1514131211109 8 7 6 56 4 3 2 1 0
0101101 Rm | Rn | Rt

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; whback = FALSE;
(shift_t, shift_n) = (SRType_LSL, 0);

Encoding T2 ARMvV7-M
LDRH<c>.W <Rt>, [<Rn>,<Rm>{,LSL #<imm2>}]

1514131211109 8 7 6 56 4 3 2 1 0|1514131211109 8 7 6 5 4 3 2 1 0

111 1 1[0 oJoJoJo 1[1] Rn

Rt Jo[o 0 0 0 Of]mm2] Rm

if Rn == '1111"' then SEE LDRH (Titeral);

if Rt == '1111' then SEE "Related instructions";
t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, UInt(imm2));
if t == 13 || m IN {13,15} then UNPREDICTABLE;

A7-278

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved.

Non-Confidential

ARM DDI 0403E.b

ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

Assembler syntax

LDRH<c><g> <Rt>, [<Rn>, <Rm> {, LSL #<shift>}]

where:

<C><g> See Standard assembler syntax fields on page A7-175.

<Rt> The destination register.

<Rn> Specifies the register that contains the base value. This register is permitted to be the SP.

<Rm> Contains the offset that is shifted left and added to the value of <Rn> to form the address.
<shift> Specifies the number of bits the value from <Rm> is shifted left, in the range 0-3. If this option is

omitted, a shift by 0 is assumed and both encodings are permitted. If this option is specified, only
encoding T2 is permitted.

The pre-UAL syntax LDR<c>H is equivalent to LDRH<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
offset = Shift(R[m], shift_t, shift_n, APSR.C);
offset_addr = if add then (R[n] + offset) else (R[n] - offset);
address = if index then offset_addr else R[n];
data = MemU[address,2];
if wback then R[n] = offset_addr;
R[t] = ZeroExtend(data, 32);

Exceptions

UsageFault, MemManage, BusFault.

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-279
Non-Confidential

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.57 LDRHT

Load Register Halfword Unprivileged calculates an address from a base register value and an immediate offset,
loads a halfword from memory, zero-extends it to form a 32-bit word, and writes it to a register. See Memory
accesses on page A7-182 for information about memory accesses. When privileged software uses an LDRHT
instruction, the memory access is restricted as if the software was unprivileged. See also Effect of MPU CTRL
settings on unprivileged instructions on page B3-694.

Encoding T1 ARMv7-M
LDRHT<c> <Rt>, [<Rn>, #<imm8>]

1514131211109 8 7 6 5 4 3 2 1 0151413121109 8 7 6 56 4 3 2 1 0
11 1 1 1[0 oJoJoJo 1[1] Rn Rt J1]1 10 imm8

if Rn == '1111"' then SEE LDRH (literal);

t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
register_form = FALSE; 1imm32 = ZeroExtend(imm8, 32);

if t IN {13,15} then UNPREDICTABLE;

A7-280 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

Assembler syntax

LDRHT<c><g> <Rt>, [<Rn> {, #<imm>}]

where:

<C><g> See Standard assembler syntax fields on page A7-175.

<Rt> Specifies the destination register.

<Rn> Specifies the base register. This register is permitted to be the SP.

<imm> Specifies the immediate offset added to the value of <Rn> to form the address. The range of permitted
values is 0-255. <imm> can be omitted, meaning an offset of 0.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
address = R[n] + imm32;
data = MemU_unpriv[address,2];
R[t] = ZeroExtend(data, 32);

Exceptions

UsageFault, MemManage, BusFault.

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-281
Non-Confidential

A7 Instruction Details

A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.58 LDRSB (immediate)

Load Register Signed Byte (immediate) calculates an address from a base register value and an immediate offset,
loads a byte from memory, sign-extends it to form a 32-bit word, and writes it to a register. It can use offset,
post-indexed, or pre-indexed addressing. See Memory accesses on page A7-182 for information about memory
accesses.

Encoding T1 ARMvV7-M
LDRSB<c> <Rt>, [<Rn>,#<imml2>]

1514131211109 8 7 6 5 4 3 2 1 0[1514131211109 8 7 6 5 4 3 2 1 0
1111 1[0 of1][1]o 0o[1] Rn Rt imm12

if Rt == '1111' then SEE PLI;

if Rn == '1111' then SEE LDRSB (1iteral);

t = UInt(Rt); n = UInt(Rn); dimm32 = ZeroExtend(imml2, 32);
index = TRUE; add = TRUE; wback = FALSE;

if t == 13 then UNPREDICTABLE;

Encoding T2 ARMv7-M
LDRSB<c> <Rt>, [<Rn>,#-<imm8>]
LDRSB<c> <Rt>, [<Rn>],#+/-<imm8>
LDRSB<c> <Rt>, [<Rn>,#+/-<imm8>]!

1514131211109 8 7 6 5 4 3 2 1 0151413121109 8 7 6 56 4 3 2 1 0
1111 1[0 of]1]oJo 0[1] Rn Rt [1]PJulw] imm8

if Rt == '1111"' && P == '1' & U == '0' & W == '@' then SEE PLI;

if Rn == '1111"' then SEE LDRSB (1iteral);

if P=="1"8 U=="1" & W == '0"' then SEE LDRSBT;

if P=="'0" & W == '0"' then UNDEFINED;

t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);

index = (P == "1"); add = (U=="1"); wback = (W=="1");

if t==131]] (t==158& W=="1") || (wback & n == t) then UNPREDICTABLE;

A7-282

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

Assembler syntax

LDRSB<c><qg>
LDRSB<c><qg>
LDRSB<c><g>

where:
<C><0>
<Rt>

<Rn>

+/-

<imm>

<Rt>, [<Rn> {, #+/-<imm>}] Offset: index==TRUE, wback==FALSE
<Rt>, [<Rn>, #+/-<imm>]! Pre-indexed: index==TRUE, whack==TRUE
<Rt>, [<Rn>], #+/-<imm> Post-indexed: index==FALSE, wback==TRUE

See Standard assembler syntax fields on page A7-175.
Specifies the destination register.

Specifies the base register. This register is permitted to be the SP. If this register is the PC, see
LDRSB (literal) on page A7-284.

Is + or omitted to indicate that the immediate offset is added to the base register value (add == TRUE),
or — to indicate that the offset is to be subtracted (add == FALSE). Different instructions are generated
for #0 and #-0.

Specifies the immediate offset added to or subtracted from the value of <Rn> to form the address.
The range of permitted values is 0-4095 for encoding T1, and 0-255 for encoding T2. For the offset
addressing syntax, <imm> can be omitted, meaning an offset of 0.

The pre-UAL syntax LDR<c>SB is equivalent to LDRSB<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
address = if index then offset_addr else R[n];
R[t] = SignExtend(MemU[address,1], 32);
if wback then R[n] = offset_addr;

Exceptions

MemManage, BusFault.

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-283
Non-Confidential

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.59 LDRSB (literal)

Load Register Signed Byte (literal) calculates an address from the PC value and an immediate offset, loads a byte
from memory, sign-extends it to form a 32-bit word, and writes it to a register. See Memory accesses on
page A7-182 for information about memory accesses.

Encoding T1 ARMvV7-M
LDRSB<c> <Rt>,<label>

LDRSB<c> <Rt>, [PC,#-0] Special case

1514131211109 8 7 6 5 4 3 2
1

1 0[1514131211109 8 7 6 5 4 3 2 1 0
1111 1]o of1]uJo of1[1 1 11

Rt | imm12

if Rt == '1111"' then SEE PLI;
t = UInt(Rt); 1imm32 = ZeroExtend(imml2, 32); add = (U == '1");
if t == 13 then UNPREDICTABLE;

A7-284 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

Assembler syntax

LDRSB<c><qg>
LDRSB<c><qg>

where:
<C><0>
<Rt>

<label>

<Rt>, <label> Normal form
<Rt>, [PC, #+/-<imm>] Alternative form

See Standard assembler syntax fields on page A7-175.
The destination register.

The label of the literal data item that is to be loaded into <Rt>. The assembler calculates the required
value of the offset from the PC value of the ADR instruction to this label. Permitted values of the offset
are -4095 to 4095.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE.

If the offset is negative, imm32 is equal to minus the offset and add == FALSE.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be specified
separately, including permitting a subtraction of 0 that cannot be specified using the normal syntax. For more
information, see Use of labels in UAL instruction syntax on page A4-102.

The pre-UAL syntax LDR<c>SB is equivalent to LDRSB<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
base = Align(PC,4);
address = if add then (base + imm32) else (base - imm32);
R[t] = SignExtend(MemU[address,1], 32);

Exceptions

MemManage, BusFault.

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-285
Non-Confidential

A7 Instruction Details

A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.60

LDRSB (register)

Load Register Signed Byte (register) calculates an address from a base register value and an offset register value,
loads a byte from memory, sign-extends it to form a 32-bit word, and writes it to a register. The offset register value
can be shifted left by 0, 1, 2, or 3 bits. See Memory accesses on page A7-182 for information about memory

accesses.

Encoding T1
LDRSB<c> <Rt>, [<Rn>,<Rm>]

1514131211109 8 7 6 56 4 3 2 1 0

010 1J0o1 1] Rm | Rn | Rt

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; whback = FALSE;
(shift_t, shift_n) = (SRType_LSL, 0);

Encoding T2 ARMvV7-M
LDRSB<c>.W <Rt>, [<Rn>,<Rm>{,LSL #<imm2>}]

1514131211109 8 7 6 56 4 3 2 1 0

All versions of the Thumb instruction set.

1514131211109 8 7 6 56 4 3 2 1 0

1111 1[0 of]1]oJo o[1] Rn

Rt Jo[o 0 0 0 Of]mm2] Rm

if Rt == '1111' then SEE PLI;

if Rn == '1111' then SEE LDRSB (literal);

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, UInt(imm2));
if t == 13 || m IN {13,15} then UNPREDICTABLE;

A7-286

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved.

Non-Confidential

ARM DDI 0403E.b

ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

Assembler syntax

LDRSB<c><g> <Rt>, [<Rn>, <Rm> {, LSL #<shift>}]

where:

<C><g> See Standard assembler syntax fields on page A7-175.

<Rt> The destination register.

<Rn> Specifies the register that contains the base value. This register is permitted to be the SP.

<Rm> Contains the offset that is shifted left and added to the value of <Rn> to form the address.
<shift> Specifies the number of bits the value from <Rm> is shifted left, in the range 0-3. If this option is

omitted, a shift by 0 is assumed and both encodings are permitted. If this option is specified, only
encoding T2 is permitted.

The pre-UAL syntax LDR<c>SB is equivalent to LDRSB<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
offset = Shift(R[m], shift_t, shift_n, APSR.C);
offset_addr = if add then (R[n] + offset) else (R[n] - offset);
address = if index then offset_addr else R[n];
R[t] = SignExtend(MemU[address,1], 32);

Exceptions

MemManage, BusFault.

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-287
Non-Confidential

A7 Instruction Details

A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.61 LDRSBT

Load Register Signed Byte Unprivileged calculates an address from a base register value and an immediate offset,
loads a byte from memory, sign-extends it to form a 32-bit word, and writes it to a register. See Memory accesses
on page A7-182 for information about memory accesses. When privileged software uses an LDRSBT instruction, the
memory access is restricted as if the software was unprivileged. See also Effect of MPU CTRL settings on
unprivileged instructions on page B3-694.

