

Complete Guide to Shodan
Collect. Analyze. Visualize. Make Internet Intelligence Work
for You.

John Matherly

This book is for sale at http://leanpub.com/shodan

This version was published on 2017-08-23

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean Publishing
process. Lean Publishing is the act of publishing an in-progress ebook using lightweight tools and
many iterations to get reader feedback, pivot until you have the right book and build traction once
you do.

© 2015 - 2017 Shodan, LLC

http://leanpub.com/shodan
http://leanpub.com/
http://leanpub.com/manifesto

Tweet This Book!
Please help John Matherly by spreading the word about this book on Twitter!

The suggested hashtag for this book is #shodan.

Find out what other people are saying about the book by clicking on this link to search for this
hashtag on Twitter:

https://twitter.com/search?q=#shodan

http://twitter.com
https://twitter.com/search?q=%23shodan
https://twitter.com/search?q=%23shodan

Contents

Introduction . 1
All About the Data . 1
Data Collection . 3
SSL In Depth . 4
Beyond the Basics . 7

Web Interfaces . 10
Search Query Explained . 10
Introducing Filters . 11
Shodan Search Engine . 12
Shodan Maps . 18
Shodan Exploits . 25
Shodan Images . 26
Exercises: Website . 28

External Tools . 29
Shodan Command-Line Interface . 29
Maltego Add-On . 40
Browser Plug-Ins . 40
Exercises: Command-Line Interface . 41

Developer API . 42
Usage Limits . 42
Introducing Facets . 43
Getting Started . 44
Initialization . 44
Search . 44
Host Lookup . 46
Scanning . 46
Real-Time Stream . 47
Network Alert . 48
Example: Public MongoDB Data . 51
Exercises: Shodan API . 56

CONTENTS

Industrial Control Systems . 57
Common Abbreviations . 57
Protocols . 57
Securing Internet-Connected ICS . 59
Use Cases . 59

Appendix A: Banner Specification . 69
General Properties . 69
Elastic Properties . 70
HTTP(S) Properties . 70
Location Properties . 70
SMB Properties . 71
SSH Properties . 71
SSL Properties . 71
ISAKMP Properties . 72
Special Properties . 72
Example . 73

Appendix B: List of Search Filters . 75
General Filters . 75
HTTP Filters . 75
NTP Filters . 76
SSL Filters . 76
Telnet Filters . 77

Appendix C: Search Facets . 78
General Facets . 78
HTTP Facets . 78
NTP Facets . 78
SSH Facets . 79
SSL Facets . 79
Telnet Facets . 79

Appendix D: List of Ports . 81

Appendix E: Sample SSL Banner . 87

Exercise Solutions . 90
Website . 90
Command-Line Interface . 90
Shodan API . 91

Introduction
Shodan is a search engine for Internet-connected devices. Web search engines, such as Google and
Bing, are great for finding websites. But what if you’re interested in finding computers running a
certain piece of software (such as Apache)? Or if you want to know which version of Microsoft IIS
is the most popular? Or you want to see how many anonymous FTP servers there are? Maybe a new
vulnerability came out and you want to see how many hosts it could infect? Traditional web search
engines don’t let you answer those questions.

All About the Data

Banner

The basic unit of data that Shodan gathers is the banner. The banner is textual information that
describes a service on a device. For web servers this would be the headers that are returned or for
Telnet it would be the login screen.

The content of the banner varies greatly depending on the type of service. For example, here is a
typical HTTP banner:

HTTP/1.1 200 OK

Server: nginx/1.1.19

Date: Sat, 03 Oct 2015 06:09:24 GMT

Content-Type: text/html; charset=utf-8

Content-Length: 6466

Connection: keep-alive

The above banner shows that the device is running the nginx web server software with a version
of 1.1.19. To show how different the banners can look like, here is a banner for the Siemens S7
industrial control system protocol:

Introduction 2

Copyright: Original Siemens Equipment

PLC name: S7_Turbine

Module type: CPU 313C

Unknown (129): Boot Loader A

Module: 6ES7 313-5BG04-0AB0 v.0.3

Basic Firmware: v.3.3.8

Module name: CPU 313C

Serial number of module: S Q-D9U083642013

Plant identification:

Basic Hardware: 6ES7 313-5BG04-0AB0 v.0.3

The Siemens S7 protocol returns a completely different banner, this time providing information
about the firmware, its serial number and a lot of detailed data to describe the device.

You have to decide what type of service you’re interested in when searching in Shodan because the
banners vary greatly.

Note: Shodan lets you search for banners - not hosts. This means that if a single IP
exposes many services they would be represented as separate results.

Device Metadata

In addition to the banner, Shodan also grabs meta-data about the device such as its geographic
location, hostname, operating system and more (see Appendix A). Most of the meta-data is
searchable via the main Shodan website, however a few fields are only available to users of the
developer API.

IPv6

As of October 2015, Shodan gathers millions of banners per month for devices accessible on IPv6.
Those numbers still pale in comparison to the hundreds of millions of banners gathered for IPv4 but
it is expected to grow over the coming years.

Introduction 3

Data Collection

Frequency

The Shodan crawlers work 24/7 and update the database in real-time. At any moment you query
the Shodan website you’re getting the latest picture of the Internet.

Distributed

Crawlers are present in countries around the world, including:

• USA (East and West Coast)
• China
• Iceland
• France
• Taiwan
• Vietnam
• Romania
• Czech Republic

Data is collected from around the world to prevent geographic bias. For example, many system
administrators in the USA block entire Chinese IP ranges. Distributing Shodan crawlers around the
world ensures that any sort of country-wide blocking won’t affect data gathering.

Randomized

The basic algorithm for the crawlers is:

1. Generate a random IPv4 address
2. Generate a random port to test from the list of ports that Shodan understands
3. Check the random IPv4 address on the random port and grab a banner
4. Goto 1

This means that the crawlers don’t scan incremental network ranges. The crawling is performed
completely random to ensure a uniform coverage of the Internet and prevent bias in the data at any
given time.

Introduction 4

SSL In Depth

SSL is becoming an evermore important aspect of serving and consuming content on the Internet, so
it’s only fit that Shodan extends the information that it gathers for every SSL-capable service. The
banners for SSL services, such as HTTPS, include not just the SSL certificate but also much more.
All the collected SSL information discussed below is stored in the ssl property on the banner (see
Appendix A and Appendix E).

Vulnerability Testing

Heartbleed

If the service is vulnerable toHeartbleed then the banner contains 2 additional properties.opts.heartbleed
contains the raw response from running the Heartbleed test against the service. Note that for the test
the crawlers only grab a small overflow to confirm the service is affected by Heartbleed but it doesn’t
grab enough data to leak private keys. The crawlers also addedCVE-2014-0160 to the opts.vulns list
if the device is vulnerable. However, if the device is not vulnerable then it adds “!CVE-2014-0160”.
If an entry in opts.vulns is prefixed with a ! or - then the service is not vulnerable to the given
CVE.

{

"opts": {

"heartbleed": "... 174.142.92.126:8443 - VULNERABLE\n",

"vulns": ["CVE-2014-0160"]

}

}

Shodan also supports searching by the vulnerability information. For example, to search Shodan for
devices in the USA that are affected by Heartbleed use:

country:US vuln:CVE-2014-0160

FREAK

If the service supports EXPORT ciphers then the crawlers add the “CVE-2015-0204” item to the
opts.vulns property:

Introduction 5

"opts": {

"vulns": ["CVE-2015-0204"]

}

Logjam

The crawlers try to connect to the SSL service using ephemeral Diffie-Hellman ciphers and if the
connection succeeds the following information is stored:

"dhparams": {

"prime": "bbbc2dcad84674907c43fcf580e9...",

"public_key": "49858e1f32aefe4af39b28f51c...",

"bits": 1024,

"generator": 2,

"fingerprint": "nginx/Hardcoded 1024-bit prime"

}

Version

Normally, when a browser connects to an SSL service it will negotiate the SSL version and cipher
that should be used with the server. They will then agree on a certain SSL version, such as TLSv1.2,
and then use that for the communication.

Shodan crawlers start out the SSL testing by doing a normal request as outlined above where they
negotiate with the server. However, afterwards they also explicitly try connecting to the server using
a specific SSL version. In other words, the crawlers attempt to connect to the server using SSLv2,
SSLV3, TLSv1.0, TLSv1.1 and TLSv1.2 explicitly to determine all the versions that the SSL service
supports. The gathered information is made available in the ssl.versions field:

{

"ssl": {

"versions": ["TLSv1", "SSLv3", "-SSLv2", "-TLSv1.1", "-TLSv1.2"]

}

}

If the version has a - (dash) in front of the version, then the device does not support that SSL version.
If the version doesn’t begin with a -, then the service supports the given SSL version. For example,
the above server supports:

Introduction 6

TLSv1

SSLv3

And it denies versions:

SSLv2

TLSv1.1

TLSv1.2

The version information can also be searched over the website/ API. For example, the following
search query would return all SSL services (HTTPS, POP3 with SSL, etc.) that allow connections
using SSLv2:

ssl.version:sslv2

Follow the Chain

The certificate chain is the list of SSL certificates from the root to the end-user. The banner for
SSL services includes a ssl.chain property that includes all of the SSL certificates of the chain in
PEM-serialized certificates.

Introduction 7

Beyond the Basics

For most services the crawlers attempt to analyze the main banner text and parse out any useful
information. A few examples are the grabbing of collection names for MongoDB, taking screenshots
from remote desktop services and storing a list of peers for Bitcoin. There are 2 advanced data
analysis techniques Shodan uses that I’d like to highlight:

Web Components

The crawlers try to determine the web technologies that were used to create a website. For the
http and https modules the headers and HTML are analyzed to breakdown the components of the
website. The resulting information is stored in the http.components property. The property is a
dictionary of technologies, where the key is the name of the technology (ex. jQuery) and the value
is another dictionary with a property of categories. The categories property is a list of categories that
are associated with the technology. For example:

"http": {

...

"components": {

"jQuery": {

"categories": ["javascript-frameworks"]

},

"Drupal": {

"categories": ["cms"]

},

"PHP": {

"categories": ["programming-languages"]

}

},

...

},

The http.components property indicates that the website is running the Drupal content manage-
ment system, which itself uses jQuery and PHP. The Shodan REST API makes the information

Introduction 8

searchable via the filter http.component and 2 facets (http.component and http.component_cat-
egory). To get a full list of all the possible component/ category values please use the new facets.
For example, to get a full list of all the possible categories use the following shodan command:

$ shodan stats --facets http.component_category:1000 http

Top 47 Results for Facet: http.component_category

javascript-frameworks 8,982,996

web-frameworks 1,708,503

programming-languages 1,409,763

font-scripts 1,280,397

Cascading

If a banner returns information about peers or otherwise has information about another IP address
that runs a service then the crawlers try to perform a banner grab on that IP/ service. For example:
the default port for the mainline DHT (used by Bittorrent) is 6881. The banner for such a DHT node
looks as follows:

DHT Nodes

97.94.250.250 58431

150.77.37.22 34149

113.181.97.227 63579

252.246.184.180 36408

83.145.107.53 52158

77.232.167.126 52716

25.89.240.146 27179

147.23.120.228 50074

85.58.200.213 27422

180.214.174.82 36937

241.241.187.233 60339

166.219.60.135 3297

149.56.67.21 13735

107.55.196.179 8748

Previously, a crawler would grab the above banner and then move on. With cascading enabled for
the DHT banner grabber the crawler now launches new banner grabbing requests for all of the peers.
In the above example, the crawler would launch a scan for IP 54.70.96.157 on port 61770 using the
dht banner grabber, IP 85.82.92.188 on port 42155 and so on. I.e. a single scan for an IP can cause a
cascade of scans if the initial scan data contains information about other potential hosts.

To keep track of the relationship between the initial scan request and any child/ cascading requests
we’ve introduced 2 new properties:

Introduction 9

• _shodan.id: A unique ID for the banner. This property is guaranteed to exist if a cascading
request could get launched from the service, though it doesn’t necessarily mean that any
cascading requests succeeded.

