Development of intelligent systems (RInS)

Robot manipulation

Danijel Skočaj
University of Ljubljana
Faculty of Computer and Information Science
Literature: Tadej Bajd (2006) Osnove robotike, poglavje 4
Anže Rezelj (2017) Razvoj nizkocenovnega lahkega robotskega manipulatorja
Academic year: 2022/23

Robot manipulator

- Industrial robot as defined by the standard ISO 8373:

An automatically controlled, reprogrammable, multipurpose manipulator programmable in three or more axes, which can be either fixed in place or mobile for use in industrial automation applications.

Characteristics

- Closed-loop control
- Electrical or hydraulic motors
- Sensors
- Proprioceptive: rotation encoders, measurement od distance, speed
- Exteroceptive: tactile sensors, robot vision
- Reprogrammable:
- designed so that the programmed motions or auxiliary functions can be changed without physical alteration
- Multipurpose:
- capable of being adapted to a different application with physical alteration
- Physical alteration:
- alteration of the mechanical system
- fixed or mobile robots
- Axis: direction used to specify the robot motion in a linear or rotary mode
- 3 or more DOF

Robot manipulator

- Arm+wrist+end effector/gripper
- 6DOF - can put an object in an arbitrary pose
- arm positions the object into the desired position
- wrist rotates it into the desired orientation
- gripper grasps the object

Robot arm

- Serial chain of three links
- connected by joints
- Revolute/rotational joint

- Prismatic/translational joint

Robot arm types

- Joints
- Revolute/rotational
- Prismatic/translational
- Axis of two neigbouring links
- Parallel
- Perpendicular
- 3DOF
- In practice typically five different arms:
- Anthropomorphic
- Spherical
- SCARA
- Cylindrical
- Cartesian

Anthropomorphic robot arm

- Three rotational joints (RRR)
- Workspace: sphere-like
- Resembles a human arm

Spherical robot arm

- Two rotational, one translational joint (RRT)
- Workspace: sphere-like

SCARA robot arm

- Selective Articulated Robot for Assembly
- Two rotational, one translational joint (RRT)
- Workspace: cylinder-like

Cylindrical robot arm

- One rotational, two translational joints (RTT)
- Workspace: cylinder

Cartesian robot arm

- Three translational joints (TTT)
- Workspace: cuboid

Robot wrist

- Rotates the object in an arbitrary orientation
- Three rotational joints (RRR)
- Sometimes also one or two suffice
- Links should be as short as possible

Robot end-effector

- The final link of the robot manipulator
- Grippers with fingers
- With two fingers
- With more than two fingers
- Other type of grippers
- Vacuum
- Magnetic
- Perforation

- Other tools as end-effectors
- Welding gun
- Spray painting gun

Robot workspace

- Reachable workspace
- The end-effector can reach every point in this space
- Dexterous workspace
- The end-effector can reach every point in tis space from the arbitrary orientation

Kinematics

- Base coordinate frame $\left[X_{1}, Y_{1}, Z_{1}\right]$
- Usually also world coordinate frame
- Used for defining of the robotic task
- End-effector reference frame [X_{m}, Y_{m}, Z_{m}]
- End-effector position
- Vector between the origins of the coordinate frames
- Object orientation
- Three angles
- Internal robot coordinates / joint variables
- Joint states (angles, translations)
- Uniquely describe the pose of the robot

- Direct kinematics
- Determine the external robot coordinates from the internal coordinates
- Inverse kinematics
- Determine the internal robot coordinates from the external coordinates

Geometrical robot model

- Robot manipulator = a serial chain of segments connected by joints
- Every joint can be either rotational or translational
- 1DOF - 1 internal coordinate

- Geometrical robot model describes
- the pose of the last segment of the robot (end-effector) expressed in the reference (base) frame
- depending on the current internal coordinates

Geometrical robot model

- Geometrical model can be expressed by a homogenuous transformation:

$$
\mathbf{T}^{0}(\mathbf{q})=\left[\begin{array}{ccc}
\mathfrak{n}^{\circ}(\mathbf{q}) & \mathbf{s}^{\circ}(\mathbf{q}) & \mathfrak{a}^{\circ}(\mathbf{q}) \\
0 & 0 & 0 \\
\mathbf{p}^{\circ}(\mathbf{q}) \\
1
\end{array}\right]
$$