Encoding T1 ARMv7-M
LDRSBT<c> <Rt>, [<Rn>, #<imm8>]

1514131211109 8 7 6 5 4 3 2 1 0151413121109 8 7 6 56 4 3 2 1 0
11 1 1 1[0 of]1]oJo 0o[1] Rn Rt J1]1 10 imm8

if Rn == '1111"' then SEE LDRSB (literal);

t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
register_form = FALSE; 1imm32 = ZeroExtend(imm8, 32);

if t IN {13,15} then UNPREDICTABLE;

A7-288

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

Assembler syntax

LDRSBT<c><g> <Rt>, [<Rn> {, #<imm>}]

where:

<C><g> See Standard assembler syntax fields on page A7-175.

<Rt> Specifies the destination register.

<Rn> Specifies the base register. This register is permitted to be the SP.

<imm> Specifies the immediate offset added to the value of <Rn> to form the address. The range of permitted
values is 0-255. <imm> can be omitted, meaning an offset of 0.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
address = R[n] + imm32;
R[t] = SignExtend(MemU_unpriv[address,1], 32);

Exceptions

MemManage, BusFault.

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-289
Non-Confidential

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.62 LDRSH (immediate)
Load Register Signed Halfword (immediate) calculates an address from a base register value and an immediate
offset, loads a halfword from memory, sign-extends it to form a 32-bit word, and writes it to a register. It can use
offset, post-indexed, or pre-indexed addressing. See Memory accesses on page A7-182 for information about
memory accesses.
Encoding T1 ARMvV7-M
LDRSH<c> <Rt>, [<Rn>,#<imm12>]
1514131211109 8 7 6 5 4 3 2 1 0(1514131211109 8 7 6 56 4 3 2 1 0
1111 1[0 of1][1]o 1[1] Rn Rt imm12
if Rn == "1111' then SEE LDRSH (Titeral);
if Rt == "1111' then SEE "Related instructions";
t = UInt(Rt); n = UInt(Rn); dimm32 = ZeroExtend(imml2, 32);
index = TRUE; add = TRUE; wback = FALSE;
if t == 13 then UNPREDICTABLE;
Encoding T2 ARMv7-M
LDRSH<c> <Rt>, [<Rn>,#-<imm8>]
LDRSH<c> <Rt>, [<Rn>],#+/-<imm8>
LDRSH<c> <Rt>, [<Rn>,#+/-<imm8>]!
1514131211109 8 7 6 5 4 3 2 1 0(1514131211109 8 7 6 56 4 3 2 1 0
111 1 1[0 of]1]oJo 1[1] Rn Rt [1]PJulw] imm8
if Rn == '1111"' then SEE LDRSH (literal);
if Rt == "1111' @& P == '1' & U == '0' & W == '@' then SEE "Related instructions";
if P=="1"8& U =="1" & W == '0"' then SEE LDRSHT;
if P=="0" & W == '0' then UNDEFINED;
t = UInt(Rt); n = UInt(Rn); imm32 = ZeroExtend(imm8, 32);
index = (P == '1"); add = (U=="1"); wback = (W=="1");
if t==13 || (t ==158 W=="1") || (wback & n == t) then UNPREDICTABLE;
A7-290 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b

Non-Confidential

ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

Assembler syntax

LDRSH<c><qg>
LDRSH<c><qg>
LDRSH<c><g>

where:
<C><0>
<Rt>

<Rn>

+/-

<imm>

<Rt>, [<Rn> {, #+/-<imm>}] Offset: index==TRUE, wback==FALSE
<Rt>, [<Rn>, #+/-<imm>]! Pre-indexed: index==TRUE, wback==TRUE
Rt>, [<Rn>], #+/-<imm> Post-indexed: index==FALSE, wback==TRUE

See Standard assembler syntax fields on page A7-175.
Specifies the destination register.

Specifies the base register. This register is permitted to be the SP. If this register is the PC, see
LDRSH (literal) on page A7-292.

Is + or omitted to indicate that the immediate offset is added to the base register value (add == TRUE),
or — to indicate that the offset is to be subtracted (add == FALSE). Different instructions are generated
for #0 and #-0.

Specifies the immediate offset added to or subtracted from the value of <Rn> to form the address.
The range of permitted values is 0-4095 for encoding T1, and 0-255 for encoding T2. For the offset
addressing syntax, <imm> can be omitted, meaning an offset of 0.

The pre-UAL syntax LDR<c>SH is equivalent to LDRSH<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
offset_addr = if add then (R[n] + imm32) else (R[n] - imm32);
address = if index then offset_addr else R[n];
data = MemU[address,2];
if wback then R[n] = offset_addr;
R[t] = SignExtend(data, 32);

Exceptions

UsageFault, MemManage, BusFault.

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-291
Non-Confidential

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.63 LDRSH (literal)

Load Register Signed Halfword (literal) calculates an address from the PC value and an immediate offset, loads a
halfword from memory, sign-extends it to form a 32-bit word, and writes it to a register. See Memory accesses on
page A7-182 for information about memory accesses.

Encoding T1 ARMvV7-M
LDRSH<c> <Rt>,<label>

LDRSH<c> <Rt>, [PC,#-0] Special case

1514131211109 8 7 6 5 4 3 2
1

1 0[1514131211109 8 7 6 5 4 3 2 1 0
1111 1]o of1]uJo 1]1]1 1 11

Rt | imm12

if Rt == '1111"' then SEE "Related instructions";
t = UInt(Rt); 1imm32 = ZeroExtend(imml2, 32); add = (U == '1");
if t == 13 then UNPREDICTABLE;

A7-292 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

Assembler syntax

LDRSH<c><g> <Rt>, <label> Normal form

LDRSH<c><q> <Rt>, [PC, #+/-<imm>] Alternative form

where:

<C><g> See Standard assembler syntax fields on page A7-175.

<Rt> The destination register.

<label> The label of the literal data item that is to be loaded into <Rt>. The assembler calculates the required

value of the offset from the PC value of the ADR instruction to this label. Permitted values of the offset
are -4095 to 4095.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE.

If the offset is negative, imm32 is equal to minus the offset and add == FALSE.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be specified
separately, including permitting a subtraction of 0 that cannot be specified using the normal syntax. For more
information, see Use of labels in UAL instruction syntax on page A4-102.

The pre-UAL syntax LDR<c>SH is equivalent to LDRSH<c>.

Operation
if ConditionPassed() then
EncodingSpecificOperations();
base = Align(PC,4);
address = if add then (base + imm32) else (base - imm32);
data = MemU[address,2];
R[t] = SignExtend(data, 32);
Exceptions

UsageFault, MemManage, BusFault.

Unallocated memory hints
If the Rt field is '1111" in encoding T1, the instruction is an unallocated memory hint.

Unallocated memory hints must be implemented as NOPs. Software must not use them, and they therefore have no
UAL assembler syntax.

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-293
Non-Confidential

A7 Instruction Details

A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.64

LDRSH (register)

Load Register Signed Halfword (register) calculates an address from a base register value and an offset register
value, loads a halfword from memory, sign-extends it to form a 32-bit word, and writes it to a register. The offset
register value can be shifted left by 0, 1, 2, or 3 bits. See Memory accesses on page A7-182 for information about

memory accesses.

Encoding T1
LDRSH<c> <Rt>, [<Rn>,<Rm>]

1514131211109 8 7 6 56 4 3 2 1 0
010111 1] Rm | Rn | Rt

t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; whback = FALSE;
(shift_t, shift_n) = (SRType_LSL, 0);

Encoding T2 ARMvV7-M
LDRSH<c>.W <Rt>, [<Rn>,<Rm>{,LSL #<imm2>}]

1514131211109 8 7 6 56 4 3 2 1 0

All versions of the Thumb instruction set.

1514131211109 8 7 6 56 4 3 2 1 0

111 1 1[0 of]1]oJo 1[1] Rn

Rt Jo[o 0 0 0 Of]mm2] Rm

if Rn '1111" then SEE LDRSH (1iteral);

if Rt '1111" then SEE "Related instructions";
t = UInt(Rt); n = UInt(Rn); m = UInt(Rm);
index = TRUE; add = TRUE; wback = FALSE;
(shift_t, shift_n) = (SRType_LSL, UInt(imm2));
if t == 13 || m IN {13,15} then UNPREDICTABLE;

A7-294

Copyright © 2006-2008, 2010, 2014

ARM. All rights reserved.

Non-Confidential

ARM DDI 0403E.b

ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

Assembler syntax

LDRSH<c><g> <Rt>, [<Rn>, <Rm> {, LSL #<shift>}]

where:

<C><g> See Standard assembler syntax fields on page A7-175.

<Rt> Specifies the destination register.

<Rn> Specifies the register that contains the base value. This register is permitted to be the SP.

<Rm> Contains the offset that is shifted left and added to the value of <Rn> to form the address.
<shift> Specifies the number of bits the value from <Rm> is shifted left, in the range 0-3. If this option is

omitted, a shift by 0 is assumed and both encodings are permitted. If this option is specified, only
encoding T2 is permitted.

The pre-UAL syntax LDR<c>SH is equivalent to LDRSH<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
offset = Shift(R[m], shift_t, shift_n, APSR.C);
offset_addr = if add then (R[n] + offset) else (R[n] - offset);
address = if index then offset_addr else R[n];
data = MemU[address,2];
if wback then R[n] = offset_addr;
R[t] = SignExtend(data, 32);

Exceptions

UsageFault, MemManage, BusFault.

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-295
Non-Confidential

A7 Instruction Details

A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.65 LDRSHT
Load Register Signed Halfword Unprivileged calculates an address from a base register value and an immediate
offset, loads a halfword from memory, sign-extends it to form a 32-bit word, and writes it to a register. See Memory
accesses on page A7-182 for information about memory accesses. When privileged software uses an LDRSHT
instruction, the memory access is restricted as if the software was unprivileged. See also Effect of MPU CTRL
settings on unprivileged instructions on page B3-694.
Encoding T1 ARMv7-M
LDRSHT<c> <Rt>, [<Rn>,#<imm8>]
1514131211109 8 7 6 5 4 3 2 1 0|1514131211109 8 7 6 5 4 3 2 1 0
11 1 1 1[0 of]1]oJo 1[1] Rn Rt J1]1 10 imm8
if Rn == '1111"' then SEE LDRSH (literal);
t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
register_form = FALSE; 1imm32 = ZeroExtend(imm8, 32);
if t IN {13,15} then UNPREDICTABLE;
Assembler syntax
LDRSHT<c><q> <Rt>, [<Rn>, {, #<imm>}]
where:
<C><g> See Standard assembler syntax fields on page A7-175.
<Rt> Specifies the destination register.
<Rn> Specifies the base register. This register is permitted to be the SP.
<imm> Specifies the immediate offset added to the value of <Rm> to form the address. The range of
permitted values is 0-255. <imm> can be omitted, meaning an offset of 0.
The pre-UAL syntax LDR<c>SH is equivalent to LDRSH<c>.
Operation
if ConditionPassed() then
EncodingSpecificOperations();
address = R[n] + imm32;
data = MemU_unpriv[address,2];
R[t] = SignExtend(data, 32);
Exceptions
UsageFault, MemManage, BusFault.
A7-296 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b

Non-Confidential ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.66 LDRT

Load Register Unprivileged calculates an address from a base register value and an immediate offset, loads a word
from memory, and writes it to a register. See Memory accesses on page A7-182 for information about memory
accesses. When privileged software uses an LDRT instruction, the memory access is restricted as if the software was
unprivileged. See also Effect of MPU CTRL settings on unprivileged instructions on page B3-694.

