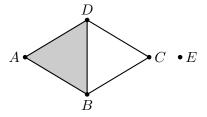
Computational topology Lab work, 14th week

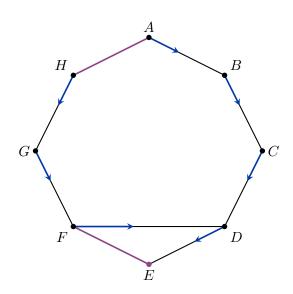
1. For a given simplicial complex K the function G is defined by the values in the following array.

σ	A	B	C	D	E	AB	AD	BC	BD	CD	ABD
$G(\sigma)$	3	2	0	3	2	6	4	1	4	1	5

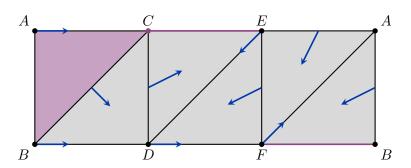
- (a) Show that G is discrete Morse function on K.
- (b) Determine the critical simplices and draw the corresponding vector field V_G .
- (c) Find all non-trivial gradient paths and use cancellation to obtain a new vector field with the minimal possible number of critical simplices.



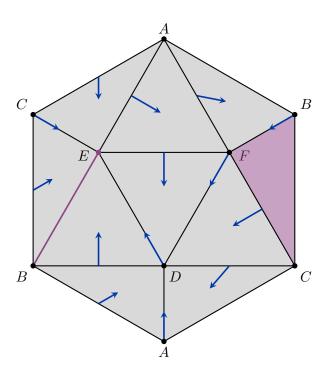
2. Use the given discrete vector field to compute the homology of this simplicial complex.



- 3. Using the triangulations given in the next three problems, construct an example of a discrete Morse function with a minimal number of critical simplices for the cylinder, the projective plane and the torus.
- 4. Use the given discrete vector field on the cylinder to compute its homology.



5. Use the given discrete vector field on the projective plane $\mathbb{R}P^2$ to compute its homology.



6. Use the given discrete vector field on the torus to compute its homology.