• _shodan.options.referrer: Provides the unique ID of the banner that triggered the creation
of the current banner. I.e. the referrer is the parent of the current banner.

Web Interfaces
The easiest way to access the data that Shodan gathers is through the web interfaces. Almost all of
them let you enter a search query, so lets discuss that first:

Search Query Explained

By default, the search query only looks at the main banner text and doesn’t search the meta-data.
For example, if you’re searching for “Google” then the results will only include results where the
text “Google” was shown in the banner; it wouldn’t necessarily return results for Google’s network
range.

Shodan search for “Google”

As seen above, a search for “Google” returns a lot of Google Search Appliances that organizations
have purchased and connected to the Internet; it doesn’t return Google’s servers.

Shodan will try to find results matching all search terms, which means that implicitly there is a +
or AND between each search term. For example, the search queries “apache + 1.3” is equivalent to
“apache 1.3”.

To search the meta-data you need to use search filters.

Web Interfaces 11

Introducing Filters

Filters are special keywords that Shodan uses to let you narrow search results based on the meta-data
of a service or device. The format for entering filters is:

filtername:value

Important: There is no space between the colon “:” and the value.

To use a value that contains a space with a filter you have to wrap the value in double quotes. For
example, to find all devices on the Internet that are located in San Diego you would search for:

city:"San Diego"

A few filters let you specify several values that are separated by a comma “,”. For example, to find
devices that are running Telnet on ports 23 and 1023:

port:23,1023

If a filter doesn’t allow commas in its value (ex. port, hostname, net) then it lets you providemultiple
values.

Filters can also be used to exclude results by prepending a minus sign “-“ to the filter. For example,
the following would return all devices that aren’t located in San Diego:

-city:"San Diego"

There are many situations where excluding is easier than including. For example, the following
search query uses hash:0 to provide results for services on port 8080 where the main text banner
isn’t empty:

port:8080 -hash:0

Every banner on Shodan has a numeric hash property calculated; for empty banners that value is
zero. If you’re trying to find devices that have a short, static banner then the hash filter may provide
a good way to accurately identify them.

Shodan supports a lot of filters, a few popular ones are:

Web Interfaces 12

Filter Name Description Example

category Available categories: ics, malware
city Name of the city
country Full country name
net Only show results inside the provided IP

range in CIDR format
net:190.30.40.0/24

org Narrow results based on the organization
that owns the IP

org:”Verizon Wireless”

See Appendix B for a full list of search filters that are available.

Shodan Search Engine

The main interface for accessing the data gathered by Shodan is via its search engine located at
https://www.shodan.io

By default, the search query will look at the data collected within the past 30 days. This is a change
from the old website at shodanhq.com, which searched the entire Shodan database by default. This
means that the results you get from the website are recent and provide an accurate view of the
Internet at the moment.

In addition to searching, the website also provides the following functionality:

Web Interfaces 13

Download Data

After completing a search there will be a button at the top called Download Data. Clicking on that
button will provide you with the option of downloading the search results in JSON, CSV or XML
formats.

The JSON format generates a file where each line contains the full banner and all accompanying
meta-data that Shodan gathers. This is the preferred format as it saves all available information.
And the format is compatible with the Shodan command-line client, meaning you can download
data from the Shodan website then process it further using the terminal.

The CSV format returns a file containing the IP, port, banner, organization and hostnames for the
banner. It doesn’t contain all the information that Shodan gathers due to limitations in the CSV file
format. Use this if you only care about the basic information of the results and want to quickly load
it into external tools such as Excel.

The XML format is the old, deprecated way of saving search results. It is harder to work with than
JSON and consumes more space, thereby making it suboptimal for most situations.

Downloading data consumes export credits, which are one-time use and purchased on the website.
They aren’t associated in any way with the Shodan API and they don’t automatically renew every
month. 1 export credit can be used to download up to 10,000 results.

Data files generated by the website can be retrieved in the Downloads section of the website, which

Web Interfaces 14

you can visit by clicking on the button in the upper right corner.

Generate Report

The website lets you generate a report based off of a search query. The report contains graphs/ charts
providing you a big picture view of how the results are distributed across the Internet. This feature
is free and available to anyone.

When you generate a report you are asking Shodan to take a snapshot of the search results
and provide an aggregate overview. Once the report has been generated, it doesn’t change or
automatically update as new data is being collected by Shodan. This also means that you can
generate a report once a month and keep track of changes over time by comparing it to reports

of previous months. By clicking on the button in the top right corner you can get a listing
of previously generated reports.

Web Interfaces 15

Shared Search Queries

Finding specific devices requires knowledge about the software they run and how they respond to
banner grabs over the Internet. Fortunately, it is possible to leverage the shared knowledge of the
community using the search directory on Shodan. People are able to readily describe, tag and share
their search queries for others to use. If you’re interested in getting started with Shodan, the shared
searches should be your first stop.

Warning: Shared search queries are publicly viewable. Do not share queries that are
sensitive or you don’t want others to know about.

Example: Finding Non-Default Services

A common reaction I get when talking about devices exposed on the Internet is something like the
following:

Web Interfaces 16

Specifically, the idea that running the service (in this case Minecraft) on a non-standard port is a
good way to stay hidden. In security circles this is also known as the concept of security by obscurity,
and it’s considered a largely ineffective, deprecated idea. What’s worse is that it might give you the
owner of the server/ device a false sense of security. For example, lets take a look at people running
OpenSSH on a non-standard port. To do this we will use the following search query:

product:openssh -port:22

The product filter is used to only show OpenSSH servers while -port:22 tells Shodan to exclude all
results that were collected from the standard SSH port (22). To get a better overview of the search
results lets generate a report:

The report also gives us a breakdown of the most common non-standard ports:

1. 2222: 323,930
2. 5000: 47,439
3. 23: 13,482
4. 26: 7,569
5. 5555: 6,856
6. 9999: 6,286
7. 82: 6,046
8. 2323: 3,622
9. 6666: 2,735
10. 3333: 2,644

These numbers don’t look that random to me… Right away you should realize that your random
choice of non-standard port might not be so unique. Port 2222 is popular the same way that HTTP
on port 8080 is popular, and it’s also the default port for the Kippo honeypot though I doubt that
many people are running honeypots. The next most popular port is 5000, which didn’t follow the

Web Interfaces 17

same pattern as the other ports to me (repeating/ symmetric numbers). And it was around the same
time that I realized that Australia was the 2nd most popular country to run OpenSSH on a non-
standard port. I decided to take a closer look at Australia, and it turns out that there are nearly the
same amount of servers running OpenSSH on port 5000 as they are on the default port 22. About
68,000 devices are running on the default port, and 54,000 on port 5000. Looking at a few banners
we can determine that this is the SSH fingerprint that they all share:

5b:a2:5a:9a:91:28:60:9c:92:2b:9e:bb:7f:7c:2e:06

It appears that the Australian ISP BigPond installs/ configures networking gear that not only runs
OpenSSH on port 5000 (most likely for remote management) but also has the same SSH keys installed
on all of them. The devices also happen to run an old version of OpenSSH that was released on
September 4th 2007. There’s no guarantee that running OpenSSH on the default port would’ve made
them more security conscious, but their installation of∼54,000 devices is 25% of the total number of
OpenSSH servers on the Internet running version 4.7 (sidenote: themost popular version of OpenSSH
is 5.3).

Web Interfaces 18

Shodan Maps

Shodan Maps1 provides a way to explore search results visually instead of the text-based main
website. It displays up to 1,000 results at a time and as you zoom in/ out Maps adjusts the search
query to only show results for the area you’re looking at.

All search filters that work for the main Shodan website also work on Maps.

Map Styles

There are a variety of map styles available to present the data to your preference. Click on the
gear button next to the search button for a list of options.

Satellite

1https://maps.shodan.io

https://maps.shodan.io/
https://maps.shodan.io/

Web Interfaces 19

Satellite without Labels

Web Interfaces 20

Streets (Light)

Web Interfaces 21

Streets (Dark)

Web Interfaces 22

Streets (Green)

Web Interfaces 23

Streets (Red)

Web Interfaces 24

Pirate

Web Interfaces 25

Shodan Exploits

Shodan Exploits2 collects vulnerabilities and exploits from CVE, Exploit DB and Metasploit to make
it searchable via web interface.

The search filters available for Exploits are different than the rest of Shodan, though an attempt was
made to keep them similar when possible.

Important: By default, Exploits will search the entire content of the available exploit
information includingmeta-data. This is unlike Shodan, which only searches the banner
text if no other filters are specified.

The following search filters are available:

Name Description

author Author of the vulnerability/ exploit
description Description
platform Platform that it targets (ex: php, windows, linux)
type Exploit type (ex: remote, dos)

2https://exploits.shodan.io

https://exploits.shodan.io/
https://exploits.shodan.io/

Web Interfaces 26

Shodan Images

For a quick way to browse all the screenshots that Shodan collects check out Shodan Images3. It is
a user-friendly interface around the has_screenshot filter.

The search box at the top uses the same syntax as the main Shodan search engine. It is most useful
to use the search box to filter by organization or netblock. However, it can also be used to filter the
types of images that are shown.

Image data is gathered from 5 different sources:

• VNC
• Remote Desktop (RDP)
• RTSP
• Webcams
• X Windows

Each image source comes from a different port/ service and therefor has a different banner. This
means that if you only want to see images from webcams you could search for4:

3https://images.shodan.io
4https://images.shodan.io/?query=http

https://images.shodan.io/
https://images.shodan.io/?query=http
https://images.shodan.io/
https://images.shodan.io/?query=http

Web Interfaces 27

HTTP

To search for VNC you can search using RFB and for RTSP you simply search with RTSP.

The images can also be found using the main Shodan website or Shodan Maps by using the search
query has_screenshot:true.

Web Interfaces 28

Exercises: Website

Exercise 1

Find the 4SICS website using Shodan.

Tip: Check out Appendix B for a list of search filters.

Exercise 2

How many VNC services on the Internet allow anonymous access?

Exercise 3

How many IPs in Sweden are vulnerable to Heartbleed and still support SSLv3?

How many IPs are vulnerable to Heartbleed at your organization?

Exercise 4

Find all the industrial control systems in your town.

Exercise 5

Which RAT is most popular in the USA?

External Tools
Shodan Command-Line Interface

Getting Started

The shodan command-line interface is packaged with the official Python library for Shodan, which
means if you’re running the latest version of the library you already have access to the CLI. To install
the new tool simply execute:

easy_install shodan

Once the tool is installed it has to be initialized with your API key:

shodan init YOUR_API_KEY

Visit https://account.shodan.io to retrieve the API key for your account.

alert

The alert command provides you the ability to create, list, clear and remove network alerts.

convert

Convert the compressed JSON file generated by Shodan into a different file format. At the moment
it supports output to kml and csv.

count

Returns the number of results for a search query.

$ shodan count microsoft iis 6.0

5360594

External Tools 30

download

Search Shodan and download the results into a file where each line is a JSON banner (see Appendix
A).

By default it will only download 1,000 results, if you want to download more look at the --limit
flag.

The download command is what you should be using most often when getting results from Shodan
since it lets you save the results and process them afterwards using the parse command. Because
paging through results uses query credits, it makes sense to always store searches that you’re doing
so you won’t need to use query credits for a search you already did in the past.

host

See information about the host such as where it’s located, what ports are open and which
organization owns the IP.

$ shodan host 189.201.128.250

External Tools 31

honeyscore

Check whether an IP address is a honeypot pretending to be an industrial control system.

$ shodan honeyscore 41.231.95.212

info

Obtain general information about your API plan, including how many query and scan credits you
have remaining this month.

$ shodan info

Query credits available: 5102

Scan credits available: 249

myip

Returns your Internet-facing IP address.