Encoding T1 ARMvV7-M
LDRT<c> <Rt>, [<Rn>,#<imm8>]

1514131211109 8 7 6 5 4 3 2 1 0151413121109 8 7 6 5 4 3 2 1 0
11 1 1 1[0 oJoJo]1 of1] Rn Rt J1]1 10 imm8

if Rn == '1111" then SEE LDR (Titeral);

t = UInt(Rt); n = UInt(Rn); postindex = FALSE; add = TRUE;
register_form = FALSE; 1imm32 = ZeroExtend(imm8, 32);

if t IN {13,15} then UNPREDICTABLE;

Assembler syntax

LDRT<c><q> <Rt>, [<Rn> {, #<imm>}]

where:

<C><g> See Standard assembler syntax fields on page A7-175.

<Rt> Specifies the destination register.

<Rn> Specifies the base register. This register is permitted to be the SP.

<imm> Specifies the immediate offset added to the value of <Rn> to form the address. The range of permitted

values is 0-255. <imm> can be omitted, meaning an offset of 0.

The pre-UAL syntax LDR<c>T is equivalent to LDRT<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
address = R[n] + imm32;
data = MemU_unpriv[address,4];
R[t] = data;

Exceptions

UsageFault, MemManage, BusFault.

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-297
Non-Confidential

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.67 LSL (immediate)

Logical Shift Left (immediate) shifts a register value left by an immediate number of bits, shifting in zeros, and
writes the result to the destination register. It can optionally update the condition flags based on the result.

Encoding T1
LSLS <Rd>,<Rm>,#<imm5>

LSL<c> <Rd>,<Rm>,#<imm5>

1514131211109 8 7 6 5 4 3 2 1

All versions of the Thumb instruction set.

Outside IT block.
Inside IT block.

0

00 0fo of] imm5 | Rm | Rd

if imm5 == '00000' then SEE MOV (register);
d = UInt(Rd); m = UInt(Rm); setflags =
(-, shift_n) = DecodeImmShift('00', imm5);

Encoding T2 ARMv7-M
LSL{S}<c>.W <Rd>,<Rm>,#<imm5>

1InITBTock();

1514131211109 8 7 6 5 4 3 2
1

1
1110 1o 1]o 0 1 ofs[1 1 1

0151413121110 9 8 7 6 5 4 3 2 1 0
110 imm3 | Rd [imm2[0 0] Rm

if (imm3:imm2)
d = UInt(Rd);
(-, shift_n) =

m = UInt(Rm); setflags = (

== '00000' then SEE MOV (register);
- '1);
DecodeImmShift('00', imm3:imm2);

if d IN {13,15} || m IN {13,15} then UNPREDICTABLE;

A7-298

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved.
Non-Confidential

ARM DDI 0403E.b
ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

Assembler syntax

LSL{S}<c><g> <Rd>, <Rm>, #<imm5>

where:

S If present, specifies that the instruction updates the flags. Otherwise, the instruction does not update
the flags.

<C><g> See Standard assembler syntax fields on page A7-175.

<Rd> Specifies the destination register.

<Rm> Specifies the register that contains the first operand.

<imm5> Specifies the shift amount, in the range 0 to 31. See Shifts applied to a register on page A7-180.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
(result, carry) = Shift_C(R[m], SRType_LSL, shift_n, APSR.C);
R[d] = result;
if setflags then
APSR.N = result<3l>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged

Exceptions

None.

ARM DDI 0403E.b Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-299
ID120114 Non-Confidential

A7 Instruction Details

A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.68

LSL (register)

Logical Shift Left (register) shifts a register value left by a variable number of bits, shifting in zeros, and writes the
result to the destination register. The variable number of bits is read from the bottom byte of a register. It can
optionally update the condition flags based on the result.

Encoding T1
LSLS

LSL<c> <Rdn>, <Rm>

<Rdn>, <Rm>

1514131211109 8 7 6 5 4 3 2 1

All versions of the Thumb instruction set.

Outside IT block.
Inside IT block.

0

010000[0010] Rm [Rdn

d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm);

Encoding T2 ARMvV7-M
LSL{S}<c>.W <Rd>,<Rn>,<Rm>

1514131211109 8 7 6 5 4 3 2 1

setflags = !'InITBlock();

0151413121109 8 7 6 5 4 3 2 1

0

1111 1[0 1 ofoJo 0[S] Rn

111 1] Rd JoJo o 0] Rm

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);

setflags = (S == '1");

if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

A7-300

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved.

Non-Confidential

ARM DDI 0403E.b

ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

Assembler syntax

LSL{S}<c><g> <Rd>, <Rn>, <Rm>

where:

S If present, specifies that the instruction updates the flags. Otherwise, the instruction does not update
the flags.

<C><g> See Standard assembler syntax fields on page A7-175.

<Rd> Specifies the destination register.

<Rn> Specifies the register that contains the first operand.

<Rm> Specifies the register whose bottom byte contains the amount to shift by.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
shift_n = UInt(R[m]<7:0>);
(result, carry) = Shift_C(R[n], SRType_LSL, shift_n, APSR.C);
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged

Exceptions

None.

ARM DDI 0403E.b Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-301
ID120114 Non-Confidential

A7 Instruction Details

A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.69

LSR (immediate)

Logical Shift Right (immediate) shifts a register value right by an immediate number of bits, shifting in zeros, and
writes the result to the destination register. It can optionally update the condition flags based on the result.

Encoding T1
LSRS <Rd>,<Rm>,#<imm5>

LSR<c> <Rd>, <Rm>,#<imm5>

1514131211109 8 7 6 56 4 3 2 1 0

000fo1] imm5 | Rm [Rd

d = UInt(Rd); m = UInt(Rm); setflags =
(-, shift_n) = DecodeImmShift('01', imm5);

Encoding T2 ARMv7-M
LSR{S}<c>.W <Rd>,<Rm>,#<imm5>

All versions of the Thumb instruction set.

Outside IT block.
Inside IT block.

1InITBTock();

1514131211109 8 7 6 56 4 3 2 1

0

1514131211109 8 7 6 5 4 3 2 1 0
1110 1]o 1Jo 0 1 ofs[1 1 11

(O imm3 [Rd [mm2[0 1] Rm

d = UInt(Rd); m = UInt(Rm); setflags = (S ==

(-, shift_n) = DecodeImmShift('Q1', imm3:imm2);

1)

if d IN {13,15} || m IN {13,15} then UNPREDICTABLE;

A7-302

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved.

Non-Confidential

ARM DDI 0403E.b

ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

Assembler syntax

LSR{S}<c><g> <Rd>, <Rm>, #<imm5>

where:

S If present, specifies that the instruction updates the flags. Otherwise, the instruction does not update
the flags.

<C><g> See Standard assembler syntax fields on page A7-175.

<Rd> Specifies the destination register.

<Rm> Specifies the register that contains the first operand.

<imm5> Specifies the shift amount, in the range 1 to 32. See Shifts applied to a register on page A7-180.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
(result, carry) = Shift_C(R[m], SRType_LSR, shift_n, APSR.C);
R[d] = result;
if setflags then
APSR.N = result<3l>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged

Exceptions

None.

ARM DDI 0403E.b Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-303
ID120114 Non-Confidential

A7 Instruction Details

A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.70 LSR (register)
Logical Shift Right (register) shifts a register value right by a variable number of bits, shifting in zeros, and writes
the result to the destination register. The variable number of bits is read from the bottom byte of a register. It can
optionally update the condition flags based on the result.
Encoding T1 All versions of the Thumb instruction set.
LSRS <Rdn>,<Rm> Outside IT block.
LSR<c> <Rdn>,<Rm> Inside IT block.
151413121109 8 7 6 5 4 3 2 1 0
010000[001 1 Rm [Rdn
d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();
Encoding T2 ARMvV7-M
LSR{S}<c>.W <Rd>,<Rn>,<Rm>
151413121109 8 7 6 5 4 3 2 1 0(1514131211109 8 7 6 5 4 3 2 1 0
1111 1[0 1 ofoJo 1[S] Rn 111 1] Rd JoJo o 0] Rm
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == "1");
if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;
A7-304 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b

Non-Confidential

ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

Assembler syntax

LSR{S}<c><g> <Rd>, <Rn>, <Rm>

where:

S If present, specifies that the instruction updates the flags. Otherwise, the instruction does not update
the flags.

<C><g> See Standard assembler syntax fields on page A7-175.

<Rd> Specifies the destination register.

<Rn> Specifies the register that contains the first operand.

<Rm> Specifies the register whose bottom byte contains the amount to shift by.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
shift_n = UInt(R[m]<7:0>);
(result, carry) = Shift_C(R[n], SRType_LSR, shift_n, APSR.C);
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged

Exceptions

None.

ARM DDI 0403E.b Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-305
ID120114 Non-Confidential

A7 Instruction Details

A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.71 MCR, MCR2
Move to Coprocessor from ARM Register passes the value of an ARM register to a coprocessor.
If no coprocessor can execute the instruction, a UsageFault exception is generated.
Encoding T1 ARMvV7-M
MCR<c> <coproc>,<opcl>,<Rt>,<CRn>,<CRm>{, <opc2>}
1514131211109 8 7 6 5 4 3 2 1 0(1514131211109 8 7 6 5 4 3 2 1 0
11 1 0[1 11 0] opct [0] CRn Rt coproc | opc2 [1] CRm
t = UInt(Rt); cp = UInt(coproc);
if t == 15 || t == 13 then UNPREDICTABLE;
Encoding T2 ARMv7-M
MCR2<c> <coproc>,<opcl>,<Rt>,<CRn>,<CRm>{, <opc2>}
1514131211109 8 7 6 5 4 3 2 1 0(1514131211109 8 7 6 5 4 3 2 1 0
111 1[1 1 1 0] opet [0] CRn Rt coproc | opc2 [1] CRm
t = UInt(Rt); cp = UInt(coproc);
if t == 15 || t == 13 then UNPREDICTABLE;
A7-306 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b

Non-Confidential

ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

Assembler syntax

MCR{2}<c><g> <coproc>, #<opcl>, <Rt>, <CRn>, <CRm>{, #<opc2>}

where:

2 If specified, selects the C == 1 form of the encoding. If omitted, selects the C == 0 form.
<C><g> See Standard assembler syntax fields on page A7-175.

<coproc> Specifies the name of the coprocessor. The standard generic coprocessor names are p0-p15.
<opcl> Is a coprocessor-specific opcode in the range 0 to 7.

<Rt> Is the ARM register whose value is transferred to the coprocessor.

<CRn> Is the destination coprocessor register.

<CRm> Is an additional destination coprocessor register.

<opc2> Is a coprocessor-specific opcode in the range 0-7. If it is omitted, <opc2> is assumed to be 0.
Operation

if ConditionPassed() then
EncodingSpecificOperations();
if !Coproc_Accepted(cp, ThisInstr()) then
GenerateCoprocessorException();
else
Coproc_SendOneWord(R[t], cp, ThisInstr());

Exceptions

UsageFault.