- p : position of the end effector in the reference coordinate frame
- $\mathbf{n}, \mathbf{s}, \mathbf{a}$: unit vectors of the end-effector coordinate frame:
- a: approach
- s: sliding
- n: normal
- q : vector of internal coordinates

Poses of segments

- Every joint connects two neighbouring segments/links
- Determine the transformation between them
- Recursively build the full model for the entire robot
- Coordinate frames can be arbitrarily attached to the individual segments
- Denavit - Hartenberg rules simplify computation of the geometrical robot model
- Determine the pose of the i-th c.f. with respect to the pose of the (i-1)-th c.f.
- Axis i connects segments (i-1) and i

Denavit - Hartenberg rules

- Describe the coordinate frame of the i-th segment (having the joint $i+1$):

1. Define the axis z_{i} through the axis of the joint $i+1$
2. Find the common normal, perpendicular to the axes z_{i-1} and z_{i}

- Position the origin of O_{i} into the intersection of the axis z_{i} with the common normal
- Position the origin of O_{i} - into the intersection of the axis $\mathrm{z}_{\mathrm{i}-1}$ with the common normal
- If the axes are parallel, position the origin anywhere

3. Position the axis x_{i} on a common normal in a way, that it is oriented from the joint i towards the joint $\mathrm{i}+1$

- If the axis z_{i-1} and z_{i} intersect, orient the axis x_{i} perpendicular to the plane defined by the axes $\mathrm{z}_{\mathrm{i}-1}$ in z_{i}

4. Determine the axis y_{i} in a way that gives the right-handed c.f.

- Similarly we also describe (have already described) the coordinate frame of the segment (i-1)
- The origin $\mathrm{O}_{\mathrm{i}-1}$ is determined by the intersection of the common normal of the axes $\mathrm{i}-1$ and i
- The axis z_{i-1} is oriented along the i-th axis
- x_{i-1} is oriented along the common normal and directed from the joint $i-1$ towards the joint i

Graphical illustration of DH parameters

Denavit - Hartenberg parameters

- The pose of i-th c.f. with respect to ($\mathrm{i}-1$)-th c.f. is determined by 4 parameters:

1. (aid - distance between O_{i} and O_{i} along x_{i}
2. d_{i} - distance between $\mathrm{O}_{\mathrm{i}-1}$ and O_{i}. along $\mathrm{z}_{\mathrm{i}-1}$
3. a_{i} - angle between z_{i-1} and z_{i} around x_{i}
4. Θ_{i} - angle between x_{i-1} and x_{i} around z_{i-1}

Denavit - Hartenberg parameters

Denavit - Hartenberg parameters

- a_{i} and a_{i} are always constant
- They depend on the geometry of the robot, the links between the joints, etc.
- They do not change during the operation of the robot
- One of the two remaining parameters is a variable
- Θ_{i}, if the i-th joint is rotational
- d_{i}, if the i-th joint is translational

Denavit - Hartenberg parameters

- Illustration
- $\mathrm{r}=\mathrm{a}$
- $\mathrm{n}=\mathrm{i}$

Wikipedia

Denavit - Hartenberg parameters

- Video:

Denavit-Hartenberg Reference Frame Layout

Produced by Ethan Tira-Thompson

http://en.wikipedia.org/wiki/Denavit-Hartenberg_Parameters

Exceptions

- Some exceptions in certain situations can be used to simplify the process:
- Axis z_{i} and $\mathrm{z}_{\mathrm{i}-1}$ are parallel $->\mathrm{d}_{\mathrm{i}}=0$
- Axis z_{i} and z_{i-1} intersect -> O_{i} is in the intersection
- In case of the base (0 -th) segment: only the axis z_{0} is defined
$->$ put the origin of O_{0} in the first joint
$->$ align x_{0} and x_{1}
- In case of end-effector (n-th c.f.):

