Solving systems of nonlinear equations

We would like to find a solution (or at least an approximate solution) to a system of nonlinear equations. For example

$$
\begin{array}{r}
x_{1}^{2}-x_{2}^{2}=1, \\
x_{1}+x_{2}-x_{1} x_{2}=1
\end{array}
$$

This system is equivalent to the system

$$
\begin{aligned}
x_{1}^{2}-x_{2}^{2}-1 & =0, \\
x_{1}+x_{2}-x_{1} x_{2}-1 & =0 .
\end{aligned}
$$

If we set $\mathbf{F}\left(x_{1}, x_{2}\right)=\left[x_{1}^{2}-x_{2}^{2}-1, x_{1}+x_{2}-x_{1} x_{2}-1\right]^{\top}$, we can rewrite this system as

$$
F(x)=0,
$$

where $\mathbf{x}=\left[x_{1}, x_{2}\right]^{\top}$. In other words, we are looking for zeros of a vector-valued function of several variables.

Let us formulate a more general problem. Let $U \subseteq \mathbb{R}^{n}$ be the domain of the function \mathbf{F}, $\mathbf{F}: U \rightarrow \mathbb{R}^{n}$. The idea is to generalise Newton's method for finding approximations to zeros of a function of a single variable, which suggests that for $f: D \rightarrow \mathbb{R}$ we pick an initial guess $x^{(0)} \in D$ and then iteratively improve the accuracy of the solution using the recursive formula

$$
x^{(k+1)}=x^{(k)}-\frac{f\left(x^{(k)}\right)}{f^{\prime}\left(x^{(k)}\right)}
$$

For a vector-valued function $\mathbf{F}(\mathbf{x})=\left[F_{1}\left(x_{1}, \ldots, x_{n}\right), \ldots, F_{n}\left(x_{1}, \ldots, x_{n}\right)\right]^{\top}$ we must substitute the derivative f^{\prime} with the Jacobi matrix of the function \mathbf{F} :

$$
J \mathbf{F}=\left[\frac{\partial F_{i}}{\partial x_{j}}\right]_{i, j}
$$

One step of Newton's iteration is then written as

$$
\mathbf{x}^{(k+1)}=\mathbf{x}^{(k)}-(J \mathbf{F})^{-1} \mathbf{F}\left(\mathbf{x}^{(k)}\right)
$$

1. Find the approximate solution $\left[x_{1}, x_{2}\right]^{\top}$ to the system

$$
\begin{array}{r}
x_{1}^{2}-x_{2}^{2}=1, \\
x_{1}+x_{2}-x_{1} x_{2}=1,
\end{array}
$$

which is accurate to 10 decimal places.
Write an octave function $x=$ newton(F, JF, $x 0$, tol, maxit) which performs Newton's iteration with the initial approximation $\times 0$ for the function F and Jacobi matrix function JF. We use maxit to limit the maximum number of allowed iterations (in order to avoid a potentially infinite loop), and we use tol to prescribe the desired accuracy.
2. Let f be a function of two variables, x and y. We would like to find a sequence of equidistant points (according to the Euclidean distance) on the curve defined by

$$
f(x, y)=0 .
$$

Denote the given distance between two successive points by δ. Assume that the first point $\left(x_{0}, y_{0}\right)$ is given. The next point, say (x, y), is determined by the conditions that the distance from $\left(x_{0}, y_{0}\right)$ equals δ, and that it lies on the curve $f(x, y)=0$. This means that (x, y) should solve the system of equations

$$
\begin{aligned}
f(x, y) & =0, \\
\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2} & =\delta^{2} .
\end{aligned}
$$

The next point is therefore obtained as a solution to this system, and we denote this solution by $\left(x_{1}, y_{1}\right)$. We repeat the procedure to obtain the next point $\left(x_{2}, y_{2}\right)$ and so on.

Write an octave function $\mathrm{K}=\mathrm{krivulja}(\mathrm{f}, \operatorname{gradf}, \mathrm{TO}$, delta, n$)$ that returns the $2 \times n$ matrix K containing the coordinates of the sequence of points on $f(x, y)=$ 0 , with mutual distances δ. (f is the given function of two variables and gradf is its gradient, T0 is the initial point).