Notes

Coprocessor fields Only instruction bits<31:24>, bit<20>, bits<15:8>, and bit<4> are defined by the ARM
architecture. The remaining fields are recommendations.

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-307
Non-Confidential

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.72 MCRR, MCRR2
Move to Coprocessor from two ARM Registers passes the values of two ARM registers to a coprocessor.

If no coprocessor can execute the instruction, a UsageFault exception is generated.

Encoding T1 ARMvV7-M
MCRR<c> <coproc>,<opcl>,<Rt>,<Rt2>,<CRm>

1514131211109 8 7 6 5 4 3 2 1 0[1514131211109 8 7 6 5 4 3 2 1 0
11 1 0[1 1 oJoJoJ1]ofo] Ri2 Rt coproc opc1 CRm

t = UInt(Rt); t2 = UInt(Rt2); cp = UInt(coproc);
if t == 15 || t2 == 15 then UNPREDICTABLE;
if t == 13 || t2 == 13 then UNPREDICTABLE;

Encoding T2 ARMvV7-M
MCRR2<c> <coproc>,<opcl>,<Rt>,<Rt2>,<CRm>

1514131211109 8 7 6 5 4 3 2 1 0151413121109 8 7 6 5 4 3 2 1 0
111 1[1 1 ofofo]1]ofo] R Rt coproc opct CRm

t = UInt(Rt); t2 = UInt(Rt2); cp = UInt(coproc);
if t == 15 || t2 == 15 then UNPREDICTABLE;
if t == 13 || t2 == 13 then UNPREDICTABLE;

A7-308 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

Assembler syntax

MCRR{2}<c><g> <coproc>, #<opcl>, <Rt>, <Rt2>, <CRm>

where:

2 If specified, selects the C ==1 form of the encoding. If omitted, selects the C == 0 form.
<C><g> See Standard assembler syntax fields on page A7-175.

<coproc> Specifies the name of the coprocessor. The standard generic coprocessor names are p0-p15.
<opcl> Is a coprocessor-specific opcode in the range 0 to 15.

<Rt> Is the first ARM register whose value is transferred to the coprocessor.

<Rt2> Is the second ARM register whose value is transferred to the coprocessor.

<CRm> Is the destination coprocessor register.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
if !Coproc_Accepted(cp, ThisInstr()) then
GenerateCoprocessorException();
else
Coproc_SendTwoWords (R[t2], R[t], cp, ThisInstr());

Exceptions

UsageFault.

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-309
Non-Confidential

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.73 MLA
Multiply Accumulate multiplies two register values, and adds a third register value. The least significant 32 bits of
the result are written to the destination register. These 32 bits do not depend on whether signed or unsigned
calculations are performed.
Encoding T1 ARMvV7-M
MLA<c> <Rd>,<Rn>,<Rm>,<Ra>
151413121109 8 7 6 5 4 3 2 1 0(1514131211109 8 7 6 5 4 3 2 1 0
1111 1/0110Jo00] Rn Ra | Rd 000 0] Rm
if Ra == "1111' then SEE MUL;
d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra); setflags = FALSE;
if d IN {13,15} || n IN {13,15} || m IN {13,15} || a == 13 then UNPREDICTABLE;
Assembler syntax
MLA<c><@> <Rd>, <Rn>, <Rm>, <Ra>
where:
<C><g> See Standard assembler syntax fields on page A7-175.
<Rd> Specifies the destination register.
<Rn> Specifies the register that contains the first operand.
<Rm> Specifies the register that contains the second operand.
<Ra> Specifies the register containing the accumulate value.
Operation
if ConditionPassed() then
EncodingSpecificOperations();
operandl = SInt(R[n]); // operandl = UInt(R[n]) produces the same final results
operand2 = SInt(R[m]); // operand2 = UInt(R[m]) produces the same final results
addend = SInt(R[a]); // addend = UInt(R[a]) produces the same final results
result = operandl = operand2 + addend;
R[d] = result<31:0>;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result<31:0>);
// APSR.C unchanged
// APSR.V unchanged
Exceptions
None.
A7-310 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b

Non-Confidential

ID120114

A7.7.74 MLS

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

Multiply and Subtract multiplies two register values, and subtracts the least significant 32 bits of the result from a
third register value. These 32 bits do not depend on whether signed or unsigned calculations are performed. The
result is written to the destination register.

Encoding T1 ARMvV7-M
MLS<c> <Rd>,<Rn>,<Rm>,<Ra>

1514131211109 8 7 6 5 4 3 2 1 0[1514131211109 8 7 6 5 4 3 2 1 0
1111 1/0110Jo00] Rn Ra | Rd [0 0 0 1 Rm

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); a = UInt(Ra);
if d IN {13,15} || n IN {13,15} || m IN {13,15} || a IN {13,15} then UNPREDICTABLE;

Assembler syntax

MLS<c><g> <Rd>, <Rn>, <Rm>, <Ra>

where:

<C><g> See Standard assembler syntax fields on page A7-175.
<Rd> Specifies the destination register.

<Rn> Specifies the register that contains the first operand.
<Rm> Specifies the register that contains the second operand.
<Ra> Specifies the register containing the accumulate value.
Operation

if ConditionPassed() then
EncodingSpecificOperations();
operandl = SInt(R[n]); // operandl = UInt(R[n]) produces the same final results
operand2 = SInt(R[m]); // operand2 = UInt(R[m]) produces the same final results
addend = SInt(R[a]); // addend = UInt(R[a]) produces the same final results
result = addend - operandl = operand?2;
R[d] = result<31:0>;

Exceptions

None.

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-311
Non-Confidential

A7 Instruction Details

A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.75 MOV (immediate)

Move (immediate) writes an immediate value to the destination register. It can optionally update the condition flags

based on the value.

Encoding T1 All versions of the Thumb instruction set.
MOVS <Rd>,#<imm8> Outside IT block.
MOV<c> <Rd>,#<imm8> Inside IT block.

1514131211109 8 7 6 5 4 3 2 1 0
00 1[0 0] Rd imm8

d = UInt(Rd); setflags = !InITBlock(); 1imm32 = ZeroExtend(imm8, 32); carry = APSR.C;

Encoding T2 ARMvV7-M
MOV{S}<c>.W <Rd>,#<const>

1514131211109 8 7 6 5 4 3 2
1

0151413121110 9 8 7 6 5 4 3 2 1 0
111 1 0[i]oJo o 1 0fs]1 1

1
1 1o imm3 | Rd | imm8

d = UInt(Rd); setflags = (S == '1"); (imm32, carry) = ThumbExpandImm_C(i:imm3:imm8, APSR.C);
if d IN {13,15} then UNPREDICTABLE;

Encoding T3 ARMvV7-M
MOVW<c> <Rd>,#<imm16>

1514131211109 8 7 6 56 4 3 2 1 0|1514131211109 8 7 6 5 4 3 2 1 0

111 10[i][1 of]o]1]of[o] imm4 [o] imm3 | Rd | imm8

d = UInt(Rd); setflags = FALSE; 1imm32 = ZeroExtend(imm4:i:imm3:imm8, 32);
if d IN {13,15} then UNPREDICTABLE;

A7-312

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b

Non-Confidential

ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

Assembler syntax

MOV{S}<c><g> <Rd>, #<const> All encodings permitted

MOVW<c><g> <Rd>, #<const> Only encoding T3 permitted

where:

S If present, specifies that the instruction updates the flags. Otherwise, the instruction does not update
the flags.

<C><g> See Standard assembler syntax fields on page A7-175.

<Rd> Specifies the destination register.

<const> Specifies the immediate value to be placed in <Rd>. The range of permitted values is 0-255 for

encoding T1 and 0-65535 for encoding T3. See Modified immediate constants in Thumb
instructions on page A5-137 for the range of permitted values for encoding T2.

When both 32-bit encodings are available for an instruction, encoding T2 is preferred to encoding
T3 (if encoding T3 is required, use the MOVW syntax).

The pre-UAL syntax MOV<c>S is equivalent to MOVS<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
result = imm32;
R[d] = result;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged

Exceptions

None.

ARM DDI 0403E.b Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-313
ID120114 Non-Confidential

A7 Instruction Details

A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.76 MOV (register)
Move (register) copies a value from a register to the destination register. It can optionally update the condition flags
based on the value.
Encoding T1 ARMv6-M, ARMv7-M If <Rd> and <Rm> both from R0O-R7,
otherwise all versions of the Thumb instruction set.

MOV<c> <Rd>,<Rm> If <Rd> is the PC, must be outside or last in IT block
1514131211109 8 7 6 5 4 3 2 1 0

01000 1[10[D] Rm | Rd
d = UInt(D:Rd); m = UInt(Rm); setflags = FALSE;
if d == 15 && InITBlock() && !LastInITBlock() then UNPREDICTABLE;
Encoding T2 All versions of the Thumb instruction set.
MOVS <Rd>, <Rm> Not permitted inside IT block
1514131211109 8 7 6 5 4 3 2 1 0

0 0 ofo ofo 0 0 0 0] Rm Rd
d = UInt(Rd); m = UInt(Rm); setflags = TRUE;
if InITBlock() then UNPREDICTABLE;
Encoding T3 ARMv7-M
MOV{S}<c>.W <Rd>,<Rm>

1514131211109 8 7 6 5 4 3 2 1 0(1514131211109 8 7 6 5 4 3 2 1 0
1110 1[0 1]Jo 0o 1 o[s[1 1 1 1]oJo 0 o] Rd 000 0] Rm
d = UInt(Rd); m = UInt(Rm); setflags = (S == '1");
if setflags && (d IN {13,15} || m IN {13,15}) then UNPREDICTABLE;
if Isetflags & (d == 15 || m == 15 || (d == 13 & m == 13)) then UNPREDICTABLE;
A7-314 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b

Non-Confidential

ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

Assembler syntax

MOV{S}<c><g> <Rd>, <Rm>

where:

S If present, specifies that the instruction updates the flags. Otherwise, the instruction does not update
the flags.

<C><g> See Standard assembler syntax fields on page A7-175.

<Rd> The destination register. This register can be the SP or PC, provided S is not specified.
If <Rd> is the PC, then only encoding T1 is permitted, and the instruction causes a branch to the
address moved to the PC. The instruction must either be outside an IT block or the last instruction
of an IT block.

<Rm> The source register. This register can be the SP or PC. The instruction must not specify S if <Rm> is
the SP or PC.

Encoding T3 is not permitted if either:
. <Rd> or <Rm> is the PC
. both <Rd> and <Rm> are the SP.

Note
ARM deprecates the use of the following MOV (register) instructions:
. Ones in which <Rd> is the SP or PC and <Rm> is also the SP or PC is deprecated.
. Ones in which S is specified and <Rm> is the SP, or <Rm> is the PC.

The pre-UAL syntax MOV<c>S is equivalent to MOVS<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
result = R[m];
if d == 15 then
ALUWritePC(result); // setflags is always FALSE here
else
R[d] = result;
if setflags then
APSR.N = result<31l>;
APSR.Z = IsZeroBit(result);
// APSR.C unchanged
// APSR.V unchanged

Exceptions

None.

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-315
Non-Confidential

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.77 MOV (shifted register)
Move (shifted register) is a synonym for ASR, LSL, LSR, ROR, and RRX.

See the following sections for details:

. ASR (immediate) on page A7-203.
. ASR (register) on page A7-205.

. LSL (immediate) on page A7-298.
. LSL (register) on page A7-300.