$ shodan myip

199.30.49.210

External Tools 32

parse

Use parse to analyze a file that was generated using the download command. It lets you filter out
the fields that you’re interested in, convert the JSON to a CSV and is friendly for pipe-ing to other
scripts.

The following command outputs the IP address, port and organization in CSV format for the
previously downloaded Microsoft-IIS data:

$ shodan parse --fields ip_str,port,org --separator , microsoft-data.json.gz

scan

The scan command provides a few sub-commands but the most important one is submit which lets
you perform network scans using Shodan.

$ shodan scan submit 202.69.165.20

External Tools 33

search

This command lets you search Shodan and view the results in a terminal-friendly way. By default it
will display the IP, port, hostnames and data. You can use the –fields parameter to print whichever
banner fields you’re interested in.

For example, to search Microsoft IIS 6.0 and print out their IP, port, organization and hostnames use
the following command:

$ shodan search --fields ip_str,port,org,hostnames microsoft iis 6.0

External Tools 34

stats

The stats command lets you print the facets for a search query.

For example, the following command shows the most popular countries where Apache web servers
are located in:

$ shodan stats --facets country apache

Top 10 Results for Facet: country

US 8,336,729

DE 4,512,172

CN 1,470,434

JP 1,093,699

GB 832,221

NL 684,432

FR 667,871

CA 501,630

RU 324,698

BR 266,788

External Tools 35

stream

The stream command provides access to the real-time stream of data that the Shodan crawlers
collect.

The command supports many different flags, however there are 2 that are important to mention:

–datadir

The –datadir flag lets you specify a directory in which the streamed data should be stored. The files
generated in the –datadir directory have the following naming convention:

YYYY-MM-DD.json.gz

A sample file name would be “2016-01-15.json.gz”. Each day a new file is automatically generated as
long as you keep the stream running. For example, the following command downloads all the data
from the real-time stream and saves it in a directory called /var/lib/shodan/:

shodan stream --datadir /var/lib/shodan/

–limit

The –limit flag specifies how many results that should be downloaded. By default, the stream

command runs forever until you exit the tool. However, if you’re only interested in collecting a
sample of data then the –limit flag ensures you gather a small amount of records. For example:

External Tools 36

shodan stream --limit 100

The above command would connect to the Shodan real-time stream, print out the first 100 records
that are received and then exit.

–ports

The –ports flag accepts a comma-separated list of ports to let you stream only records gathered
from those ports. The following command prints out a stream of banners that were collected from
services running on port 80 or 8080:

shodan stream --ports 80,8080

Example: Network Analysis

The most common use-case for Shodan is using it to get a better picture of what’s running on your
public network range. The shodan command-line tool can help you get a quick idea of what you’re
dealing with. For the purpose of this example we will take a look at the range of 78.13.0.0/16. Toget
started lets see how many services are exposed to the Internet:

$ shodan count net:78.13/16

4363

The count command will provide us the total number of banners that Shodan has gathered for the
78.13/16 subnet. At the moment of writing this turns out to be 4,363 results. The count gives us an
idea of how big the public network surface is for the organization but it doesn’t give much insight
into whether the exposed services are intended to be that way or not. As such, the next step is to get
a breakdown of the open ports on the network:

$ shodan stats --facets port net:78.13/16

Top 10 Results for Facet: port

7547 1,192

80 543

443 264

8080 191

1900 147

53 122

49152 83

81 64

22 61

21 38

The top 10 most commonly seen ports is a good starting point but ideally we want to get a full
distribution. To do so we specify the maximum number of facet values that should be returned:

External Tools 37

$ shodan stats --facets port:100000 net:78.13/16

Top 1060 Results for Facet: port

7547 1,192

80 543

443 264

8080 191

1900 147

53 122

49152 83

81 70

22 70

21 59

5060 55

1723 49

554 40

3128 36

5555 33

8443 31

8000 28

8081 25

5000 23

82 21

6881 19

8089 17

500 16

83 16

37777 14

88 13

5353 12

4500 12

5001 10

...

There are a total of 1060 unique ports that were discovered open on the network. We asked for a
large maximum number of facets (10,000) since it’s much larger than the ∼300 ports that Shodan
crawls. At this point we have a few areas that can be further explored. Firstly, the most common port
is 7547 which is used by modems to update their settings and has been in the news5 due to security
issues. There are also manyweb servers running on non-standard ports (8080, 81, 82, 8443 etc.) which
could be worth looking into. For example, these are the web servers that power the services on the
non-standard ports:

5http://www.computerworld.com/article/3145003/internet/blame-the-isps-rather-than-the-routers.html

http://www.computerworld.com/article/3145003/internet/blame-the-isps-rather-than-the-routers.html
http://www.computerworld.com/article/3145003/internet/blame-the-isps-rather-than-the-routers.html

External Tools 38

$ shodan stats --facets product "HTTP net:78.13/16 -port:80,443"

Top 10 Results for Facet: product

Apache httpd 39

micro_httpd 22

GoAhead-Webs httpd 21

nginx 18

Netwave IP camera http config 16

Boa HTTPd 13

uc-httpd 5

Allegro RomPager 4

uhttpd 3

mt-daapd DAAP 2

Note: the search query is wrapped in quotes to prevent Bash from thinking that -port
is a flag for the shodan command.

Another common interest is understanding the SSL usage across a network. For this, we can take
advantage of Shodan’s SSL testing that is performed automatically on all SSL-capable services
(HTTPS, POP3, IMAP etc.). To get started lets see which SSL/ TLS versions are most common for
web servers:

$ shodan stats --facets ssl.version HTTP net:78.13/16

Top 5 Results for Facet: ssl.version

tlsv1 283

tlsv1.2 190

tlsv1.1 187

sslv3 80

sslv2 34

The good news is that the majority are running on TLS1.0 and above, however there are still a few
devices that support the ancient, deprecated SSLv2.

External Tools 39

It appears that Netgear devices account for the bulk of SSLv2-capable services on this network.

Example: Telnet Research

Lets assume we want to perform research into devices on the Internet running Telnet. As a starting
point we can combine all of the aforementioned commands into the following:

mkdir telnet-data

shodan stream --ports 23,1023,2323 --datadir telnet-data/ --limit 10000

First, we create a directory called telnet-data to store the Telnet data. Thenwe request 10,000 records
(–limit 10000) from the stream on common Telnet ports (–ports 23,1023,2323) and store the results
in the previously created directory (–datadir telnet-data/).

External Tools 40

Maltego Add-On

Maltego is an open source intelligence and forensics application; it lets you visually explore and
correlate data from a variety of sources.

The Shodan add-on for Maltego provides 2 new entities (Service and Exploit) and 5 transforms:

• searchShodan
• searchShodanByDomain
• searchShodanByNetblock
• toShodanHost
• searchExploits

Browser Plug-Ins

There are plugins available for both Chrome6 and Firefox7 that let you see what services a website
exposes.

6https://chrome.google.com/webstore/detail/shodan/jjalcfnidlmpjhdfepjhjbhnhkbgleap
7https://addons.mozilla.org/en-us/firefox/addon/shodan-firefox-addon/

https://chrome.google.com/webstore/detail/shodan/jjalcfnidlmpjhdfepjhjbhnhkbgleap
https://addons.mozilla.org/en-us/firefox/addon/shodan-firefox-addon/
https://chrome.google.com/webstore/detail/shodan/jjalcfnidlmpjhdfepjhjbhnhkbgleap
https://addons.mozilla.org/en-us/firefox/addon/shodan-firefox-addon/

External Tools 41

Exercises: Command-Line Interface

Exercise 1

Download the IPs vulnerable to Heartbleed in Sweden and Norway using the Shodan CLI.

Filter out the results for Sweden and store them in a separate file.

Note: Uncompress the file and look at the raw data to see the raw response from the
Heartbleed test.

Exercise 2

Download 1,000 recent banners using the real-time stream and then map them using Google Maps.

Tip: shodan convert

Exercise 3

Write a script to download a list of known malware IPs and block any outgoing traffic to them.

Tip: iptables -A OUTPUT -d x.x.x.x -j DROP

Developer API
Shodan provides a developer API (https://developer.shdan.io/api) for programmatic access to the
information that is collected. All of the websites and tools, including the main Shodan website, are
powered by the API. Everything that can be done via the website can be accomplished from your
own code.

The API is divided into 2 parts: REST API and Streaming API. The REST API provides methods to
search Shodan, look up hosts, get summary information on queries and a variety of utilitymethods to
make developing easier. The Streaming API provides a raw, real-time feed of the data that Shodan is
currently collecting. There are several feeds that can be subscribed to, but the data can’t be searched
or otherwise interacted with; it’s a live feed of data meant for large-scale consumption of Shodan’s
information.

Note: Only users with an API subscription are able to access the Streaming API.

Usage Limits

There are 3 methods of the API that get limited depending on your API plan:

1. Searching To limit the number of searches that can be performed per month Shodan uses
query credits. 1 query credits is used when you perform a search containing filters or go
past the 1st page. For example, if you search for “apache” that doesn’t use any query credits.
If you search for “apache country:US” that would use 1 query credit. Likewise, if you searched
for the 2nd page of results for “apache” that would use 1 query credit. Finally, a search query
for the 2nd page of “apache country:US” would also use up 1 query credit.

2. Scanning The on-demand scanning API uses scan credits to limit the number of hosts that
you can request Shodan to scan every month. For every host that you request a scan of Shodan
deducts 1 scan credit.

3. Network Alerts The number of IPs that can be monitored using alerts is limited based on
your API subscription. Only paid customers have access to this feature. And you can’t create
more than 100 alerts on your account.

Important: Query and scan credits are reset at the start of every month.

Developer API 43

Introducing Facets

Facets provide aggregate information about a specific field of the banner you’re interested in. Filters
let you narrow down search results while facets let you get a big picture view of the results. For
example, the main Shodan website uses facets to provide the statistics information on the left side
of the search results:

A long list of facets are available (see Appendix C) and using the API you are in control of which
facets you care about. For example, searching for port:22 and faceting on the ssh.fingerprint

facet will give you a breakdown of which SSH fingerprints are most commonly seen on the Internet.
Facets are often the starting point for research into Internet-wide issues such as duplicate SSH keys,
negligent hosting providers or country-wide security holes.

At the moment, facets are only available from the API and the Shodan command-line interface.

Developer API 44

Getting Started

All the examples will be provided in Python and assume you have access to the command-line,
though there are Shodan libraries/ clients available in other languages8 as well.

To install the Shodan library for Python run the following command:

easy_install shodan

If you already have it installed and want to upgrade to the latest version:

easy_install -U shodan

Initialization

The first thing that always has to be done is initializing the Shodan API object:

import shodan

api = shodan.Shodan('YOUR API KEY')

Where YOUR API KEY is the API key for you account which you can obtain from:

https://account.shodan.io

Search

Now that we have our API object all good to go, we’re ready to perform a search:

Wrap the request in a try/ except block to catch errors

try:

Search Shodan

results = api.search('apache')

Show the results

print 'Results found: %s' % results['total']

for result in results['matches']:

print 'IP: %s' % result['ip_str']

print result['data']

print ''

except shodan.APIError, e:

print 'Error: %s' % e

8https://developer.shodan.io/api/clients

https://developer.shodan.io/api/clients
https://developer.shodan.io/api/clients

Developer API 45

Stepping through the code, we first call the Shodan.search()method on the api object which returns
a dictionary of result information. We then print how many results were found in total, and finally
loop through the returnedmatches and print their IP and banner. Each page of search results contains
up to 100 results.

There’s a lot more information that gets returned by the function. See below for a shortened example
dictionary that Shodan.search returns:

{

'total': 8669969,

'matches': [

{

'data': 'HTTP/1.0 200 OK\r\nDate: Mon, 08 Nov 2010 05:09:59 GMT\r\nSer...',

'hostnames': ['pl4t1n.de'],

'ip': 3579573318,

'ip_str': '89.110.147.239',

'os': 'FreeBSD 4.4',

'port': 80,

'timestamp': '2014-01-15T05:49:56.283713'

},

...