Only axis x_{n} is defined; it is perpendicular to z_{n-1}
$->z_{n}$ should be parallel to z_{n-1}

- In case of translational joint:
-> orient the axis z_{i-1} in the direction of translation
-> position $\mathrm{O}_{\mathrm{i}-1}$ at the beginning of translation

Denavit - Hartenberg transformation

- Transformation between the i-th and (i-1)-th c.f.:

1. Take the c.f. $\mathrm{O}_{\mathrm{i}-1}$ attached to the segment ($\mathrm{i}-1$)
2. Translate it for d_{i} and rotate it for Θ_{i} along and around z_{i-1}, to align it with the c.f. O_{i}.
3. Translate c.f. O_{i} for a_{i} in rotate it for a_{i} along and around x_{i}, to align it with the c.f. O_{i}
4. DH transformation is obtained
by postmultiplication of both transformation matrices

- Function of a single variable:
- $\quad \Theta_{i}$ for rotational joint
- $\quad d_{i}$ for translational joint

$$
\mathbf{A}_{i^{\prime}}^{i-1}=\left[\begin{array}{cccc}
c \theta_{i} & -s \theta_{i} & 0 & 0 \\
s \theta_{i} & c \theta_{i} & 0 & 0 \\
0 & 0 & 1 & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
\mathbf{A}_{i}^{i^{\prime}}=\left[\begin{array}{cccc}
1 & 0 & 0 & a_{i} \\
0 & c \alpha_{i} & -s \alpha_{i} & 0 \\
0 & s \alpha_{i} & c \alpha_{i} & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
\mathbf{A}_{i}^{i-1}\left(q_{i}\right)=\mathbf{A}_{i}^{i-1} \cdot \mathbf{A}_{i}^{i^{\prime}}=\left[\begin{array}{cccc}
c \theta_{i} & -s \theta_{i} c \alpha_{i} & s \theta_{i} s \alpha_{i} & a_{i} c \theta_{i} \\
s \theta_{i} & c \theta_{i} c \alpha_{i} & -c \theta_{i} s \alpha_{i} & a_{i} s \theta_{i} \\
0 & s \alpha_{i} & c \alpha_{i} & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Calculation of the geometrical robot model

1. Set the coordinate frames for all segments
2. Define the table of DH parameters $\mathrm{a}_{\mathrm{i}}, \mathrm{d}_{\mathrm{i}}, \alpha_{\mathrm{i}}$ in θ_{i} for all segments $\mathrm{i}=1,2, \ldots, \mathrm{n}$
3. Calculate DH transformations $\mathbf{A}_{i}^{i-1}\left(q_{i}\right)$ for $\mathrm{i}=1,2, \ldots, \mathrm{n}$
4. Calculate the geometrical model: $\mathbf{T}_{n}^{o}(\mathbf{q})=\mathbf{A}_{1}^{o}\left(q_{1}\right) \cdot \mathbf{A}_{2}^{1}\left(q_{2}\right) \cdots \mathbf{A}_{n}^{n-1}\left(q_{n}\right)$

Using geometrical model

- Geometrical robot model gives the pose of the last segment of the robot (endeffector) expressed in the reference (base) frame
- Geometrical robot model defines the pose (position and orientation) of the endeffector depending on the current internal coordinates \mathbf{q}

Anthropomorphic robot manipulator

Anthropomorphic robot manipulator

Segment	a_{i}	α_{i}	d_{i}	θ_{i}
1	0	$\pi / 2$	0	θ_{1}
2	a_{2}	0	0	θ_{2}
3	a_{3}	0	0	θ_{3}

$$
\mathbf{A}_{i}^{i-1}\left(q_{i}\right)=\left[\begin{array}{cccc}
c \theta_{i} & -s \theta_{i} c \alpha_{i} & s \theta_{i} s \alpha_{i} & a_{i} c \theta_{i} \\
s \theta_{i} & c \theta_{i} c \alpha_{i} & -c \theta_{i} s \alpha_{i} & a_{i} \theta_{i} \\
0 & s \alpha_{i} & c \alpha_{i} & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right]
$$