. LSR (immediate) on page A7-302.
. LSR (register) on page A7-304.

. ROR (immediate) on page A7-366.
. ROR (register) on page A7-368.

. RRX on page A7-370.

Assembler syntax

Table A7-4 shows the equivalences between MOV (shifted register) and other instructions.

Table A7-4 MOV (shift, register shift) equivalences)

MOV instruction Canonical form

MOV{S} <Rd>,<Rm>,ASR #<n> ASR{S} <Rd>,<Rm>,#<n>
MOV{S} <Rd>,<Rm>,LSL #<n> LSL{S} <Rd>,<Rm>,#<n>
MOV{S} <Rd>,<Rm>,LSR #<n> LSR{S} <Rd>,<Rm>,#<n>
MOV{S} <Rd>,<Rm>,ROR #<n> ROR{S} <Rd>,<Rm>,#<n>
MOV{S} <Rd>,<Rm>,ASR <Rs> ASR{S} <Rd>,<Rm>,<Rs>
MOV{S} <Rd>,<Rm>,LSL <Rs> LSL{S} <Rd>,<Rm>,<Rs>
MOV{S} <Rd>,<Rm>,LSR <Rs> LSR{S} <Rd>,<Rm>,<Rs>
MOV{S} <Rd>,<Rm>,ROR <Rs> ROR{S} <Rd>,<Rm>,<Rs>
MOV{S} <Rd>,<Rm>,RRX RRX{S} <Rd>,<Rm>

The canonical form of the instruction is produced on disassembly.

Exceptions

None.

A7-316 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.78 MOVT

Move Top writes an immediate value to the top halfword of the destination register. It does not affect the contents
of the bottom halfword.

Encoding T1 ARMvV7-M
MOVT<c> <Rd>,#<imml6>

1514131211109 8 7 6 5 4 3 2 1 0[1514131211109 8 7 6 5 4 3 2 1 0
1111 0[i]1 of1]1]ofo] imm4 JoO[imm3 Rd imm8

d = UInt(Rd); imml6 = imm4:i:imm3:imm8;
if d IN {13,15} then UNPREDICTABLE;

Assembler syntax

MOVT<c><g> <Rd>, #<imml6>

where:

<C><g> See Standard assembler syntax fields on page A7-175.

<Rd> Specifies the destination register.

<imm16> Specifies the immediate value to be written to <Rd>. It must be in the range 0-65535.
Operation

if ConditionPassed() then
EncodingSpecificOperations();
R[d]<31:16> = imml6;
// R[d]<15:0> unchanged

Exceptions

None.

ARM DDI 0403E.b Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-317
ID120114 Non-Confidential

A7 Instruction Details

A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.79 MRC, MRC2
Move to ARM Register from Coprocessor causes a coprocessor to transfer a value to an ARM register or to the
condition flags.
Encoding T1 ARMv7-M
MRC<c> <coproc>,<opcl>,<Rt>,<CRn>,<CRm>{, <opc2>}
1514131211109 8 7 6 5 4 3 2 1 0(1514131211109 8 7 6 56 4 3 2 1 0
111 0[1 11 0] opct [1] CRn Rt coproc | opc2 [1] CRm
t = UInt(Rt); cp = UInt(coproc);
if t == 13 then UNPREDICTABLE;
Encoding T2 ARMv7-M
MRC2<c> <coproc>,<opcl>,<Rt>,<CRn>,<CRm>{, <opc2>}
1514131211109 8 7 6 5 4 3 2 1 0(1514131211109 8 7 6 56 4 3 2 1 0
111 1[1 11 0] opct [1] CRn Rt coproc | opc2 [1| CRm
t = UInt(Rt); cp = UInt(coproc);
if t == 13 then UNPREDICTABLE;
If no coprocessor can execute the instruction, a UsageFault exception is generated.
A7-318 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b

Non-Confidential

ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

Assembler syntax

MRC{2}<c><g> <coproc>, #<opcl>, <Rt>, <CRn>, <CRm>{, #<opc2>}

where:

2

<C><0>
<coproc>
<opcl>

<Rt>

<CRn>
<CRm>

<opc2>

Operation

If specified, selects the C == 1 form of the encoding. If omitted, selects the C == 0 form.
See Standard assembler syntax fields on page A7-175.

Specifies the name of the coprocessor. The standard generic coprocessor names are p0-p15.
Is a coprocessor-specific opcode in the range 0 to 7.

Is the destination ARM register. This register is permitted to be RO-R14 or APSR_nzcv. The last
form writes bits<31:28> of the transferred value to the N, Z, C and V condition flags and is specified
by setting the Rt field of the encoding to 0b1111. In pre-UAL assembler syntax, PC was written
instead of APSR_nzcv to select this form.

Is the coprocessor register that contains the first operand.
Is an additional source or destination coprocessor register.

Is a coprocessor-specific opcode in the range 0 to 7. If it is omitted, <opc2> is assumed to be 0.

if ConditionPassed() then
EncodingSpecificOperations();
if !Coproc_Accepted(cp, ThisInstr()) then
GenerateCoprocessorException();

else

value = Coproc_GetOneWord(cp, ThisInstr());
if t != 15 then

else

APSR.N

R[t] = value;

value<3l>;

APSR.Z = value<30>;

APSR.C

value<29>;

APSR.V = value<28>;

Exceptions

UsageFault.

// value<27:0> are not used.

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-319
Non-Confidential

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.80

MRRC, MRRC2

Move to two ARM Registers from Coprocessor causes a coprocessor to transfer values to two ARM registers.

If no coprocessor can execute the instruction, a UsageFault exception is generated.

Encoding T1 ARMvV7-M

MRRC<c>

<coproc>,<opc>,<Rt>, <Rt2>,<CRm>

1514131211109 8 7 6 56 4 3 2 1 0151413121110 9 8 7 6 5

43210

111 0[1 1 ofofoJ1]o[1] R Rt

CRm

t = UInt(Rt); t2 = UInt(Rt2); cp = UInt(coproc);

if t ==
if t ==

15 || t2 == 15 || t == t2 then UNPREDICTABLE;
13 || t2 == 13 then UNPREDICTABLE;

Encoding T2 ARMvV7-M
MRRC2<c> <coproc>,<opc>,<Rt>,<Rt2>,<CRm>

1514131211109 8 7 6 5 4 3 2 1 0151413121110 9 8 7 6 5

43210

111 1[1 1 ofofo]1]o[1] R Rt

CRm

t = UInt(Rt); t2 = UInt(Rt2); cp = UInt(coproc);

if t ==
if t ==

15 || t2 == 15 || t == t2 then UNPREDICTABLE;
13 || t2 == 13 then UNPREDICTABLE;

A7-320

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved.

Non-Confidential

ARM DDI 0403E.b
ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

Assembler syntax

MRRC{2}<c><g> <coproc>, #<opcl>, <Rt>, <Rt2>, <CRm>

where:

2 If specified, selects the C == 1 form of the encoding. If omitted, selects the C == 0 form.
<C><g> See Standard assembler syntax fields on page A7-175.

<coproc> Specifies the name of the coprocessor. The standard generic coprocessor names are p0-p15.
<opcl> Is a coprocessor-specific opcode in the range 0 to 15.

<Rt> Is the first destination ARM register.

<Rt2> Is the second destination ARM register.

<CRm> Is the coprocessor register that supplies the data to be transferred.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
if !Coproc_Accepted(cp, ThisInstr()) then
GenerateCoprocessorException();
else
(R[t2], R[t]) = Coproc_GetTwoWords(cp, ThisInstr());

Exceptions

UsageFault.

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-321
Non-Confidential

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.81 MRS

Move to Register from Special register moves the value from the selected special-purpose register into a
general-purpose ARM register.

Encoding T1 ARMv6-M, ARMv7-M Enhanced functionality in ARMv7-M.
MRS<c> <Rd>,<spec_reg>

1514131211109 8 7 6 5 4 3 2 1 0[1514131211109 8 7 6 5 4 3 2 1 0
11 1 1 0[o[1 1 1 1]1]|ofnn @ M[1 oJoJo] Rd | SYSm

MRS is a system level instruction except when accessing the APSR or CONTROL register. See MRS on page B5-733
for the complete description of the instruction, including its application-level uses.

A7-322 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A7.7.82 MSR

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

Move to Special Register from ARM Register moves the value of a general-purpose ARM register to the specified
special-purpose register.

Encoding T1 ARMv6-M, ARMv7-M Enhanced functionality in ARMv7-M.
MSR<c> <spec_reg>,<Rn>

1514131211109 8 7 6 5 4 3 2 1 0[1514131211109 8 7 6 5 4 3 2 1 0
111 1 0[o][1 11 0]ofo] Rn 10 [0)] 0 [mask](0)|(0)] SYSm

MSR is a system level instruction except when accessing the APSR. See MSR on page B5-735 for the complete
description of the instruction, including its application-level uses.

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-323
Non-Confidential

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.83

MUL

Multiply multiplies two register values. The least significant 32 bits of the result are written to the destination

register. These 32 bits do not depend on whether

signed or unsigned calculations are performed.

It can optionally update the condition flags based on the result. This option is limited to only a few forms of the
instruction in the Thumb instruction set, and use of it will adversely affect performance on many processor

implementations.

Encoding T1
MULS <Rdm>, <Rn>,<Rdm>

MUL<c> <Rdm>,<Rn>,<Rdm>

1514131211109 8 7 6 5 4 3 2 1

All versions of the Thumb instruction set.

Outside IT block.
Inside IT block.

0

010000[1101 Rn | Rdm

d = UInt(Rdm); n = UInt(Rn); m = UInt(Rdm);

Encoding T2
MUL<c> <Rd>,<Rn>,<Rm>

ARMV7-M

1514131211109 8 7 6 5 4 3 2 1

setflags = !'InITBlock();

0[1514131211109 8 7 6 5 4 3 2 1 0

1111 1/0 1 10J0o00] Rn

17111 Rd 00O00O0 Rm

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d IN {13,15} || n IN {13,15} || m IN {13,1

setflags = FALSE;
5} then UNPREDICTABLE;

A7-324

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved.

Non-Confidential

ARM DDI 0403E.b

ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

Assembler syntax

MUL{S}<c><g> {<Rd>,} <Rn>, <Rm>

where:

S If present, specifies that the instruction updates the flags. Otherwise, the instruction does not update
the flags.

<C><g> See Standard assembler syntax fields on page A7-175.

<Rd> Specifies the destination register. If <Rd> is omitted, this register is the same as <Rn>.

<Rn> Specifies the register that contains the first operand.

<Rm> Specifies the register that contains the second operand.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
operandl = SInt(R[n]); // operandl = UInt(R[n]) produces the same final results
operand2 = SInt(R[m]); // operand2 = UInt(R[m]) produces the same final results
result = operandl * operand2;
R[d] = result<31:0>;
if setflags then
APSR.N = result<31>;
APSR.Z = IsZeroBit(result<31:0>);
// APSR.C unchanged
// APSR.V unchanged

Exceptions

None.

ARM DDI 0403E.b Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-325
ID120114 Non-Confidential

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.84 MVN (immediate)

Bitwise NOT (immediate) writes the bitwise inverse of an immediate value to the destination register. It can
optionally update the condition flags based on the value.