]

}

See Appendix A for a complete list of properties that the banner may contain.

Important: By default, a few of the large fields in the banner such as “html” get truncated to
reduce bandwidth usage. If you want to retrieve all the information simply disable minification
using minify=False. For example, the following search query for anonymous VNC services would
ensure all information is returned:

results = api.search('has_screenshot:true', minify=False)

It’s also good practice to wrap all API requests in a try/ except clause, since any error will raise an
exception. But for simplicity’s sake, I will leave that part out from now on.

The above script only outputs the results from the 1st page of results. To get the 2nd page of results
or more simply use the page parameter when doing the search request:

results = api.search('apache', page=2)

Or if you want to simply loop over all possible results there’s a method to make your life easier
called search_cursor()

Developer API 46

for banner in api.search_cursor('apache'):

print(banner['ip_str']) # Print out the IP address for each banner

Important: The search_cursor()method only returns the banners and doesn’t let you
use facets. Only use it to loop over results.

Host Lookup

To see what Shodan has available on a specific IP we can use the Shodan.host() function:

Lookup the host

host = api.host('217.140.75.46')

Print general info

print """

IP: %s

Organization: %s

Operating System: %s

""" % (host['ip_str'], host.get('org', 'n/a'), host.get('os', 'n/a'))

Print all banners

for item in host['data']:

print """

Port: %s

Banner: %s

""" % (item['port'], item['data'])

By default, Shodan only returns information on the host that was recently collected. If you would
like to get a full history of an IP address, include the history parameter. For example:

host = api.host('217.140.75.46', history=True)

The above would return all banners, including for services that may no longer be active on the host.

Scanning

Shodan crawls the Internet at least once a month, but if you want to request Shodan to scan a
network immediately you can do so using the on-demand scanning capabilities of the API.

Developer API 47

Unlike scanning via a tool such as Nmap, the scanning with Shodan is done asynchronously. This
means that after you submit a request to Shodan you don’t get back the results immediately. It is
up to the developer to decide how the results of the scan should be gathered: by looking up the IP
information, searching Shodan or subscribing to the real-time stream. The Shodan command-line
interface creates a temporary network alert after a scan was initiated and then waits for results to
come through the real-time stream.

scan = api.scan('198.20.69.0/24')

It’s also possible to submit a list of networks at once by providing a list of addresses in CIDR notation:

scan = api.scan(['198.20.49.30', '198.20.74.0/24'])

After submitting a scan request the API will return the following information:

{

'id': 'R2XRT5HH6X67PFAB',

'count': 1,

'credits_left': 5119

}

The object provides a unique id that you can use for tracking purposes, the total count of IPs that
were submitted for scanning and finally how many scan credits are left (credits_left).

Real-Time Stream

The Streaming API is an HTTP-based service that returns a real-time stream of data collected by
Shodan. It doesn’t provide any search or lookup capabilities, it is simply a feed of everything that is
gathered by the crawlers.

For example, here is a script that outputs a stream of banners from devices that are vulnerable to
FREAK (CVE-2015-0204):

Developer API 48

def has_vuln(banner, vuln):

if 'vulns' in banner['opts'] and vuln in banner['opts']['vulns']:

return True

return False

for banner in api.stream.banners():

if has_vuln(banner, 'CVE-2015-0204'):

print banner

To save space and bandwidth many properties in the banner are optional. To make working with
optional properties easier it is best to wrap access to properties in a function. In the above example,
the has_vuln() method checks whether the service is vulnerable for the provided CVE.

Note: Regular API subscriptions only have access to 1% of the feed. 100% access is
available to data license customers only.

Network Alert

A network alert is a real-time feed of data that is being collected by Shodan for a network range. To
get started with network alerts requires 2 steps:

Creating a Network Alert

To create a network alert you need to provide a name and a network range. The name should be
descriptive to let you know what the alert is monitoring or why it was created.

alert = api.create_alert('Production network', '198.20.69.0/24')

As with the scan() method you can also provide a list of network ranges to monitor:

alert = api.create_alert('Production and Staging network', [

'198.20.69.0/24',

'198.20.70.0/24',

])

Note: Only a limited number of IPs can be monitored using network alerts and an
account can’t have more than 100 alerts active.

A useful trick when combining network alerts with the scanning API is to set an expiration for the
alert:

Developer API 49

alert = api.create_alert('Temporary alert', '198.20.69.0/24', expires=60)

The above alert would be active for 60 seconds and then expire, at which point the alert can’t be
used any more.

Upon successfully creating an alert, the API will return the following object:

{

"name": "Production network",

"created": "2015-10-17T08:13:58.924581",

"expires": 0,

"expiration": null,

"filters": {

"ip": ["198.20.69.0/24"]

},

"id": "EPGWQG5GEELV4799",

"size": 256

}

Subscribing

Once an alert has been created it is ready to be used as a real-time stream of data for that network.

for banner in api.stream.alert(alert['id']):

print banner

As with the regular, real-time stream the alert() method provides an iterator where each item is a
banner as it’s being collected by the Shodan crawlers. The only argument that the alert() method
requires is the alert ID that was returned when creating the network alert.

Using the Shodan Command-Line Interface

We will quickly examine how the above Python code could be implemented using the Shodan CLI9

instead. Let’s start off by clearing out any existing alerts:

Warning
The clear command removes all alerts that have been created on your account.

9https://cli.shodan.io

https://cli.shodan.io/
https://cli.shodan.io/

Developer API 50

$ shodan alert clear

Removing Scan: 198.20.69.0/24 (ZFPSZCYUKVZLUT4F)

Alerts deleted

And confirm that there aren’t any existing alerts anymore:

$ shodan alert list

You haven't created any alerts yet.

Now it’s time to create a new network alert:

$ shodan alert create "Temporary alert" 198.20.69.0/24

Successfully created network alert!

Alert ID: ODMD34NFPLJBRSTC

The final step is to subscribe to the network alert and store the data it returns. To stream results for
the created alert we give the alert ID ODMD34NFPLJBRSTC to the stream command:

$ mkdir alert-data

$ shodan stream --alert=ODMD34NFPLJBRSTC --datadir=alert-data

In the above commandwe are streaming results for the–alertwith the ID of ODMD34NFPLJBRSTC
and the results will be stored in a directory called alert-data. Every day a new file will be generated
in the alert-data directory which contains the banners gathered for the day. I.e. we don’t need to
take care of rotating files, the stream command will take care of that for us so after a few days the
directory will look like:

$ ls alert-data

2016-06-05.json.gz

2016-06-06.json.gz

2016-06-07.json.gz

Developer API 51

Example: Public MongoDB Data

MongoDB10 is a popular NoSQL11 database and for a long time it didn’t come with any authenti-
cation. This has resulted in many instances of MongoDB being publicly accessible on the Internet.
Shodan grabs a banner for these databases that contains a lot of information about the data stored.
Following is an excerpt from the banner:

MongoDB Server Information

...

{

"ok": 1.0,

"tokumxAuditVersion": "unknown",

"bits": 64,

"tokukvVersion": "unknown",

"tokumxVersion": "2.0.2",

"javascriptEngine": "V8",

"version": "2.4.10",

"versionArray": [

2,

4,

10,

0

],

"debug": false,

"compilerFlags": "-fPIC -fno-strict-aliasing -ggdb -Wall -Wsign-compare -Wno\

-unknown-pragmas -Winvalid-pch -pipe -Wnon-virtual-dtor -Woverloaded-virtual -Wn\

o-unused-local-typedefs -fno-builtin-memcmp -O3",

"maxBsonObjectSize": 16777216,

"sysInfo": "Linux vps-vivid-x64-04 2.6.32-042stab106.6 #1 SMP Mon Apr 20 14:\

48:47 MSK 2015 x86_64 x86_64 x86_64 GNU/Linux BOOST_LIB_VERSION=1_55",

"loaderFlags": " ",

"gitVersion": "unknown"

},

...

Basically, the banner is eithermade up of a header that says “MongoDB Server Information” followed
by 3 JSON objects that are separated by commas or the banner contains “authentication enabled”
in case the server requires credentials. Each JSON object contains different information about the
database and I recommend you check out a full banner on Shodan (it’s very long) by searching for:

10https://www.mongodb.com
11https://en.wikipedia.org/wiki/NoSQL

https://www.mongodb.com/
https://en.wikipedia.org/wiki/NoSQL
https://www.mongodb.com/
https://en.wikipedia.org/wiki/NoSQL

Developer API 52

product:MongoDB metrics

Note: the metrics search term ensures we only get MongoDB instances that don’t
require authentication.

Let’s use the banner information to determine which database names are most popular and how
much data is publicly exposed on the Internet! The basic workflow will be to:

1. Download all MongoDB banners
2. Process the downloaded file and output a list of top 10 database names as well as the total

data size

Downloading the data is simple using the Shodan command-line interface12:

shodan download --limit -1 mongodb-servers.json.gz product:mongodb

The above command says to download all results (–limit -1) into a file calledmongodb-servers.json.gz
for the search query product:mongodb. You can also download the results of the command from
the Extras section of the book on Leanpub. Now we just need a simple Python script to process the
Shodan data file. To easily iterate over the file we’re going to use the shodan.helpers.iterate_files()
method:

import shodan.helpers as helpers

import sys

The datafile is the 1st argument to the command

datafile = sys.argv[1]

for banner in helpers.iterate_files(datafile):

Now we have the banner

Since each banner is just JSONwith some added header, lets process the banner into a native Python
dictionary using the simplejson library:

12https://cli.shodan.io

https://cli.shodan.io/
https://cli.shodan.io/

Developer API 53

Strip out the MongoDB header added by Shodan

data = banner['data'].replace('MongoDB Server Information\n', '').split('\n},\n'\

)[2]

Load the database information

data = simplejson.loads(data + '}')

The only thing that’s left is keeping track of the total amount of data that’s exposed and the most
popular database names:

total_data = 0

databases = collections.defaultdict(int)

...

Then in the loop

Keep track of how much data is publicly accessible

total_data += data['totalSize']

Keep track of which database names are most common

for db in data['databases']:

databases[db['name']] += 1

Python has a useful collections.defaultdict class that automatically creates a default value for a
dictionary key if the key doesn’t yet exist. And we just access the totalSize and databases property
of the MongoDB banner to gather the information we care about. Finally, we just need to output the
actual results:

print('Total: {}'.format(humanize_bytes(total_data)))

counter = 1

for name, count in sorted(databases.iteritems(), key=operator.itemgetter(1), rev\

erse=True)[:10]:

print('#{}\t{}: {}'.format(counter, name, count))

counter += 1

First, we print the total amount of data that’s exposed and we’re using a simple humanize_bytes()
method to convert bytes into human-readable format of GB/ MB/ etc. Second, we loop sort the
databases collection in reverse order by the number of times that a certain database name was
seen (key=operator.itemgetter(1)) and get the top 10 results ([:10]).

Below is the full script that reads a Shodan data file and analyzes the banner:

Developer API 54

import collections

import operator

import shodan.helpers as helpers

import sys

import simplejson

def humanize_bytes(bytes, precision=1):

"""Return a humanized string representation of a number of bytes.

Assumes `from __future__ import division`.