$$
\begin{gathered}
\mathbf{A}_{1}^{o}\left(\theta_{1}\right)=\left[\begin{array}{cccc}
c_{1} & 0 & s_{1} & 0 \\
s_{1} & 0 & -c_{1} & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \mathbf{A}_{i}^{i-1}\left(\theta_{1}\right)=\left[\begin{array}{cccc}
c_{i} & -s_{i} & 0 & a_{i} c_{i} \\
s_{i} & c_{i} & 0 & a_{i} s_{i} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \mathrm{i}=2,3 \\
\mathbf{T}_{3}^{o}(\mathbf{q})=\mathbf{A}_{1}^{o} \cdot \mathbf{A}_{2}^{1} \cdot \mathbf{A}_{3}^{2}=\left[\begin{array}{cccc}
\mathrm{c}_{1} \mathrm{c}_{23} & -\mathrm{c}_{1} \mathrm{~s}_{23} & \mathrm{~s}_{1} & \mathrm{c}_{1}\left(\mathrm{a}_{2} \mathrm{c}_{2}+\mathrm{a}_{3} \mathrm{c}_{23}\right) \\
\mathrm{s}_{1} \mathrm{c}_{23} & -\mathrm{s}_{1} \mathrm{~s}_{23} & -\mathrm{c}_{1} & \mathrm{~s}_{1}\left(\mathrm{a}_{2} \mathrm{c}_{2}+\mathrm{a}_{3} \mathrm{c}_{23}\right) \\
\mathrm{s}_{23} & \mathrm{c}_{23} & 0 & \mathrm{a}_{2} \mathrm{~s}_{2}+\mathrm{a}_{3} \mathrm{~s}_{23} \\
0 & 0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

Stanford robot manipulator

Stanford robot manipulator

Segment	a_{i}	α_{i}	d_{i}	θ_{i}
1	0	$-\pi / 2$	0	θ_{1}
2	0	$\pi / 2$	$\mathrm{~d}_{2}$	θ_{2}
3	0	0	$\mathrm{~d}_{3}$	0

$$
\begin{gathered}
\mathbf{A}_{1}^{o}\left(\theta_{1}\right)=\left[\begin{array}{cccc}
c_{1} & 0 & -s_{1} & 0 \\
s_{1} & 0 & c_{1} & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \mathbf{A}_{2}^{1}\left(\theta_{1}\right)=\left[\begin{array}{cccc}
c_{2} & 0 & s_{2} & 0 \\
s_{2} & 0 & -c_{2} & 0 \\
0 & 1 & 0 & d_{2} \\
0 & 0 & 0 & 1
\end{array}\right] \quad \mathbf{A}_{3}^{2}\left(d_{3}\right)=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & d_{3} \\
0 & 0 & 0 & 1
\end{array}\right] \\
\mathbf{T}_{3}^{o}(\underline{q})=\mathbf{A}_{1}^{o} \cdot \mathbf{A}_{2}^{1} \cdot \mathbf{A}_{3}^{2}=\left[\begin{array}{cccc}
\mathrm{c}_{1} \mathrm{c}_{2} & -\mathrm{s}_{1} & \mathrm{c}_{1} \mathrm{~s}_{2} & \mathrm{c}_{1} \mathrm{~s}_{2} \mathrm{~d}_{3}-\mathrm{s}_{1} \mathrm{~d}_{2} \\
\mathrm{~s}_{1} \mathrm{c}_{2} & \mathrm{c}_{1} & \mathrm{~s}_{1} \mathrm{~s}_{2} & \mathrm{~s}_{1} \mathrm{~s}_{2} \mathrm{~d}_{3}+\mathrm{c}_{1} \mathrm{~d}_{2} \\
-\mathrm{s}_{2} & 0 & \mathrm{c}_{2} & \mathrm{c}_{2} \mathrm{~d}_{3} \\
0 & 0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

Spherical robot wrist

- Usually attached to the end of the robot arm

- All three axes of the rotational joints intersect in the same point

Segment	a_{i}	α_{i}	d_{i}	θ_{i}
4	0	$-\pi / 2$	0	θ_{4}
5	0	$\pi / 2$	0	θ_{5}
6	0	0	$\mathrm{~d}_{6}$	θ_{6}