Encoding T1 ARMvV7-M
MVN{S}<c> <Rd>,#<const>

1514131211109 8 7 6 5 4 3 2
1

0151413121110 9 8 7 6 5 4 3 2 1 0
1111 0[iJoJo 0o 1 1]s]1 1

0] imm3 | Rd imm8

1
1

d = UInt(Rd); setflags = (S == '1");
(imm32, carry) = ThumbExpandImm_C(i:imm3:imm8, APSR.C);
if d IN {13,15} then UNPREDICTABLE;

A7-326 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

Assembler syntax

MVUN{S}<c><g> <Rd>, #<const>

where:

S If present, specifies that the instruction updates the flags. Otherwise, the instruction does not update
the flags.

<C><g> See Standard assembler syntax fields on page A7-175.

<Rd> Specifies the destination register.

<const> Specifies the immediate value to be added to the value obtained from <Rn>. See Modified immediate

constants in Thumb instructions on page A5-137 for the range of permitted values.

The pre-UAL syntax MVN<c>S is equivalent to MVNS<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
result = NOT(imm32);
R[d] = result;
if setflags then
APSR.N = result<31l>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged

Exceptions

None.

ARM DDI 0403E.b Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-327
ID120114 Non-Confidential

A7 Instruction Details

A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.85

MVN (register)

Bitwise NOT (register) writes the bitwise inverse of a register value to the destination register. It can optionally

update the condition flags based on the result.

Encoding T1
MVNS <Rd>, <Rm>
MVN<c> <Rd>,<Rm>

1514131211109 8 7 6 5 4 3 2 1

0

010000[1111] Rm | Rd

d = UInt(Rd); m

= UInt(Rm); setflags =
(shift_t, shift_n) =

(SRType_LSL, 0);

Encoding T2 ARMv7-M
MVN{S}<c>.W <Rd>,<Rm>{,shift>}

All versions of the Thumb instruction set.

Outside IT block.
Inside IT block.

1InITBTock();

1514131211109 8 7 6 56 4 3 2 1 0

1514131211109 8 7 6 5 4 3 2
1

1
1110 1]o 1]o 0 1 1[s[1 1 1

0
1

(O imm3 [Rd [mm2[type| Rm

d = UInt(Rd); m = UInt(Rm);

setflags = (S == '1');

(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);
if d IN {13,15} || m IN {13,15} then UNPREDICTABLE;

A7-328

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved.

Non-Confidential

ARM DDI 0403E.b

ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

Assembler syntax

MUN{S}<c><g> <Rd>, <Rm> {, <shift>}

where:

S If present, specifies that the instruction updates the flags. Otherwise, the instruction does not update
the flags.

<C><g> See Standard assembler syntax fields on page A7-175.

<Rd> Specifies the destination register.

<Rm> Specifies the register that is optionally shifted and used as the source register.

<shift> Specifies the shift to apply to the value read from <Rm>. If <shift> is omitted, no shift is applied and

both encodings are permitted. If <shift> is specified, only encoding T2 is permitted. The possible
shifts and how they are encoded are described in Shifis applied to a register on page A7-180.

The pre-UAL syntax MVN<c>S is equivalent to MVNS<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
(shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
result = NOT(shifted);
R[d] = result;
if setflags then
APSR.N = result<3l>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged

Exceptions

None.

ARM DDI 0403E.b Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-329
ID120114 Non-Confidential

A7 Instruction Details

A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.86

NEG

Negate is a pre-UAL synonym for RSB (immediate) with an immediate value of 0. See RSB (immediate) on

page A7-372 for details.

Assembler syntax
NEG<c><g> {<Rd>,} <Rm>
This is equivalent to:

RSBS<c><g> {<Rd>,} <Rm>, #0

Exceptions

None.

A7-330

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved.

Non-Confidential

ARM DDI 0403E.b
ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.87 NOP
No Operation does nothing.
This is a NOP-compatible hint, the architected NOP, see NOP-compatible hints on page A7-183.

Encoding T1 ARMv7-M
NOP<c>

1514131211109 8 7 6 5 4
0

0
101111 11]0 00 0

21
00

// No additional decoding required

Encoding T2 ARMv7-M
NOP<c>.W
1514131211109 8 7 6 5 4 3 2 1 0(1514131211109 8 7 6 56 4 3 2 1 0
11 1 1 0[o[1 1 1]Jo 1[0 |1 ofo)]ofojo o ofo 0 0 0 0 000
// No additional decoding required
Assembler syntax
NOP<c><g>
where:
<C><g> See Standard assembler syntax fields on page A7-175.
Operation
if ConditionPassed() then
EncodingSpecificOperations();
// Do nothing
Exceptions
None.
ARM DDI 0403E.b Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-331

ID120114 Non-Confidential

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.88 ORN (immediate)
Logical OR NOT (immediate) performs a bitwise (inclusive) OR of a register value and the complement of an
immediate value, and writes the result to the destination register. It can optionally update the condition flags based
on the result.
Encoding T1 ARMvV7-M
ORN{S}<c> <Rd>,<Rn>,#<const>
151413121109 8 7 6 5 4 3 2 1 0(1514131211109 8 7 6 5 4 3 2 1 0
111 10[ilo]Jo o1 1][S] Rn 0] imm3 | Rd imm8
if Rn == '1111" then SEE MVN (immediate);
d = UInt(Rd); n = UInt(Rn); setflags = (S == '1");
(imm32, carry) = ThumbExpandImm_C(i:imm3:imm8, APSR.C);
if d IN {13,15} || n == 13 then UNPREDICTABLE;
Assembler syntax
ORN{S}<c><g> {<Rd>,} <Rn>, #<const>
where:
S If present, specifies that the instruction updates the flags. Otherwise, the instruction does not update
the flags.
<C><g> See Standard assembler syntax fields on page A7-175.
<Rd> Specifies the destination register. If <Rd> is omitted, this register is the same as <Rn>.
<Rn> Specifies the register that contains the operand.
<const> Specifies the immediate value to be added to the value obtained from <Rn>. See Modified immediate
constants in Thumb instructions on page A5-137 for the range of permitted values.
Operation
if ConditionPassed() then
EncodingSpecificOperations();
result = R[n] OR NOT(imm32);
R[d] = result;
if setflags then
APSR.N = result<31l>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged
Exceptions
None.
A7-332 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b

Non-Confidential

ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.89 ORN (register)

Logical OR NOT (register) performs a bitwise (inclusive) OR of a register value and the complement of an
optionally-shifted register value, and writes the result to the destination register. It can optionally update the
condition flags based on the result.

Encoding T1 ARMvV7-M
ORN{S}<c> <Rd>,<Rn>,<Rm>{,<shift>}

1514131211109 8 7 6 5 4 3 2 1 0151413121109 8 7 6 5 4 3 2 1 0
1110 1[0 1]Jo 0o 1 1[S[Rn O] imm3 | Rd [mm2[type] Rm

if Rn == '1111"' then SEE MVN (register);

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1");
(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);

if d IN {13,15} || n == 13 || m IN {13,15} then UNPREDICTABLE;

Assembler syntax

ORN{S}<c><g> {<Rd>,} <Rn>, <Rm> {,<shift>}

where:

S If present, specifies that the instruction updates the flags. Otherwise, the instruction does not update
the flags.

<C><g> See Standard assembler syntax fields on page A7-175.

<Rd> Specifies the destination register. If <Rd> is omitted, this register is the same as <Rn>.

<Rn> Specifies the register that contains the first operand.

<Rm> Specifies the register that is optionally shifted and used as the second operand.

<shift> Specifies the shift to apply to the value read from <Rm>. If <shift> is omitted, no shift is applied. The
possible shifts and how they are encoded are described in Shifts applied to a register on
page A7-180.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
(shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
result = R[n] OR NOT(shifted);
R[d] = result;
if setflags then
APSR.N = result<31l>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged

Exceptions

None.

ARM DDI 0403E.b Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-333
ID120114 Non-Confidential

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.90 ORR (immediate)

Logical OR (immediate) performs a bitwise (inclusive) OR of a register value and an immediate value, and writes
the result to the destination register. It can optionally update the condition flags based on the result.

Encoding T1 ARMv7-M
ORR{S}<c> <Rd>,<Rn>,#<const>

1514131211109 8 7 6 5 4 3 2 1 0151413121109 8 7 6 5 4 3 2 1 0
1111 0[iJoJo 0o 1 0[S[Rn 0] imm3 | Rd imm8

if Rn == '1111"' then SEE MOV (immediate);

d = UInt(Rd); n = UInt(Rn); setflags = (S == '1");
(imm32, carry) = ThumbExpandImm_C(i:imm3:imm8, APSR.C);
if d IN {13,15} || n == 13 then UNPREDICTABLE;

A7-334 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

Assembler syntax

ORR{S}<c><g> {<Rd>,} <Rn>, #<const>

where:

S If present, specifies that the instruction updates the flags. Otherwise, the instruction does not update
the flags.

<C><g> See Standard assembler syntax fields on page A7-175.

<Rd> Specifies the destination register. If <Rd> is omitted, this register is the same as <Rn>.

<Rn> Specifies the register that contains the operand.

<const> Specifies the immediate value to be added to the value obtained from <Rn>. See Modified immediate

constants in Thumb instructions on page A5-137 for the range of permitted values.

The pre-UAL syntax ORR<c>S is equivalent to ORRS<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
result = R[n] OR imm32;
R[d] = result;
if setflags then
APSR.N = result<31l>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged

Exceptions

None.

ARM DDI 0403E.b Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-335
ID120114 Non-Confidential

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.91 ORR (register)

Logical OR (register) performs a bitwise (inclusive) OR of a register value and an optionally-shifted register value,
and writes the result to the destination register. It can optionally update the condition flags based on the result.

Encoding T1 All versions of the Thumb instruction set.
ORRS <Rdn>, <Rm> Outside IT block.
ORR<c> <Rdn>, <Rm> Inside IT block.

1514131211109 8 7 6 5 4 3 2 1 0
010000[1100] Rm [Rdn

d = UInt(Rdn); n = UInt(Rdn); m = UInt(Rm); setflags = !InITBlock();
(shift_t, shift_n) = (SRType_LSL, 0);

Encoding T2 ARMv7-M
ORR{S}<c>.W <Rd>,<Rn>,<Rm>{,<shift>}

1514131211109 8 7 6 5 4 3 2 1 0[1514131211109 8 7 6 5 4 3 2 1 0
1110 1/o 1Jo 0 1 0[S Rn Jo] imm3 | Rd [imm2[type[Rm

if Rn == '1111' then SEE "Related encodings";

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); setflags = (S == '1");
(shift_t, shift_n) = DecodeImmShift(type, imm3:imm2);

if d IN {13,15} || n == 13 || m IN {13,15} then UNPREDICTABLE;

A7-336 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

Assembler syntax

ORR{S}<c><g> {<Rd>,} <Rn>, <Rm> {,<shift>}

where:

S If present, specifies that the instruction updates the flags. Otherwise, the instruction does not update
the flags.

<C><g> See Standard assembler syntax fields on page A7-175.

<Rd> Specifies the destination register. If <Rd> is omitted, this register is the same as <Rn>.

<Rn> Specifies the register that contains the first operand.

<Rm> Specifies the register that is optionally shifted and used as the second operand.

<shift> Specifies the shift to apply to the value read from <Rm>. If <shift> is omitted, no shift is applied and

both encodings are permitted. If <shift> is specified, only encoding T2 is permitted. The possible
shifts and how they are encoded are described in Shifts applied to a register on page A7-180.