>>> humanize_bytes(1)

'1 byte'

>>> humanize_bytes(1024)

'1.0 kB'

>>> humanize_bytes(1024*123)

'123.0 kB'

>>> humanize_bytes(1024*12342)

'12.1 MB'

>>> humanize_bytes(1024*12342,2)

'12.05 MB'

>>> humanize_bytes(1024*1234,2)

'1.21 MB'

>>> humanize_bytes(1024*1234*1111,2)

'1.31 GB'

>>> humanize_bytes(1024*1234*1111,1)

'1.3 GB'

"""

abbrevs = (

(1<<50L, 'PB'),

(1<<40L, 'TB'),

(1<<30L, 'GB'),

(1<<20L, 'MB'),

(1<<10L, 'kB'),

(1, 'bytes')

)

if bytes == 1:

return '1 byte'

for factor, suffix in abbrevs:

if bytes >= factor:

break

return '%.*f %s' % (precision, bytes / factor, suffix)

Developer API 55

total_data = 0

databases = collections.defaultdict(int)

for banner in helpers.iterate_files(sys.argv[1]):

try:

Strip out the MongoDB header added by Shodan

data = banner['data'].replace('MongoDB Server Information\n', '').split(\

'\n},\n')[2]

Load the database information

data = simplejson.loads(data + '}')

Keep track of how much data is publicly accessible

total_data += data['totalSize']

Keep track of which database names are most common

for db in data['databases']:

databases[db['name']] += 1

except Exception, e:

pass

print('Total: {}'.format(humanize_bytes(total_data)))

counter = 1

for name, count in sorted(databases.iteritems(), key=operator.itemgetter(1), rev\

erse=True)[:10]:

print('#{}\t{}: {}'.format(counter, name, count))

counter += 1

Here’s a sample output of the script:

Total: 1.8 PB

#1 local: 85845

#2 admin: 67648

#3 test: 24983

#4 s: 5121

#5 config: 4329

#6 proxy: 2045

#7 research: 2007

#8 seolib_new: 2001

#9 traditional: 1998

#10 simplified: 1998

Developer API 56

Exercises: Shodan API

Exercise 1

Write a script to monitor a network using Shodan and send out notifications.

Exercise 2

Write a script to output the latest images into a directory.

Tip: Images are encoded using base64. Python can easily decode it into binary using:
image_string.decode(‘base64’)

Industrial Control Systems
In a nutshell, industrial control systems (ICS) are computers that control the world around you.
They’re responsible for managing the air conditioning in your office, the turbines at a power plant,
the lighting at the theatre or the robots at a factory.

Research conducted from 2012 through 2014 by Project SHINE13 (SHodan INtelligence Extraction)
indicates there are at least 2million publicly accessible devices related to ICS on the Internet. The first
dataset containing 500,000 ICS devices was sent in 2012 to the ICS-CERT. The ICS-CERT determined
that roughly 7,200 out of the 500,000 were critical infrastructure14 in the United States. And with the
demand for increased connectivity in everything that number is expected to rise. There have been
efforts to secure these devices by taking them offline or patching flaws, but it’s a challenging problem
and there isn’t an easy solution.

Common Abbreviations

Before getting into the protocols and how to find ICS devices, here are a few common abbreviations
that are useful to know:

BMS Building Management System
DCS Distributed Control System
HMI Human Machine Interface
ICS Industrial Control System
PLC Programmable Logic Controller
RTU Remote Terminal Unit
SCADA Supervisory Control and Data Acquisition (a subset of ICS)
VNC Virtual Network Computing

Protocols

There are 2 different ways of identifying control systems on the Internet:

Non-ICS protocols used in an ICS environment

The majority of the ICS findings on Shodan are discovered by searching for web servers or other
popular protocols that aren’t directly linked to ICS but may be seen on an ICS network. For example:

13http://www.slideshare.net/BobRadvanovsky/project-shine-findings-report-dated-1oct2014
14https://ics-cert.us-cert.gov/sites/default/files/Monitors/ICS-CERT_Monitor_Oct-Dec2012.pdf

http://www.slideshare.net/BobRadvanovsky/project-shine-findings-report-dated-1oct2014
https://ics-cert.us-cert.gov/sites/default/files/Monitors/ICS-CERT_Monitor_Oct-Dec2012.pdf
http://www.slideshare.net/BobRadvanovsky/project-shine-findings-report-dated-1oct2014
https://ics-cert.us-cert.gov/sites/default/files/Monitors/ICS-CERT_Monitor_Oct-Dec2012.pdf

Industrial Control Systems 58

a web server running on an HMI or a Windows computer running unauthenticated remote desktop
while connected to an ICS. These protocols provide you with a visual view of the ICS but they
usually have some form of authentication enabled.

The above is an HMI for an engine exposed via an unauthenticated VNC connection found on
Shodan Images15.

ICS protocols

These are the raw protocols that are used by the control systems. Every ICS protocol has its own
unique banner but there’s one thing they all have in common: they don’t require any authentication.
This means that if you have remote access to an industrial device you automatically have the ability
to arbitrarily read and write to it. However, the raw ICS protocols tend to be proprietary and hard
to develop with. This means that it’s easy to check whether a device supports an ICS protocol using
Shodan but hard to actually interact with the control system.

15https://images.shodan.io

https://images.shodan.io/
https://images.shodan.io/

Industrial Control Systems 59

The following banner describes a Siemens S7 PLC, note that it contains a lot of detailed information
about the device including its serial number and location:

Securing Internet-Connected ICS

The majority of ICS banners don’t contain information on where the device is located or who owns
the control system. This makes it exceedingly difficult to secure the device and is one of the main
reasons that they continue to stay online after years of research into their online exposure.

If you discover a control system that looks critical, belongs to a government or otherwise shouldn’t
be online please notify the ICS-CERT16

Use Cases

Assessing ICS for the USA

You’ve been tasked with generating a quick presentation on the exposure of industrial control
systems for the USA. To get started, lets first get a general idea of what’s out there using the main
Shodan website:

https://www.shodan.io/search?query=category%3Aics17

This returns a list of all devices running ICS protocols on the Internet. However, there are a lot
of webservers and other protocols (SSH, FTP etc.) running on the same ports as industrial control
systems which we need to filter out:

16https://ics-cert.us-cert.gov/Report-Incident?
17https://www.shodan.io/search?query=category%3Aics

https://ics-cert.us-cert.gov/Report-Incident
https://www.shodan.io/search?query=category:ics
https://ics-cert.us-cert.gov/Report-Incident
https://www.shodan.io/search?query=category:ics

Industrial Control Systems 60

https://www.shodan.io/search?query=category%3Aics+-http+-html+-ssh+-ident18

Note: if you have enterprise-level access you can use tag:ics instead of the above search
query.

Now we have a filtered list of devices running insecure ICS protocols. Since the focus of the
presentation will be on the USA, it’s time to narrow the results to only IPs in the USA:

https://www.shodan.io/search?query=category%3Aics+-http+-html+-ssh+-ident+country%3Aus19

To get a big picture view of the data and have some charts to work with we can generate a free
report20. This provides us with a better understanding of which ICS protocols are seen on the Internet
in the US:

Tridium’s Fox protocol, used by their Niagara framework, is the most popular ICS protocol in the
US followed by BACnet and Modbus. The data shows that the majority of exposed devices are BMS
used in offices, factories, stadiums, auditoriums and various facilities.

The above chart was saved as an image using Nimbus Screen Capture21 on Firefox, but you can also
use the Awesome Screenshot Minus22 plug-in for Chrome.

The report23 also highlights a common issue with ICS on the Internet: the majority of them are on
mobile networks. This makes it especially difficult to track down and secure these devices.

18https://www.shodan.io/search?query=category%3Aics+-http+-html+-ssh+-ident
19https://www.shodan.io/search?query=category%3Aics+-http+-html+-ssh+-ident+country%3Aus
20https://www.shodan.io/report/mHpcVgdq
21https://addons.mozilla.org/en-US/firefox/addon/nimbus-screenshot/
22https://chrome.google.com/webstore/detail/awesome-screenshot-minus/bnophbnknjcjnbadhhkciahanapffepm?hl=en
23https://www.shodan.io/report/mHpcVgdq

https://www.shodan.io/search?query=category:ics+-http+-html+-ssh+-ident
https://www.shodan.io/search?query=category:ics+-http+-html+-ssh+-ident+country:us
https://www.shodan.io/report/mHpcVgdq
https://www.shodan.io/report/mHpcVgdq
https://addons.mozilla.org/en-US/firefox/addon/nimbus-screenshot/
https://chrome.google.com/webstore/detail/awesome-screenshot-minus/bnophbnknjcjnbadhhkciahanapffepm?hl=en
https://www.shodan.io/report/mHpcVgdq
https://www.shodan.io/search?query=category:ics+-http+-html+-ssh+-ident
https://www.shodan.io/search?query=category:ics+-http+-html+-ssh+-ident+country:us
https://www.shodan.io/report/mHpcVgdq
https://addons.mozilla.org/en-US/firefox/addon/nimbus-screenshot/
https://chrome.google.com/webstore/detail/awesome-screenshot-minus/bnophbnknjcjnbadhhkciahanapffepm?hl=en
https://www.shodan.io/report/mHpcVgdq

Industrial Control Systems 61

At this point, the data shows us the following:

1. There are at least 65,000 ICS on the Internet exposing their raw, unauthenticated interfaces
2. Nearly half of them (∼31,000) are in the US alone
3. Buildings are the most commonly seen type of ICS
4. Mobile networks host the largest amount

Further Reading

1. Distinguishing Internet-Facing Devices using PLC Programming Information24

2. NIST Special Publication - Guide to Industrial Control Systems Security25

3. Quantitatively Assessing and Visualizing Industrial System Attack Surfaces26

24https://www.hsdl.org/?abstract&did=757013
25http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-82r2.pdf
26https://www.cl.cam.ac.uk/~fms27/papers/2011-Leverett-industrial.pdf

https://www.hsdl.org/?abstract&did=757013
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-82r2.pdf
https://www.cl.cam.ac.uk/~fms27/papers/2011-Leverett-industrial.pdf
https://www.hsdl.org/?abstract&did=757013
http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-82r2.pdf
https://www.cl.cam.ac.uk/~fms27/papers/2011-Leverett-industrial.pdf

Industrial Control Systems 62

Identifying Honeypots

Honeypots have become an increasingly popular and useful tool in understanding attackers. I’ve
seen many misconfigured honeypots while scanning the Internet, here are a few tips to identify
them or mistakes to avoid when setting them up.

What is a honeypot?

A honeypot is a device that pretends to be something it actually isn’t for the purpose of logging and
monitoring network activity. In the case of control systems, an ICS honeypot is a regular computer
that pretends to be a control system such as a factory or power plant. They are used to collect
information on attackers, including which networks the attackers are targeting, what tools they’re
using and many other useful insights that help defenders harden their network.

In recent years, honeypots have been used to measure the number of attacks that have been
attempted against industrial control systems connected to the Internet. However, it is critically
important to understand proper honeypot deployment before trying to gather the data. Many people
misconfigure their honeypots and I will outline how those mistakes make it trivial to determine
whether a device is a real control system or a honeypot.

Themost popular and de-facto honeypot used to simulate industrial control systems is Conpot27. The
software is well-written and extremely powerful when properly configured. Most of the examples
and discussion will be using Conpot but the principles apply to all honeypot software.

Why Detect Them?

The data that honeypots generate is only as good as their deployment. If we want to make informed
decisions about who is attacking control systems we have to ensure the data is being gathered from
realistic honeypots. Sophisticated attackers won’t be fooled by honeypots that are poorly configured.
It’s important to raise awareness for common pitfalls when deploying honeypots to improve the
quality of data being collected.

Default Configurations

The most common mistake that people make when deploying honeypots is using the default
configuration. All default configurations return the same banner, including identical serial numbers,
PLC names and many other fields that you would expect to vary from IP to IP.

I first realized how common this problem is soon after doing the first Internet scan for Siemens S7:

27https://github.com/mushorg/conpot/

https://github.com/mushorg/conpot/
https://github.com/mushorg/conpot/

Industrial Control Systems 63

30% of the serial numbers in the results were present in more than one banner. It doesn’t mean that
all of the duplicate serial numbers are honeypots but it’s a good starting point for investigation.

In the case of S7, the most popular serial number seen on the Internet is 8811122228 which is the
default serial number for Conpot.

28https://www.shodan.io/search?query=port%3A102+88111222

https://www.shodan.io/search?query=port:102+88111222
https://www.shodan.io/search?query=port:102+88111222

Industrial Control Systems 64

Searching by the serial number makes it trivial to locate instances of Conpot on the Internet. And
make sure to also change the other properties of the banner, not just the serial number:

Industrial Control Systems 65

The above user changed the serial number to a unique value but failed to change the PLC name
(Technodrome) and the plant identification (Mouser Factory). Every honeypot instance must have
unique values in order to evade honeypot detection techniques.