Spherical robot wrist

Segment	a_{i}	α_{i}	d_{i}	θ_{i}
4	0	$-\pi / 2$	0	θ_{4}
5	0	$\pi / 2$	0	θ_{5}
6	0	0	$\mathrm{~d}_{6}$	θ_{6}

$$
\mathbf{q}=\left[\theta_{4}, \theta_{5}, \theta_{6}\right]^{T}
$$

$$
\begin{aligned}
\mathbf{A}_{4}^{3}\left(\theta_{4}\right)=\left[\begin{array}{cccc}
c_{4} & 0 & -s_{4} & 0 \\
s_{4} & 0 & c_{4} & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \mathbf{A}_{5}^{4}\left(\theta_{5}\right)=\left[\begin{array}{cccc}
c_{5} & 0 & s_{5} & 0 \\
s_{5} & 0 & -c_{5} & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \mathbf{A}_{6}^{5}\left(\theta_{6}\right)=\left[\begin{array}{cccc}
c_{6} & -s_{6} & 0 & 0 \\
s_{6} & c_{6} & 0 & 0 \\
0 & 0 & 1 & d_{6} \\
0 & 0 & 0 & 1
\end{array}\right] \\
\mathbf{T}_{6}^{3}(\underline{q})=\mathbf{A}_{4}^{3} \cdot \mathbf{A}_{5}^{4} \cdot \mathbf{A}_{6}^{5}=\left[\begin{array}{cccc}
\mathrm{c}_{4} \mathrm{c}_{5} \mathrm{c}_{6}-\mathrm{s}_{4} \mathrm{~s}_{6} & -\mathrm{c}_{4} \mathrm{c}_{5} \mathrm{~s}_{6}-\mathrm{s}_{4} \mathrm{c}_{6} & \mathrm{c}_{4} \mathrm{~s}_{5} & \mathrm{c}_{4} \mathrm{~s}_{5} \mathrm{~d}_{6} \\
\mathrm{~s}_{4} \mathrm{c}_{5} \mathrm{c}_{6}+\mathrm{c}_{4} \mathrm{~s}_{6} & -\mathrm{s}_{4} \mathrm{c}_{5} \mathrm{~s}_{6}+\mathrm{c}_{4} \mathrm{c}_{6} & \mathrm{~s}_{4} \mathrm{~s}_{5} & \mathrm{~s}_{4} \mathrm{~s}_{5} \mathrm{~d}_{6} \\
-\mathrm{s}_{5} \mathrm{c}_{6} & \mathrm{~s}_{5} \mathrm{~s}_{6} & \mathrm{c}_{5} & \mathrm{c}_{5} \mathrm{~d}_{6} \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Stanford manipulator with the wrist