A special case is that if ORR<c> <Rd>,<Rn>,<Rd> is written with <Rd> and <Rn> both in the range R0-R7, it will be
assembled using encoding T2 as though ORR<c> <Rd>,<Rn> had been written. To prevent this happening, use the . W
qualifier.

The pre-UAL syntax ORR<c>S is equivalent to ORRS<c>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
(shifted, carry) = Shift_C(R[m], shift_t, shift_n, APSR.C);
result = R[n] OR shifted;
R[d] = result;
if setflags then
APSR.N = result<31l>;
APSR.Z = IsZeroBit(result);
APSR.C = carry;
// APSR.V unchanged

Exceptions

None.

ARM DDI 0403E.b Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-337
ID120114 Non-Confidential

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.92 PKHBT, PKHTB

A Pack Halfword instruction combines one halfword of its first operand with the other halfword of its shifted second
operand.

Encoding T1 ARMV7E-M
PKHBT<c> <Rd>,<Rn>,<Rm>{,LSL #<imm>}
PKHTB<c> <Rd>,<Rn>,<Rm>{,ASR #<imm>}

1514131211109 8 7 6 5 4 3 2 1 0[|1514131211109 8 7 6 5 4 3 2 1 0
1110 1/o 1o 1 1 0[s[Rn [0 imm3 | Rd [imm2[tb[T[Rm

if S=="1" || T=="1" then UNDEFINED;

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm); tbform = (tb == '1");
(shift_t, shift_n) = DecodeImmShift(tb:'0"', imm3:imm2);

if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

A7-338 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

Assembler syntax

PKHBT{<c>}{<g>} {<Rd>,} <Rn>, <Rm> {, LSL #<imm>} th ==
PKHTB{<c>}{<g>} {<Rd>,} <Rn>, <Rm> {, ASR #<imm>} th ==
where:

<C>, <g> See Standard assembler syntax fields on page A7-175.

<Rd> The destination register.

<Rn> The first operand register.

<Rm> The register that is optionally shifted and used as the second operand.
<imm> The shift to apply to the value read from <Rm>, encoded in imm3:imm?2.

For PKHBT, it is one of:

omitted No shift, encoded as 0b00000

1-31 Left shift by specified number of bits, encoded as a binary number.
For PKHTB, it is one of:

omitted Instruction is a pseudo-instruction and is assembled as though
PKHBT{<c>}{<q>} <Rd>,<Rm>,<Rn> had been written

1-32 Arithmetic right shift by specified number of bits. A shift by 32 bits is encoded as
0b00000. Other shift amounts are encoded as binary numbers.

Note

An assembler can permit <imm> = 0 to mean the same thing as omitting the shift, but this is not
standard UAL and must not be used for disassembly.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
operand2 = Shift(R[m], shift_t, shift_n, APSR.C); // APSR.C ignored
R[d]<15:0> = if tbform then operand2<15:0> else R[n]<15:0>;
R[d]<31:16> = if tbform then R[n]<31:16> else operand2<31:16>;

Exceptions

None.

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-339
Non-Confidential

A7 Instruction Details

A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.93 PLD (immediate)
Preload Data signals the memory system that data memory accesses from a specified address are likely in the near
future. The memory system can respond by taking actions that are expected to speed up the memory accesses when
they do occur, such as pre-loading the cache line containing the specified address into the data cache. See Preloading
caches on page A3-98 and Memory hints on page A7-183 for additional information.
Encoding T1 ARMvV7-M
PLD<c> [<Rn>,#<imm12>]
1514131211109 8 7 6 5 4 3 2 1 0(1514131211109 8 7 6 5 4 3 2 1 0
11 1 1 1[0 oJo[1]o]Jo[1] Rn 11 11 imm12
if Rn == "1111' then SEE PLD (literal);
n = UInt(Rn); 1imm32 = ZeroExtend(imml2, 32); add = TRUE;
Encoding T2 ARMvV7-M
PLD<c> [<Rn>,#-<imm8>]
1514131211109 8 7 6 5 4 3 2 1 0(1514131211109 8 7 6 5 4 3 2 1 0
11 1 1 1[0 oJoJoJoJo[1] Rn 111 1[1[1 00 imm8
if Rn == '1111"' then SEE PLD (literal);
n = UInt(Rn); 1imm32 = ZeroExtend(imm8, 32); add = FALSE;
Assembler syntax
PLD<c><g> [<Rn> {, #+/-<imm>}]
where:
<C><g> See Standard assembler syntax fields on page A7-175.
<Rn> The base register. The SP can be used. For PC use in the PLD instruction, see PLD (literal) on
page A7-341.
+/- Is + or omitted to indicate that the immediate offset is added to the base register value (add == TRUE),
or — to indicate that the offset is to be subtracted (add == FALSE). Different instructions are generated
for #0 and #-0.
<imm> The immediate offset used to form the address. This offset can be omitted, meaning an offset of 0.
Values are:
Encoding T1 Any value in the range 0-4095.
Encoding T2 Any value in the range 0-255.
Operation
if ConditionPassed() then
EncodingSpecificOperations();
address = if add then (R[n] + imm32) else (R[n] - imm32);
Hint_PreloadData(address);
Exceptions
None.
A7-340 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b

Non-Confidential

ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.94 PLD (literal)

Preload Data signals the memory system that data memory accesses from a specified address are likely in the near
future. The memory system can respond by taking actions that are expected to speed up the memory accesses when
they do occur, such as pre-loading the cache line containing the specified address into the data cache. See Preloading
caches on page A3-98 and Memory hints on page A7-183 for additional information.

Encoding T1 ARMvV7-M
PLD<c> <label>

1514131211109 8 7 6 5 4 3 2
1

1 0[1514131211109 8 7 6 5 4 3 2 1 0
11 1 1 1o oJoJuJo of1]1 1 1 1

1111 imm12

imm32 = ZeroExtend(imml2, 32); add = (U == '1");

Assembler syntax

PLD<c><q> <label> Normal form

PLD<c><q> [PC, #+/-<imm>] Alternative form

where:

<C><g> See Standard assembler syntax fields on page A7-175.

<label> The label of the literal item that is likely to be accessed in the near future. The assembler calculates

the required value of the offset from the PC value of this instruction to the label. The offset must be
in the range -4095 to 4095.

If the offset is zero or positive, imm32 is equal to the offset and add == TRUE

If the offset is negative, imm32 is equal to minus the offset and add == FALSE

+/- Is + or omitted to indicate that the immediate offset is added to the base register value (add == TRUE),
or — to indicate that the offset is to be subtracted (add == FALSE). Different instructions are generated
for #0 and #-0.

<imm> The immediate offset used to form the address. Values are in the range 0-4095.

The alternative syntax permits the addition or subtraction of the offset and the immediate offset to be specified
separately, including permitting a subtraction of 0 that cannot be specified using the normal syntax. For more
information, see Use of labels in UAL instruction syntax on page A4-102.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
address = if add then (Align(PC,4) + imm32) else (Align(PC,4) - imm32);
Hint_PreloadData(address);

Exceptions

None.

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-341
Non-Confidential

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.95 PLD (register)

Preload Data is a memory hint instruction that can signal the memory system that data memory accesses from a
specified address are likely in the near future. The memory system can respond by taking actions that are expected
to speed up the memory accesses when they do occur, such as pre-loading the cache line containing the specified
address into the data cache. See Preloading caches on page A3-98 and Memory hints on page A7-183 for additional
information.

Encoding T1 ARMvV7-M
PLD<c> [<Rn>,<Rm>{,LSL #<imm2>}]

1514131211109 8 7 6 5 4 3 2 1 0151413121109 8 7 6 56 4 3 2 1 0
11 1 1 1[0 oJoJoJo of1] Rn 11 1 1[ofo 0 0 0 Ofimm2] Rm

if Rn == '1111"' then SEE PLD (literal);

n = UInt(Rn); m = UInt(Rm); add = TRUE;
(shift_t, shift_n) = (SRType_LSL, UInt(shift));
if m IN {13,15} then UNPREDICTABLE;

A7-342 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

Assembler syntax

PLD<c><q> [<Rn>, <Rm> {, LSL #<shift>}]

where:

<C><g> See Standard assembler syntax fields on page A7-175.

<Rn> Is the base register. This register is permitted to be the SP.

<Rm> Is the optionally shifted offset register.

<shift> Specifies the shift to apply to the value read from <Rm>, in the range 0-3. If this option is omitted, a
shift by 0 is assumed. <shift> is encoded in <imm2>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
offset = Shift(R[m], shift_t, shift_n, APSR.C);
address = if add then (R[n] + offset) else (R[n] - offset);
Hint_PreloadData(address);

Exceptions

None.

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-343
Non-Confidential

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.96 PLI (immediate, literal)

Preload Instruction is a memory hint instruction that can signal the memory system that instruction memory

accesses from a specified address are likely in the near future. The memory system can respond by taking actions

that are expected to speed up the memory accesses when they do occur, such as pre-loading the cache line containing

the specified address into the instruction cache. See Preloading caches on page A3-98 and Memory hints on

page A7-183 for additional information.

Encoding T1 ARMvV7

PLI<c> [<Rn>,#<imm12>]

1514131211109 8 7 6 5 4 3 2 1 0|1514131211109 8 7 6 5 4 3 2 1 0
1111 1[0 of1][1]o 0[1] Rn 11 11 imm12

if Rn == '1111' then SEE encoding T3;

n = UInt(Rn); imm32 = ZeroExtend(imml2, 32); add = TRUE;

Encoding T2 ARMV7

PLI<c> [<Rn>,#-<imm8>]

1514131211109 8 7 6 5 4 3 2 1 0(1514131211109 8 7 6 5 4 3 2 1 0
1111 1[0 of1]o]o of1] Rn 111 1[1[1 00 imm8

if Rn == '1111' then SEE encoding T3;

n = UInt(Rn); imm32 = ZeroExtend(imm8, 32); add = FALSE;

Encoding T3 ARMv7

PLI<c> <label>

1514131211109 8 7 6 5 4 3 2 1 0(1514131211109 8 7 6 5 4 3 2 1 0

111 1 1o of1[uJo of1]1 1 1 1]1 1 1 1] imm12

n =15; 1imm32 = ZeroExtend(imml2, 32); add = (U == '1");

A7-344 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b

Non-Confidential

ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

Assembler syntax

PLI<c><g> [<Rn>, #+/-<imm>]
PLI<c><q> [PC, #+/-<imm>]

where:

<C><g> See Standard assembler syntax fields on page A7-175.

<Rn> Is the base register. This register is permitted to be the SP.

+/- Is + or omitted to indicate that the immediate offset is added to the base register value (add == TRUE),
or — to indicate that the offset is to be subtracted (add == FALSE). Different instructions are generated
for #0 and #-0.

<imm> Specifies the offset from the base register. It must be in the range:
. —4095 to 4095 if the base register is the PC.
. —255 to 4095 otherwise.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
base = if n == 15 then Align(PC,4) else R[n];
address = if add then (base + imm32) else (base - imm32);
Hint_PreloadInstr(address);

Exceptions

None.

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-345
Non-Confidential

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.97 PLI (register)

Preload Instruction is a memory hint instruction that can signal the memory system that instruction memory
accesses from a specified address are likely in the near future. The memory system can respond by taking actions
that are expected to speed up the memory accesses when they do occur, such as pre-loading the cache line containing
the specified address into the instruction cache. For more information see Preloading caches on page A3-98 and
Memory hints on page A7-183.