History Matters

The honeypot has to be deployed properly from day 1 otherwise the banner history for the device
will reveal it as a honeypot. For example:

The above is a banner pretending to be a Siemens S7 PLC. However, there was an error in the
template generating the banner and instead of showing a valid PLC name it shows the template’s
random.randint(0,1) method. Shodan has indexed this banner and even if the bug is fixed in the
future a user could look up the history for this IP and see that it used to have an invalid S7 banner.

A sample Shodan API request for the history of an IP:

host = api.host('xxx.xxx.xxx.xxx', history=True)

Emulate Devices, Not Services

Keep it simple, don’t try to emulate too many services at once. A honeypot should emulate a
device and most real devices don’t run MongoDB, DNP3, MySQL, Siemens S7, Kamstrup, ModBus,
Automated Tank Gauge, Telnet and SSH on the same IP.

Industrial Control Systems 66

Think about how the device is configured in the real-world and then emulate it, don’t run every
possible service simply because it’s possible.

In code, you could use the number of ports as a metric:

Get information about the host

host = api.host('xxx.xxx.xxx.xxx')

Check the number of open ports

if len(host['ports']) > 10:

print('{} looks suspicious'.format(host['ip_str']))

else:

print('{} has few ports open'.format(host['ip_str']))

Location, Location, Location

It isn’t just the software that needs to be properly configured, a honeypot also has to be hosted on a
network that could reasonably have a control system. Putting a honeypot that simulates a Siemens
PLC in the Amazon cloud doesn’t make any sense. Here are a few of the popular cloud hosting
providers that should be avoided when deploying an ICS honeypot:

1. Amazon EC2
2. Rackspace
3. Digital Ocean
4. Vultr
5. Microsoft Azure
6. Google Cloud

For realistic deployment, look at the most popular ISPs in Shodan for publicly accessible ICS.
In general, it is better to put the honeypot in the IP space of a residential ISP. The following
organizations are the common locations in the USA:

Industrial Control Systems 67

Honeyscore

I developed a tool called Honeyscore29 that uses all of the aforementioned methods as well as
machine learning to calculate a honeyscore and determine whether an IP is a honeypot or not.

Simply enter the IP address of a device and the tool will perform a variety of checks to see whether
it is a honeypot.

Tag: honeypot

The machine learning algorithm that powers Honeyscore has been ported to the crawlers so they’re
able to determine ICS honeypots as they collect data. In addition, we’ve also added detection for

29https://honeyscore.shodan.io

https://honeyscore.shodan.io/
https://honeyscore.shodan.io/

Industrial Control Systems 68

popular web application honeypots and a few Elastic honeypots. If a banner belongs to a known
honeypot, then the tags property will contain the honeypot tag. The crawlers will also provide the
name of the identified honeypot in the product property.

Further Reading

1. Wikipedia article on honeypots30

2. Breaking Honeypots for Fun and Profit (Video)31

30https://en.wikipedia.org/wiki/Honeypot_%28computing%29
31https://www.youtube.com/watch?v=Pjvr25lMKSY

https://en.wikipedia.org/wiki/Honeypot_(computing)
https://www.youtube.com/watch?v=Pjvr25lMKSY
https://en.wikipedia.org/wiki/Honeypot_(computing)
https://www.youtube.com/watch?v=Pjvr25lMKSY

Appendix A: Banner Specification
For the latest list of fields that the banner contains please visit the online documentation32.

A banner may contain the following properties/ fields:

General Properties

Name Description Example

asn Autonomous system number AS4837
data Main banner for the service HTTP/1.1 200…
ip IP address as an integer 493427495
ip_str IP address as a string 199.30.15.20
ipv6 IPv6 address as a string 2001:4860:4860::8888
port Port number for the service 80
timestamp Date and time the information was

collected
2014-01-15T05:49:56.283713

hash Numeric hash of the data property
hostnames List of hostnames for the IP [“shodan.io”, “www.shodan.io”]
domains List of domains for the IP [“shodan.io”]
link Network link type Ethernet or modem
location Geographic location of the device see below
opts Supplemental/ experimental data

not contained in main banner
org Organization that is assigned the IP Google Inc.
isp ISP that is responsible for the IP

space
Verizon Wireless

os Operating system Linux
uptime Uptime of the IP in minutes 50
tags List of tags that describe the

purpose of the device
(Enterprise-only)

[“ics”, “vpn”]

transport Type of transport protocol used to
collect banner; either “udp” or “tcp”

tcp

32https://developer.shodan.io/api/banner-specification

https://developer.shodan.io/api/banner-specification
https://developer.shodan.io/api/banner-specification

Appendix A: Banner Specification 70

Elastic Properties

The following properties are collected for Elastic (formerly ElasticSearch):

Name Description

elastic.cluster General information about the cluster
elastic.indices List of indexes available on the cluster
elastic.nodes List of nodes/ peers for the cluster and their information

HTTP(S) Properties

Shodan follows redirects of HTTP responses and stores all intermediate data in the banner. The only
time the crawlers don’t follow a redirect is if a HTTP request gets redirected to a HTTPS location
and vice versa.

Name Description

http.components Web technologies that were used to create the website
http.host Hostname sent to grab the website HTML
http.html HTML content of the website
http.html_hash Numeric hash of the http.html property
http.location Location of the final HTML response
http.redirects List of redirects that were followed. Each redirect item has 3

properties: host, data and location.
http.robots robots.txt file for the website
http.server Server header from the HTTP response
http.sitemap Sitemap XML for the website
http.title Title of the website

Location Properties

The following properties are sub-properties of the location property that is at the top-level of the
banner record.

Appendix A: Banner Specification 71

Name Description

area_code Area code of the device’s location
city Name of the city
country_code 2-letter country code
country_code3 3-letter country code
country_name Full name of the country
dma_code Designated market area code (US-only)
latitude Latitude
longitude Longitude
postal_code Postal code
region_code Region code

SMB Properties

Name Description

smb.anonymous Whether or not the service allows anonymous connections
(true/ false)

smb.capabilities List of features that the service supports
smb.shares List of network shares that are available
smb.smb_version Protocol version used to gather the information
smb.software Name of the software powering the service
smb.raw List of hex-encoded packets that were sent by the server; useful

if you want to do your own SMB parsing

SSH Properties

Name Description

ssh.cipher Cipher used during negotiation
ssh.fingerprint Fingerprint for the device
ssh.kex List of key exchange algorithms that are supported by the server
ssh.key SSH key of the server
ssh.mac Message authentication code algorithm

SSL Properties

If the service is wrapped in SSL then Shodan performs additional testing and makes the results
available in the following properties:

Appendix A: Banner Specification 72

Name Description

ssl.acceptable_cas List of certificate authorities that the server accepts
ssl.cert Parsed SSL certificate
ssl.cipher Preferred cipher for the SSL connection
ssl.chain List of SSL certificates from the user certificate up to the root

certificate
ssl.dhparams Diffie-Hellman parameters
ssl.tlsext List of TLS extensions that the server supports
ssl.versions Supported SSL versions; if the value starts with a “-“ then the

service does not support that version (ex. “-SSLv2” means the
service doesn’t support SSLv2)

ISAKMP Properties

The following properties are collected for VPNs using the ISAKMP protocol (such as IKE):

Name Description

isakmp.initiator_spi Hex-encoded security parameter index for the
initiator

isakmp.responder_spi Hex-encoded security parameter index for the
responder

isakmp.next_payload The next paylod sent after the initiation
isakmp.version Protocol version; ex “1.0”
isakmp.exchange_type Exchange t ype
isakmp.flags.encryption Encryption bit set: true or false
isakmp.flags.commit Commit bit set: true or false
isakmp.flags.authentication Authentication bit set: true or false
isakmp.msg_id Hex-encoded ID for the message
isakmp.length Size of the ISAKMP packet

Special Properties

_shodan

The _shodan property contains information about how the data was gathered by Shodan. It is
different than al the other properties because it doesn’t provide information about the device.
Instead, it will tell you which banner grabber Shodan was using to talk to the IP. This can be
important to understand for ports where multiple services might be operating on. For example, port
80 is most well-known for web servers but it’s also used by various malware to circumvent firewall
rules. The _shodan property would let you know whether the http module was used to collect the
data or whether a malware module was used.

Appendix A: Banner Specification 73

Name Description

_shodan.crawler Unique ID that identifies the Shodan crawler
_shodan.id Unique ID for this banner
_shodan.module Name of the Shodan module used by the crawler to

collect the banner
_shodan.options Configuration options used during the data collection
_shodan.hostname Hostname to use when sending web requests
_shodan.options.referrer Unique ID of the banner that triggered the scan for this

port/ service

Example

{

"timestamp": "2014-01-16T08:37:40.081917",

"hostnames": [

"99-46-189-78.lightspeed.tukrga.sbcglobal.net"

],

"org": "AT&T U-verse",

"guid": "1664007502:75a821e2-7e89-11e3-8080-808080808080",

"data": "NTP\nxxx.xxx.xxx.xxx:7546\n68.94.157.2:123\n68.94.156.17:123",

"port": 123,

"isp": "AT&T U-verse",

"asn": "AS7018",

"location": {

"country_code3": "USA",

"city": "Atlanta",

"postal_code": "30328",

"longitude": -84.3972,

"country_code": "US",

"latitude": 33.93350000000001,

"country_name": "United States",

"area_code": 404,

"dma_code": 524,

"region_code": null

},

"ip": 1664007502,

"domains": [

"sbcglobal.net"

],

"ip_str": "99.46.189.78",

"os": null,

"opts": {

Appendix A: Banner Specification 74

"raw": "\\x97\\x00\\x03*\\x00\\x03\\x00H\\x00\\x00\\x00\\x00\\x00\\x00\

\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x01G\\x06\\xa7\\x8ec.\\xbdN\\x00\\

\x00\\x00\\x01\\x1dz\\x07\\x02\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\

\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\

\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\

\\x00q\\x00\\x00\\x00i\\x00\\x00\\x00\\x00\\x00\\x00\\x00XD^\\x9d\\x02c.\\xbdN\\\

x00\\x00\\x00\\x01\\x00{\\x04\\x04\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\

\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\

\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\

\x00\\x00q\\x00\\x00\\x00o\\x00\\x00\\x00\\x00\\x00\\x00\\x00YD^\\x9c\\x11c.\\xb\

dN\\x00\\x00\\x00\\x01\\x00{\\x04\\x04\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\\

x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\\

x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00\\x00",

"ntp": {

"more": false

}

}

}

Appendix B: List of Search Filters
General Filters

Name Description Type

after Only show results after the given date (dd/mm/yyyy) string
asn Autonomous system number string
before Only show results before the given date (dd/mm/yyyy) string
category Available categories: ics, malware string
city Name of the city string
country 2-letter country code string
geo Accepts between 2 and 4 parameters. If 2 parameters:

latitude,longitude. If 3 parameters:
latitude,longitude,range. If 4 parameters: top left
latitude, top left longitude, bottom right latitude,
bottom right longitude.

string

hash Hash of the data property integer
has_ipv6 True/ False boolean
has_screenshot True/ False boolean
hostname Full hostname for the device string
ip Alias for net filter string
isp ISP managing the netblock string
net Network range in CIDR notation (ex. 199.4.1.0/24) string
org Organization assigned the netblock string
os Operating system string
port Port number for the service integer
postal Postal code (US-only) string
product Name of the software/ product providing the banner string
region Name of the region/ state string
state Alias for region string
version Version for the product string
vuln CVE ID for a vulnerability string

HTTP Filters

Appendix B: List of Search Filters 76

Name Description Type

http.component Name of web technology used on the website string
http.component_category Category of web components used on the

website
string

http.html HTML of web banners string
http.html_hash Hash of the website HTML integer
http.status Response status code integer
http.title Title for the web banner’s website string