Stanford manipulator with the wrist

$$
\begin{aligned}
& \mathbf{p}^{o}=\left[\begin{array}{c}
c_{1} s_{2} d_{3}-s_{1} d_{2}+\left(c_{1}\left(c_{2} c_{4} s_{5}+s_{2} c_{5}\right)-s_{1} s_{4} s_{5}\right) d_{6} \\
s_{1} s_{2} d_{3}+c_{1} d_{2}+\left(s_{1}\left(c_{2} c_{4} s_{5}+s_{2} c_{5}\right)+c_{1} s_{4} s_{5}\right) d_{6} \\
c_{2} d_{3}+\left(-s_{2} c_{4} s_{5}-c_{2} c_{5}\right) d_{6}
\end{array}\right] \\
& \mathbf{n}^{o}=\left[\begin{array}{c}
c_{1}\left(c_{2}\left(c_{4} c_{5} c_{6}-s_{4} s_{6}\right)-s_{2} s_{5} c_{6}\right)-s_{1}\left(s_{4} c_{5} c_{6}+c_{4} s_{6}\right) \\
s_{1}\left(c_{2}\left(c_{4} c_{5} c_{6}-s_{4} s_{6}\right)-s_{2} s_{5} c_{6}\right)+c_{1}\left(s_{4} c_{5} c_{6}+c_{4} s_{6}\right) \\
-s_{2}\left(c_{4} c_{5} c_{6}-s_{4} s_{6}\right)-c_{2} s_{5} s_{6}
\end{array}\right] \\
& \mathbf{s}^{o}=\left[\begin{array}{c}
c_{1}\left(-c_{2}\left(c_{4} c_{5} s_{6}+s_{4} c_{6}\right)+s_{2} s_{5} s_{6}\right)-s_{1}\left(-s_{4} c_{5} c_{6}+c_{4} c_{6}\right) \\
s_{1}\left(-c_{2}\left(c_{4} c_{5} s_{6}+s_{4} c_{6}\right)+s_{2} s_{5} s_{6}\right)+c_{1}\left(-s_{4} c_{5} c_{6}+c_{4} c_{6}\right) \\
s_{2}\left(c_{4} c_{5} s_{6}+s_{4} c_{6}\right)+c_{2} s_{5} s_{6}
\end{array}\right] \\
& \mathbf{a}^{o}=\left[\begin{array}{c}
c_{1}\left(c_{2} c_{4} s_{5}+s_{2} c_{5}\right)-s_{1} s_{4} s_{5} \\
s_{1}\left(c_{2} c_{4} s_{5}+s_{2} c_{5}\right)+c_{1} s_{4} s_{5} \\
-s_{2} c_{4} s_{5}+c_{2} c_{5}
\end{array}\right]
\end{aligned}
$$

Inverse kinematics model

- Direct kinematics defines the pose of the end-effector depending on the internal coordinates
- Where will the end-effector move
- The pose of the end-effector is uniquely determined

$T(q)$

- Inverse kinematics defines the internal coordinates that would bring the robot endeffector in the desired pose
- How to move the end-effector to reach the desired pose
- Challenging problem:
- Nonlinear equations $\mathbf{q}(\mathbf{T})$
- The solution is not uniquely defined
- Several solutions
- Sometimes even infinite number of solutions
- Sometimes the solution does not exist
- Take into account several criteria that determine which solution is optimal
- Sometimes we can get analytical solution, sometimes only numerical are possible

ViCoS LCLWOS robot manipulator

Requirements

Low production cost

The cost of a single unit should be below $300 €$, it should use widely available components where possible.

Easy construction and maintenance
Construction from parts should be simpe, parts should be easily replaceable.

Simplicity and ease of use
The interaction with the platform should be multi-level

Robustness

Both the hardware and software should be robust enough to withstand long-term use.

Safety

The manipulator should be safe enough to be operated even by kids.

Realism

The experience should be real enough for students of different university-level courses on robotics.

Openness

Bot the hardware designs and software sources should be available for others to

Related work

Robot manipulator

Forward model

DH parameters:

Segment	a_{i}	d_{i}	α_{i}	θ_{i}
1	0 mm	48 mm	90°	θ_{1}
2	108 mm	0 mm	0°	θ_{2}
3	112 mm	0 mm	0°	θ_{3}
4	0 mm	0 mm	90°	θ_{4}
5	0 mm	90 mm	0°	θ_{5}