Encoding T1 ARMvV7
PLI<c> [<Rn>,<Rm>{,LSL #<imm2>}]

1514131211109 8 7 6 5 4 3 2 1 0151413121109 8 7 6 56 4 3 2 1 0
1111 1[0 o]1]oJo 0[1] Rn 11 1 1[ofo 0 0 0 Ofimm2] Rm

if Rn == '1111' then SEE PLI (immediate, literal);
n = UInt(Rn); m = UInt(Rm); add = TRUE;
(shift_t, shift_n) = (SRType_LSL, UInt(imm2));

if m IN {13,15} then UNPREDICTABLE;

A7-346 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

Assembler syntax

PLI<c><q> [<Rn>, <Rm> {, LSL #<shift>}]

where:

<C><g> See Standard assembler syntax fields on page A7-175.

<Rn> Is the base register. This register is permitted to be the SP.

<Rm> Is the optionally shifted offset register.

<shift> Specifies the shift to apply to the value read from <Rm>, in the range 0-3. If this option is omitted, a
shift by 0 is assumed. <shift> is encoded in <imm2>.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
offset = Shift(R[m], shift_t, shift_n, APSR.C);
address = if add then (R[n] + offset) else (R[n] - offset);
Hint_PreloadInstr(address);

Exceptions

None.

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-347
Non-Confidential

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.98

POP

Pop Multiple Registers loads a subset, or possibly all, of the general-purpose registers RO-R12 and the PC or the LR
from the stack.

If the registers loaded include the PC, the word loaded for the PC is treated as a branch address or an exception
return value. Bit<0> complies with the ARM architecture interworking rules for branches to Thumb state execution
and must be 1. If bit<0> is 0, a UsageFault exception occurs.

Encoding T1 All versions of the Thumb instruction set.
POP<c> <registers>

1514131211109 8 7 6 56 4 3 2 1 0
101 1[1]1 o]P] register_list

registers = P:'0000000':register_list; UnalignedAllowed = FALSE;

if BitCount(registers) < 1 then UNPREDICTABLE;

if registers<15> == '1' && InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Encoding T2 ARMvV7-M

POP<c>.W <registers> <registers> contains more than one register

1514131211109 8 7 6 5 4 3 2
1

0151413121110 9 8 7 6 5 4 3 2 1 0
1110 1o oJo 1 of1[1]1 1

P [Mm]0)] register_list

1
0

registers = P:M:'0Q':register_list; UnalignedAllowed = FALSE;

if BitCount(registers) <2 || (P == "1' & M == '1') then UNPREDICTABLE;

if registers<15> == '1' & InITBlock() && !LastInITBlock() then UNPREDICTABLE;

Encoding T3 ARMv7-M

POP<c>.W <registers> <registers> contains one register, <Rt>

1514131211109 8 7 6 5 4 3 2
1

0[151413121110 9 8 7
1111 1]o ofofo[1 of1]H1 1

6 5432
Rt [1]o 1 1]o 0 0 0 0 1

10
00

1
0

t = UInt(Rt); registers = Zeros(16); registers<t> = 'l'; UnalignedAllowed = TRUE;
if t == 13 || (t == 15 && InITBlock() && !'LastInITBlock()) then UNPREDICTABLE;

A7-348

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b
Non-Confidential ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

Assembler syntax

POP<c><q> <registers> Standard syntax
LDMIA<c><g> SP!, <registers> Equivalent LDM syntax
where:

<C><g> See Standard assembler syntax fields on page A7-175.

<registers>

Is a list of one or more registers, separated by commas and surrounded by { and }. It specifies the
set of registers to be loaded. The registers are loaded in sequence, the lowest-numbered register from
the lowest memory address, through to the highest-numbered register from the highest memory
address. If the PC is specified in the register list, the instruction causes a branch to the address (data)
loaded into the PC.

If the list contains more than one register, the instruction is assembled to encoding T1 or T2. If the
list contains exactly one register, the instruction is assembled to encoding T1 or T3.

The SP cannot be in the list.
If the PC is in the list, the LR must not be in the list.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
address = SP;

SP = SP + 4xBitCount(registers);
for i =0 to 14
if registers<i> == '1' then
R[i] = MemA[address,4]; address = address + 4;
if registers<15> == '1' then
LoadWritePC(MemA[address,4]);
Exceptions

UsageFault, MemManage, BusFault.

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-349
Non-Confidential

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.99 PUSH

Push Multiple Registers stores a subset, or possibly all, of the general-purpose registers R0-R12 and the LR to the

stack.

Encoding T1
PUSH<c> <registers>

1514131211109 8 7 6 5 4 3 2 1

All versions of the Thumb instruction set.

0

1.0 1 1[0[1 o[M™M] register_list

registers = '0':M:'000000':register_list; Un
if BitCount(registers) < 1 then UNPREDICTABLE

Encoding T2 ARMv7-M
PUSH<c>.W <registers>

1514131211109 8 7 6 5 4 3

alignedAllowed = FALSE;

<registers> contains more than one register

1514131211109 8 7 6 56 4 3 2 1 0

21
10

1110 1o of[1 0 of1]o]H1

0
1

(0)[M](0)] register_list

registers = '0':M:'0Q':register_list;
if BitCount(registers) < 2 then UNPREDICTABLE

Encoding T3 ARMv7-M
PUSH<c>.W <registers>

1514131211109 8 7 6 5 4 3

UnalignedAllowed = FALSE;

<registers> contains one register, <Rt>

1514131211109 8 7 6

21
10

11 11 1]/o oJoJo]1 ofo[1

0 4 3 2 0
1 001 0

1
0

[« K&

Rt [1]1 0 1]0 0

t = UInt(Rt); registers = Zeros(16);
if t IN {13,15} then UNPREDICTABLE;

registers<t> = 'l';

UnaTlignedAllowed = TRUE;

A7-350

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved.
Non-Confidential

ARM DDI 0403E.b
ID120114

A7 Instruction Details
A7.7 Alphabetical list of ARMv7-M Thumb instructions

Assembler syntax

PUSH<c><g> <registers> Standard syntax
STMDB<c><q> SP!, <registers> Equivalent STM syntax
where:

<C><g> See Standard assembler syntax fields on page A7-175.

<registers> Is a list of one or more registers, separated by commas and surrounded by { and }. It specifies the
set of registers to be stored. The registers are stored in sequence, the lowest-numbered register to
the lowest memory address, through to the highest-numbered register to the highest memory
address.
If the list contains more than one register, the instruction is assembled to encoding T1 or T2. If the
list contains exactly one register, the instruction is assembled to encoding T1 or T3.

The SP and PC cannot be in the list.

Operation
if ConditionPassed() then
EncodingSpecificOperations();
address = SP - 4xBitCount(registers);
for i =0 to 14
if registers<i> == '1' then
MemA[address,4] = R[i];
address = address + 4;

SP = SP - 4xBitCount(registers);

Exceptions

UsageFault, MemManage, BusFault.

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-351
Non-Confidential

A7 Instruction Details

A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.100 QADD
Saturating Add adds two register values, saturates the result to the 32-bit signed integer range —231 <x <231 -1,
and writes the result to the destination register. If saturation occurs, it sets the Q flag in the APSR.
Encoding T1 ARMV7E-M
QADD<c> <Rd>,<Rm>,<Rn>
1514131211109 8 7 6 5 4 3 2 1 0(1514131211109 8 7 6 5 4 3 2 1 0
1111 1o 1 0[1]o 0 0] Rn 1111 Rd [1]o 0 0] Rm

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;
Assembler syntax
QADD{<c>}{<g>} {<Rd>,} <Rm>, <Rn>
where:
<C>, <> See Standard assembler syntax fields on page A7-175.
<Rd> The destination register.
<Rm> The first operand register.
<Rn> The second operand register.
Operation
if ConditionPassed() then

EncodingSpecificOperations();

(R[d], sat) = SignedSatQ(SInt(R[m]) + SInt(R[n]), 32);

if sat then

APSR.Q = '1';
Exceptions
None.
A7-352 Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. ARM DDI 0403E.b

Non-Confidential

ID120114

A7 Instruction Details

A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.101 QADD16

Saturating Add 16 performs two 16-bit integer additions, saturates the results to the 16-bit signed integer range

215 <x <2151, and writes the results to the destination register.

Encoding T1 ARMV7E-M
QADD16<c> <Rd>,<Rn>,<Rm>

1514131211109 8 7 6 56 4 3 2 1 0|151413121110 9

876543210

1111 1o 1 0[1]o 0 1] Rn 1111 Rd

[0]o 0 1 Rm

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler syntax

QADD16{<c>}{<g>} {<Rd>,} <Rn>, <Rm>

where:

<C>, <> See Standard assembler syntax fields on page A7-175.
<Rd> The destination register.

<Rn> The first operand register.

<Rm> The second operand register.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
suml = SInt(R[n]<15:0>) + SInt(R[m]<15:0>);
sum2 = SInt(R[n]<31:16>) + SInt(R[m]<31:16>);
R[d]<15:0> = SignedSat(suml, 16);
R[d]<31:16> = SignedSat(sum2, 16);

Exceptions

None.

ARM DDI 0403E.b
ID120114

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved. A7-353

Non-Confidential

A7 Instruction Details

A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.102 QADDS8

Saturating Add 8 performs four 8-bit integer additions, saturates the results to the 8-bit signed integer range

—27<x <27-1, and writes the results to the destination register.

Encoding T1 ARMV7E-M
QADD8<c> <Rd>,<Rn>,<Rm>

1514131211109 8 7 6 56 4 3 2 1 0|151413121110 9

876543210

1111 1o 1 0[1]o 0 0] Rn 1111 Rd

[o]o 0 1

Rm

d = UInt(Rd); n = UInt(Rn); m = UInt(Rm);
if d IN {13,15} || n IN {13,15} || m IN {13,15} then UNPREDICTABLE;

Assembler syntax

QADD8{<c>}{<g>} {<Rd>,} <Rn>, <Rm>

where:

<C>, <> See Standard assembler syntax fields on page A7-175.
<Rd> The destination register.

<Rn> The first operand register.

<Rm> The second operand register.

Operation

if ConditionPassed() then
EncodingSpecificOperations();
suml = SInt(R[n]<7:0>) + SInt(R[m]<7:0>);
sum2 = SInt(R[n]<15:8>) + SInt(R[m]<15:8>);
sum3 = SInt(R[n]<23:16>) + SInt(R[m]<23:16>);
sum4 = SInt(R[n]<31:24>) + SInt(R[m]<31:24>);
R[d]<7:0> = SignedSat(suml, 8);
R[d]<15:8> = SignedSat(sum2, 8);
R[d]<23:16> = SignedSat(sum3, 8);
R[d]<31:24> = SignedSat(sum4, 8);

Exceptions

None.

A7-354

Copyright © 2006-2008, 2010, 2014 ARM. All rights reserved.

Non-Confidential

ARM DDI 0403E.b
ID120114

A7 Instruction Details

A7.7 Alphabetical list of ARMv7-M Thumb instructions

A7.7.103 QASX

Saturating Add and Subtract with Exchange exchanges the two halfwords of the second operand, performs one
16-bit integer addition and one 16-bit subtraction