NTP Filters

Name Description

ntp.ip IP addresses returned by monlist string
ntp.ip_count Number of IPs returned by initial monlist integer
ntp.more True/ False; whether there are more IP addresses to be

gathered from monlist
boolean

ntp.port Port used by IP addresses in monlist integer

SSL Filters

Name Description Type

has_ssl True/ False boolean
ssl Search all SSL data string
ssl.alpn Application layer protocols such as HTTP/2

(“h2”)
string

ssl.chain_count Number of certificates in the chain integer
ssl.version Possible values: SSLv2, SSLv3, TLSv1,

TLSv1.1, TLSv1.2
string

ssl.cert.alg Certificate algorithm string
ssl.cert.expired True/ False boolean
ssl.cert.extension Names of extensions in the certificate string
ssl.cert.serial Serial number as an integer or hexadecimal

string
integer/ string

ssl.cert.pubkey.bits Number of bits in the public key integer
ssl.cert.pubkey.type Public key type string
ssl.cipher.version SSL version of the preferred cipher string
ssl.cipher.bits Number of bits in the preferred cipher integer
ssl.cipher.name Name of the preferred cipher string

Appendix B: List of Search Filters 77

Telnet Filters

Name Description Type

telnet.option Search all the options string
telnet.do The server requests the client do support these options string
telnet.dont The server requests the client to not support these options string
telnet.will The server supports these options string
telnet.wont The server doesn’t support these options string

Appendix C: Search Facets
General Facets

Name Description

asn Autonomous system number
city Full name of the city
country Full name of the country
domain Domain(s) for the device
has_screenshot Has screenshot available
isp ISP managing the netblock
link Type of network connection
org Organization owning the netblock
os Operating system
port Port number for the service
postal Postal code
product Name of the software/ product for the banner
region Name of the region/ state
state Alias for region
uptime Time in seconds that the host has been up
version Version of the product
vuln CVE ID for vulnerability

HTTP Facets

Name Description

http.component Name of web technology used on the website string
http.component_category Category of web components used on the

website
string

http.html_hash Hash of the website HTML integer
http.status Response status code integer

NTP Facets

Appendix C: Search Facets 79

Name Description

ntp.ip IP addresses returned by monlist
ntp.ip_count Number of IPs returned by initial monlist
ntp.more True/ False; whether there are more IP addresses to be gathered

from monlist
ntp.port Port used by IP addresses in monlist

SSH Facets

Name Description

ssh.cipher Name of the cipher
ssh.fingerprint Fingerprint for the device
ssh.mac Name of MAC algorithm used (ex: hmac-sha1)
ssh.type Type of authentication key (ex: ssh-rsa)

SSL Facets

Name Description

ssl.version SSL version supported
ssl.alpn Application layer protocols
ssl.chain_count Number of certificates in the chain
ssl.cert.alg Certificate algorithm
ssl.cert.expired True/ False; certificate expired or not
ssl.cert.serial Certificate serial number as integer
ssl.cert.extension Name of certificate extensions
ssl.cert.pubkey.bits Number of bits in the public key
ssl.cert.pubkey Name of the public key type
ssl.cipher.bits Number of bits in the preferred cipher
ssl.cipher.name Name of the preferred cipher
ssl.cipher.version SSL version of the preferred cipher

Telnet Facets

Name Description

telnet.option Show all options
telnet.do The server requests the client do support these options
telnet.dont The server requests the client to not support these options
telnet.will The server supports these options
telnet.wont The server doesn’t support these options

Appendix C: Search Facets 80

Name Description

Appendix D: List of Ports
Port Service(s)

7 Echo
11 Systat
13 Daytime
15 Netstat
17 Quote of the day
19 Character generator
21 FTP
22 SSH
23 Telnet
25 SMTP
26 SSH
37 rdate
49 TACACS+
53 DNS
67 DHCP
69 TFTP, BitTorrent
70 Gopher
79 Finger
80 HTTP, malware
81 HTTP, malware
82 HTTP, malware
83 HTTP
84 HTTP
88 Kerberos
102 Siemens S7
104 DICOM
110 POP3
111 Portmapper
113 identd
119 NNTP
123 NTP
129 Password generator protocol
137 NetBIOS
143 IMAP
161 SNMP
175 IBM Network Job Entry
179 BGP
195 TA14-353a

Appendix D: List of Ports 82

Port Service(s)

311 OS X Server Manager
389 LDAP
389 CLDAP
443 HTTPS
443 QUIC
444 TA14-353a, Dell SonicWALL
445 SMB
465 SMTPS
500 IKE (VPN)
502 Modbus
503 Modbus
515 Line Printer Daemon
520 RIP
523 IBM DB2
554 RTSP
587 SMTP mail submission
623 IPMI
626 OS X serialnumbered
636 LDAPS
666 Telnet
771 Realport
789 Redlion Crimson3
873 rsync
902 VMWare authentication
992 Telnet (secure)
993 IMAP with SSL
995 POP3 with SSL
1010 malware
1023 Telnet
1025 Kamstrup
1099 Java RMI
1177 malware
1200 Codesys
1234 udpxy
1400 Sonos
1434 MS-SQL monitor
1515 malware
1521 Oracle TNS
1604 Citrix, malware
1723 PPTP
1741 CiscoWorks
1833 MQTT
1900 UPnP
1911 Niagara Fox

Appendix D: List of Ports 83

Port Service(s)

1962 PCworx
1991 malware
2000 iKettle, MikroTik bandwidth test
2081 Smarter Coffee
2082 cPanel
2083 cPanel
2086 WHM
2087 WHM
2123 GTPv1
2152 GTPv1
2181 Apache Zookeeper
2222 SSH, PLC5, EtherNet/IP
2323 Telnet
2332 Sierra wireless (Telnet)
2375 Docker
2376 Docker
2379 etcd
2404 IEC-104
2455 CoDeSys
2480 OrientDB
2628 Dictionary
3000 ntop
3260 iSCSI
3306 MySQL
3310 ClamAV
3386 GTPv1
3388 RDP
3389 RDP
3460 malware
3541 PBX GUI
3542 PBX GUI
3689 DACP
3702 Onvif
3780 Metasploit
3787 Ventrilo
4000 malware
4022 udpxy
4040 Deprecated Chef web interface
4063 ZeroC Glacier2
4064 ZeroC Glacier2 with SSL
4070 HID VertX/ Edge door controller
4157 DarkTrack RAT
4369 EPMD
4443 Symantec Data Center Security

Appendix D: List of Ports 84

Port Service(s)

4444 malware
4500 IKE NAT-T (VPN)
4567 Modem web interface
4664 Qasar
4730 Gearman
4782 Qasar
4800 Moxa Nport
4840 OPC UA
4911 Niagara Fox with SSL
4949 Munin
5006 MELSEC-Q
5007 MELSEC-Q
5008 NetMobility
5009 Apple Airport Administration
5060 SIP
5094 HART-IP
5222 XMPP
5269 XMPP Server-to-Server
5353 mDNS
5357 Microsoft-HTTPAPI/2.0
5432 PostgreSQL
5577 Flux LED
5601 Kibana
5632 PCAnywhere
5672 RabbitMQ
5900 VNC
5901 VNC
5938 TeamViewer
5984 CouchDB
6000 X11
6001 X11
6379 Redis
6666 Voldemort database, malware
6667 IRC
6881 BitTorrent DHT
6969 TFTP, BitTorrent
7218 Sierra wireless (Telnet)
7474 Neo4j database
7548 CWMP (HTTPS)
7777 Oracle
7779 Dell Service Tag API
8008 Chromecast
8009 Vizio HTTPS
8010 Intelbras DVR

Appendix D: List of Ports 85

Port Service(s)

8060 Roku web interface
8069 OpenERP
8087 Riak
8090 Insteon HUB
8099 Yahoo SmartTV
8112 Deluge (HTTP)
8126 StatsD
8139 Puppet agent
8140 Puppet master
8181 GlassFish Server (HTTPS)
8333 Bitcoin
8334 Bitcoin node dashboard (HTTP)
8443 HTTPS
8554 RTSP
8800 HTTP
8880 Websphere SOAP
8888 HTTP, Andromouse
8889 SmartThings Remote Access
9000 Vizio HTTPS
9001 Tor OR
9002 Tor OR
9009 Julia
9042 Cassandra CQL
9051 Tor Control
9100 Printer Job Language
9151 Tor Control
9160 Apache Cassandra
9191 Sierra wireless (HTTP)
9418 Git
9443 Sierra wireless (HTTPS)
9595 LANDesk Management Agent
9600 OMRON
9633 DarkTrack RAT
9869 OpenNebula
10001 Automated Tank Gauge
10001 Ubiquiti
10243 Microsoft-HTTPAPI/2.0
10554 RTSP
11211 Memcache
12345 malware
17000 Bose SoundTouch
17185 VxWorks WDBRPC
12345 Sierra wireless (Telnet)
11300 Beanstalk

Appendix D: List of Ports 86

Port Service(s)

13579 Media player classic web interface
14147 Filezilla FTP
16010 Apache Hbase
16992 Intel AMT
16993 Intel AMT
18245 General Electric SRTP
20000 DNP3
20547 ProconOS
21025 Starbound
21379 Matrikon OPC
23023 Telnet
23424 Serviio
25105 Insteon Hub
25565 Minecraft
27015 Steam A2S server query, Steam RCon
27016 Steam A2S server query
27017 MongoDB
28015 Steam A2S server query
28017 MongoDB (HTTP)
30313 Gardasoft Lighting
30718 Lantronix Setup
32400 Plex
37777 Dahuva DVR
44818 EtherNet/IP
47808 Bacnet
49152 Supermicro (HTTP)
49153 WeMo Link
50070 HDFS Namenode
51106 Deluge (HTTP)
53413 Netis backdoor
54138 Toshiba PoS
55443 McAfee
55553 Metasploit
55554 Metasploit
62078 Apple iDevice
64738 Mumble

Appendix E: Sample SSL Banner
{

"hostnames": [],

"title": "",

"ip": 2928565374,

"isp": "iWeb Technologies",

"transport": "tcp",

"data": "HTTP/1.1 200 OK\r\nExpires: Sat, 26 Mar 2016 11:56:36 GMT\r\nExpire\

s: Fri, 28 May 1999 00:00:00 GMT\r\nCache-Control: max-age=2592000\r\nCache-Cont\

rol: no-store, no-cache, must-revalidate\r\nCache-Control: post-check=0, pre-che\

ck=0\r\nLast-Modified: Thu, 25 Feb 2016 11:56:36 GMT\r\nPragma: no-cache\r\nP3P:\

CP=\"NON COR CURa ADMa OUR NOR UNI COM NAV STA\"\r\nContent-type: text/html\r\n\

Transfer-Encoding: chunked\r\nDate: Thu, 25 Feb 2016 11:56:36 GMT\r\nServer: sw-\

cp-server\r\n\r\n",

"asn": "AS32613",

"port": 8443,

"ssl": {

"chain": ["-----BEGIN CERTIFICATE-----\nMIIDszCCApsCBFBTb4swDQYJKoZIhvcN\

AQEFBQAwgZ0xCzAJBgNVBAYTAlVTMREw\nDwYDVQQIEwhWaXJnaW5pYTEQMA4GA1UEBxMHSGVybmRvbj\

ESMBAGA1UEChMJUGFy\nYWxsZWxzMRgwFgYDVQQLEw9QYXJhbGxlbHMgUGFuZWwxGDAWBgNVBAMTD1Bh\

cmFs\nbGVscyBQYW5lbDEhMB8GCSqGSIb3DQEJARYSaW5mb0BwYXJhbGxlbHMuY29tMB4X\nDTEyMDkx\

NDE3NTUyM1oXDTEzMDkxNDE3NTUyM1owgZ0xCzAJBgNVBAYTAlVTMREw\nDwYDVQQIEwhWaXJnaW5pYT\