$$
\begin{aligned}
& A_{i}^{i-1}=\left[\begin{array}{cccc}
\cos \theta_{i} & -\sin \theta_{i} \cos \alpha_{i} & \sin \theta_{i} \sin \alpha_{i} & a_{i} \cos \theta_{i} \\
\sin \theta_{i} & \cos \theta_{i} \cos \alpha_{i} & -\cos \theta_{i} \sin \alpha_{i} & a_{i} \sin \theta_{i} \\
0 & \sin \alpha_{i} & \cos \alpha_{i} & d_{i} \\
0 & 0 & 0 & 1
\end{array}\right] A_{3}^{2}=\left[\begin{array}{cccc}
\cos \theta_{3} & -\sin \theta_{3} & 0 & a_{3} \cos \theta_{3} \\
\sin \theta_{3} & \cos \theta_{3} & 0 & a_{3} \sin \theta_{3} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& A_{1}^{0}=\left[\begin{array}{cccc}
\cos \theta_{1} & 0 & \sin \theta_{1} & 0 \\
\sin \theta_{1} & 0 & -\cos \theta_{i} & 0 \\
0 & 1 & 0 & d_{1} \\
0 & 0 & 0 & 1
\end{array}\right] \\
& A_{2}^{1}=\left[\begin{array}{cccc}
\cos \theta_{2} & -\sin \theta_{2} & 0 & a_{2} \cos \theta_{2} \\
\sin \theta_{2} & \cos \theta_{2} & 0 & a_{2} \sin \theta_{2} \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] A_{4}^{3}=\left[\begin{array}{cccc}
\cos \theta_{4} & 0 & \sin \theta_{4} & 0 \\
\sin \theta_{4} & 0 & -\cos \theta_{4} & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& A_{5}^{0}=A_{1}^{0} A_{2}^{1} A_{3}^{2} A_{4}^{3} A_{5}^{4}
\end{aligned}
$$

Frame

- 3D printed

Frame parts

Motors

- Servo motors

Servo- motor	Nape- tost	Rotacijska hitrost	Navor	Kratko- stični tok	Teža	Material zobnikov
HS-	$4,8 \mathrm{~V}$	$0,24 \mathrm{~s} / 60^{\circ}$	$7,7 \mathrm{~kg} / \mathrm{cm}$	$2,5 \mathrm{~A}$	$55,2 \mathrm{~g}$	kovina
64.5 MG	$6,0 \mathrm{~V}$	$0,20 \mathrm{~s} / 60^{\circ}$	$9,6 \mathrm{~kg} / \mathrm{cm}$			
HS-	$4,8 \mathrm{~V}$	$0,22 \mathrm{~s} / 60^{\circ}$	$4,8 \mathrm{~kg} / \mathrm{cm}$	$1,2 \mathrm{~A}$	$45,0 \mathrm{~g}$	karbonit
48.5 HB	$6,0 \mathrm{~V}$	$0,20 \mathrm{~s} / 60^{\circ}$	$6,0 \mathrm{~kg} / \mathrm{cm}$			
HS-311	$4,8 \mathrm{~V}$	$0,19 \mathrm{~s} / 60^{\circ}$	$3,0 \mathrm{~kg} / \mathrm{cm}$	$0,8 \mathrm{~A}$	$43,0 \mathrm{~g}$	najlon
	$6,0 \mathrm{~V}$	$0,15 \mathrm{~s} / 60^{\circ}$	$3,5 \mathrm{~kg} / \mathrm{cm}$			
ES08AII	$4,8 \mathrm{~V}$	$0,12 \mathrm{~s} / 60^{\circ}$	$1,5 \mathrm{~kg} / \mathrm{cm}$	$0,7 \mathrm{~A}$	$8,5 \mathrm{~g}$	najlon
	$6,0 \mathrm{~V}$	$0,10 \mathrm{~s} / 60^{\circ}$	$1,8 \mathrm{~kg} / \mathrm{cm}$			

Upgrading servomotors

- New control circuit
- Potentiometer
- OpenServo
- Current protection

PID controller

- Proportional, integral and derivative part

$$
u\left(t_{k}\right)=K_{p} e\left(t_{k}\right)+K_{i} \sum_{n=1}^{k} e\left(t_{n}\right) \Delta t+\frac{e\left(t_{k}\right)-e\left(t_{k-1}\right)}{\Delta t}
$$

1: // Proporcialni del
2: p_component $=$ seek_position - current_position;
3: pwm_output $=($ int32_t $) p_{-}$component $*\left(\right.$ int $\left.32 _t\right) p_{-}$gain;
4: // Odvodni del
5: d_component $=($ p_component - p_component_old $) * 256$;
6: pwm_output+ $=\left(\right.$ int $\left.32 _t\right) d _c o m p o n e n t ~ *\left(i n t 32 _t\right) d _g a i n ;$
7: // Integralni del
8: i_component+ = p_component;
9: pwm_output $+=\left(\left(\left(\right.\right.\right.$ int $\left.32 _t\right) i_{_}$component $*\left(\right.$ int $\left.32 _t\right) i_{_}$gain $\left.) \gg 8\right)$;

Sklep	K_{p}	K_{i}	K_{d}
S 1	500	300	5
S 2	500	300	5
S 3	500	300	5
S 4	300	200	5
S 5	150	200	5
Prijemalo	500	200	5

10: //
11: pwm $=\left(\left(\right.\right.$ int $\left.16 _t\right)($ pwm_output $\left.\gg 8)\right)$;

AD converter

- Increasing resolution
- Multiple sampling and decimation
- Resolution increased from 10 to 12 bits
- Sampling frequency 256 Hz

$$
A D C_{(10+n) b i t}=\frac{\sum_{k=1}^{4^{n}} A D C_{10 b i t}}{2^{n}}
$$

Ločljivost	Čas branja	Največja frekvenca
10 bitov	$\approx 0,0864 \mathrm{~ms}$	$\approx 11574 \mathrm{~Hz}$
11 bitov	$\approx 0,3456 \mathrm{~ms}$	$\approx 2893 \mathrm{~Hz}$
12 bitov	$\approx 1,3824 \mathrm{~ms}$	$\approx 723 \mathrm{~Hz}$
13 bitov	$\approx 5,5296 \mathrm{~ms}$	$\approx 180 \mathrm{~Hz}$

Communication

- $\mathrm{I}^{2} \mathrm{C}$ interface
- $I^{2} C$ bus
- OpenServo
- Communication with microcontroller
- OpenServoRobot
- Robot model (DH parameters)
- Communication with application

Workspace

Theoretical accuracy

- Expected deviation of the estimated position from the reference position of the end effector
- Only considering motor errors
- Theoretical upper limit of precision

Osi	Odstopanje (mm)			Standardni odklon (mm)		
	Največ	Povprečno	Najmanj	Največ	Povprečno	
x	0,00	0,45	0,14	0,01	0,61	0,20
y	0,00	0,45	0,14	0,00	0,61	0,21
z	0,00	0,44	0,16	0,03	0,56	0,66
d	0,10	0,55	0,29	0,14	0,73	0,41

Theoretical accuracy

Theoretical accuracy

Empiciral repetabilty

Meritev	Os x	Os y
Blizu	$1,4 \mathrm{~mm}$	$0,6 \mathrm{~mm}$
Daleč	$3,8 \mathrm{~mm}$	$0,7 \mathrm{~mm}$

Calibration

Characteristics

Lastnost	Vrednost
Višina	358 mm
Radij	310 mm
Ponovljivost	4 mm
Teža	842 g
Nosilnost	80 g
Napajanje	$5,0 \mathrm{~V}$
Tok	6000 mA

Integration in ROS

Integration in Manus

Integration with programming languages

- Matlab
- Python
- Blockly

Communication using VGA and USB cable

- VGA cable and $I^{2} C$ protocol
- USB port

Registration with camera

Augmented reality

Camera view

Multi-level teaching approach

Simulated

Environment and manipulator are both simulated.

Augmented

Simulated manipulator is superimposed on real world.

Real-world
Real manipulator is used in real world.

perception	action	activity	
1 simulated	none	Learning basic computer vision algorithms by processing stored images.	
2	real	none	Learning more advanced computer vision algorithms by capturing and processing live images.
3	none	simulatedLearning the basics of robot manipulation in simulated environment.	
5	none	real	Learning to operate the robot manipulator in the real world.
6	real	real	simulated Detecting the objects in the scene and pointing at them with the virtual robot manipulator. Detecting and grasping the objects in the scene with the physical robot manipulator.

Video

Mobile manipulation

Vision-based control

- Camera on the robot
- Fixed camera

Moving the end effector to the desired pose determined by the pose of an object

Vision-based control

- Position-based servoing
- Explicit control
- In world coordinate frame

- Image-based servoing
- Implicit control
- In image coordinate frame

Vision-based control

Vision-based control

- Mobile manipulation
- Joint control of mobile robot and robot manipulator