EQMA4GA1UEBxMHSGVybmRvbjESMBAGA1UEChMJUGFy\nYWxsZWxzMRgwFgYDVQQLEw9QYXJhbGxlbHMg\

UGFuZWwxGDAWBgNVBAMTD1BhcmFs\nbGVscyBQYW5lbDEhMB8GCSqGSIb3DQEJARYSaW5mb0BwYXJhbG\

xlbHMuY29tMIIB\nIjANBgkqhkiG9w0BAQEFAAOCAQ8AMIIBCgKCAQEAxc9Vy/qajKtFFnHxGOFPHTxm\

\nSOnsffWBTBfyXnK3h8u041VxvZDh3XkpA+ptg2fWOuIT0TTYuqw+tqiDmg8YTsHy\njcpMFBtXV2cV\

dhKXaS3YYlM7dP3gMmkGmH+ZvCgCYc7L9MIJxYJy6Zeuh67YxEMV\ngiU8mZpvc70Cg5WeW1uBCXtUAi\

jDLsVWnhsV3YuxlweEvkRpAk3EHehKbvgMnEZS\nQ30QySe0GAqC7bWzKrwsJAOUk/+Js18+3QKb/LmD\

a9cRjtFCTo6hYfPbfHj8RxQh\n4Xmnn/CtZ48wRQTqKXSO6+Zk3OuU7/jX1Gt/jxN6n77673e6uCsggT\

wut/EtNwID\nAQABMA0GCSqGSIb3DQEBBQUAA4IBAQBb/yTy76Ykwr7DBOPAXc766n73OsZizjAt\n1k\

mx7LxgN3X/wFxD53ir+sdOqbPgJl3edrE/ZG9dNl6LhUBbUK+9s6z9QicEfSxo\n4uQpFSywbGGmXInE\

ZmyT4SsOLi/hNgy68f49LO1h6rn/p7QgIKd31g7189ZfFkFb\nRdD49s1l/Cc5Nm4XapUVvmnS91MlPk\

/OOIg1Lu1rYkuc8sIoZdPbep52H3Ga7TjG\nkmO7nUIii0goB7TQ63mU67+NWHAmQQ8CtCDCN49kJyen\

1WFjD6Je2U4q0IFQrxHw\nMy+tquo/n/sa+NV8QOj1gMVcFsLhYm7Z5ZONg0QFXSAL+Eyj/AwZ\n----\

-END CERTIFICATE-----\n"],

"cipher": {

"version": "TLSv1/SSLv3",

"bits": 256,

Appendix E: Sample SSL Banner 88

"name": "DHE-RSA-AES256-GCM-SHA384"

},

"alpn": [],

"dhparams": {

"prime": "b10b8f96a080e01dde92de5eae5d54ec52c99fbcfb06a3c69a6a9dca52\

d23b616073e28675a23d189838ef1e2ee652c013ecb4aea906112324975c3cd49b83bfaccbdd7d90\

c4bd7098488e9c219a73724effd6fae5644738faa31a4ff55bccc0a151af5f0dc8b4bd45bf37df36\

5c1a65e68cfda76d4da708df1fb2bc2e4a4371",

"public_key": "2e30a6e455730b2f24bdaf5986b9f0876068d4aa7a4e15c9a1b9c\

a05a420e8fd3b496f7781a9423d3475f0bedee83f0391aaa95a738c8f0e250a8869a86d41bdb0194\

66dba5c641e4b2b4b82db4cc2d4ea8d9804ec00514f30a4b6ce170b81c3e1ce4b3d17647c8e5b8f6\

65bb7f588100bcc9a447d34d728c3709fd8a5b7753b",

"bits": 1024,

"generator": "a4d1cbd5c3fd34126765a442efb99905f8104dd258ac507fd6406c\

ff14266d31266fea1e5c41564b777e690f5504f213160217b4b01b886a5e91547f9e2749f4d7fbd7\

d3b9a92ee1909d0d2263f80a76a6a24c087a091f531dbf0a0169b6a28ad662a4d18e73afa32d779d\

5918d08bc8858f4dcef97c2a24855e6eeb22b3b2e5",

"fingerprint": "RFC5114/1024-bit MODP Group with 160-bit Prime Order\

Subgroup"

},

"versions": ["TLSv1", "-SSLv2", "SSLv3", "TLSv1.1", "TLSv1.2"]

},

"html": "\n\t\t<html><head>\n\t\t<meta charset=\"utf-8\">\n\t\t<meta http-eq\

uiv=\"X-UA-Compatible\" content=\"IE=edge,chrome=1\">\n\t\t<title></title>\n\t\t\

<script language=\"javascript\" type=\"text/javascript\" src=\"/javascript/commo\

n.js?plesk_version=psa-11.0.9-110120608.16\"/></script>\n\t\t<script language=\"\

javascript\" type=\"text/javascript\" src=\"/javascript/prototype.js?plesk_versi\

on=psa-11.0.9-110120608.16\"></script>\n\t\t<script>\n\t\t\tvar opt_no_frames = \

false;\n\t\t\tvar opt_integrated_mode = false;\n\t\t</script>\n\t\t\n\t\t</head>\

<body onLoad=\";top.location='/login.php3?window_id=&requested_url=https%3A%\

2F%2F174.142.92.126%3A8443%2F';\"></body><noscript>You will be redirected to the\

new address in 15 seconds... If you are not automatically taken to the new loca\

tion, please enable javascript or click the hyperlink <a href=\"/login.php3?wind\

ow_id=&requested_url=https%3A%2F%2F174.142.92.126%3A8443%2F\" target=\"top\"\

>/login.php3?window_id=&requested_url=https%3A%2F%2F174.142.92.126%3A8443%2F\

.</noscript></html><!--___\

__\

__\

_________________________IE error page size limitation__________________________\

__\

__\

__-->",

Appendix E: Sample SSL Banner 89

"location": {

"city": null,

"region_code": "QC",

"area_code": null,

"longitude": -73.5833,

"country_code3": "CAN",

"latitude": 45.5,

"postal_code": "H3G",

"dma_code": null,

"country_code": "CA",

"country_name": "Canada"

},

"timestamp": "2016-02-25T11:56:52.548187",

"domains": [],

"org": "iWeb Technologies",

"os": null,

"_shodan": {

"options": {},

"module": "https",

"crawler": "122dd688b363c3b45b0e7582622da1e725444808"

},

"opts": {

"heartbleed": "2016/02/25 03:56:45 ([]uint8) {\n 00000000 02 00 74 63 6\

5 6e 73 75 73 2e 73 68 6f 64 61 6e |..tcensus.shodan|\n 00000010 2e 69 6f 53 \

45 43 55 52 49 54 59 20 53 55 52 56 |.ioSECURITY SURV|\n 00000020 45 59 fe 7a\

a2 0d fa ed 93 42 ed 18 b0 15 7d 6e |EY.z.....B....}n|\n 00000030 29 08 f6 f\

8 ce 00 b1 94 b5 4b 47 ac dd 18 aa b9 |)........KG.....|\n 00000040 db 1c 01 \

45 95 10 e0 a2 43 fe 8e ac 88 2f e8 75 |...E....C..../.u|\n 00000050 8b 19 5f\

8c e0 8a 80 61 56 3c 68 0f e1 1f 73 9e |.._....aV<h...s.|\n 00000060 61 4f d\

a db 90 ce 84 e3 79 5f 9d 6c a0 90 ff fa |aO......y_.l....|\n 00000070 d8 16 \

e8 76 07 b2 e5 5e 8e 3e a4 45 61 2f 6a 2d |...v...^.>.Ea/j-|\n 00000080 5d 11\

74 94 03 3c 5d |].t..<]|\n}\n\n2016/02/25 03:56:45\

174.142.92.126:8443 - VULNERABLE\n",

"vulns": ["CVE-2014-0160"]

},

"ip_str": "174.142.92.126"

}

Exercise Solutions
Website

Exercise 1

title:4sics

Exercise 2

rfb authentication disabled

Exercise 3

vuln:CVE-2014-0160 country:se ssl.version:sslv3

vuln:CVE-2014-0160 org:"your organization"

Exercise 4

category:ics city:"your city name"

Exercise 5

category:malware country:us

Command-Line Interface

Exercise 1

shodan download --limit -1 heartbleed-results country:se,no vuln:CVE-2014-0160

shodan parse --filters location.country_code:SE -O heartbleed-sweden heartbleed-\

results.json.gz

Note: The –filters argument does case-sensitive searching on properties that are strings,
hence the Swedish country code has to be upper-case.

Exercise 2

Exercise Solutions 91

mkdir data

shodan stream --limit 1000 --datadir data/

shodan convert data/* kml

Upload the KML file to https://www.google.com/maps/d/

Exercise 3

#!/bin/bash

shodan download --limit -1 malware.json.gz category:malware

for ip in `shodan parse --fields ip_str malware.json.gz`

do

iptables -A OUTPUT -d $ip -j DROP

done

Shodan API

Replace YOUR_API_KEY with the API key for your account as seen on your Shodan Account
website33.

Exercise 1

#!/usr/bin/env python

Initialize Shodan

import shodan

api = shodan.Shodan("YOUR_API_KEY")

Create a new alert

alert = api.create_alert('My first alert', '198.20.69.0/24')

try:

Subscribe to data for the created alert

for banner in api.stream.alert(alert['id']):

print banner

except:

Cleanup if any error occurs

api.delete_alert(alert['id'])

Tip: Here is a solution using the Shodan command-line interface’s alert commands:
33https://account.shodan.io

https://account.shodan.io/
https://account.shodan.io/
https://account.shodan.io/

Exercise Solutions 92

Create the alert

shodan alert create "My first alert" 198.20.69.0/24

Subscribe to the real-time feed and store the data in the "/tmp" directory

shodan stream --alerts=all --datadir=/tmp

Once we're done remove all alerts

shodan alert clear

Exercise 2

mkdir images

Run the above command to generate a directory to store the images in. Then save the following code
in a file such as image-stream.py:

#!/usr/bin/env python

import shodan

output_folder = 'images/'

api = shodan.Shodan("YOUR_API_KEY")

for banner in api.stream.banners():

if 'opts' in banner and 'screenshot' in banner['opts']:

All the images are JPGs for now

TODO: Use the mimetype to determine file extension

TODO: Support IPv6 results

Create the file name using its IP address

filename = '{}/{}.jpg'.format(output_folder, banner['ip_str'])

Create the file itself

output = open(filename, 'w')

The images are encoded using base64

output.write(banner['opts']['screenshot']['data'].decode('base64'))

	Table of Contents
	Introduction
	All About the Data
	Data Collection
	SSL In Depth
	Beyond the Basics

	Web Interfaces
	Search Query Explained
	Introducing Filters
	Shodan Search Engine
	Shodan Maps
	Shodan Exploits
	Shodan Images
	Exercises: Website

	External Tools
	Shodan Command-Line Interface
	Maltego Add-On
	Browser Plug-Ins
	Exercises: Command-Line Interface

	Developer API
	Usage Limits
	Introducing Facets
	Getting Started
	Initialization
	Search
	Host Lookup
	Scanning
	Real-Time Stream
	Network Alert
	Example: Public MongoDB Data
	Exercises: Shodan API

	Industrial Control Systems
	Common Abbreviations
	Protocols
	Securing Internet-Connected ICS
	Use Cases

	Appendix A: Banner Specification
	General Properties
	Elastic Properties
	HTTP(S) Properties
	Location Properties
	SMB Properties
	SSH Properties
	SSL Properties
	ISAKMP Properties
	Special Properties
	Example

	Appendix B: List of Search Filters
	General Filters
	HTTP Filters
	NTP Filters
	SSL Filters
	Telnet Filters

	Appendix C: Search Facets
	General Facets
	HTTP Facets
	NTP Facets
	SSH Facets
	SSL Facets
	Telnet Facets

	Appendix D: List of Ports
	Appendix E: Sample SSL Banner
	Exercise Solutions
	Website
	Command-Line Interface
	Shodan API

