Topological Data Analysis Lab work, 1st week

1. Define $d: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}$ as

$$d((x_1, x_2), (y_1, y_2)) = \begin{cases} \|(x_1, x_2) - (y_1, y_2)\|_2, & (0, 0), (x_1, x_2), (y_1, y_2) \text{ are collinear,} \\ \|(x_1, x_2)\|_2 + \|(y_1, y_2)\|_2, & \text{otherwise.} \end{cases}$$

Draw the open balls

- (a) B((0,0),1),
- (b) B((3,0),4) and
- (c) $B((1,1), \sqrt{2})$.
- 2. Given the points A(3, -4) and B(4, 3) in \mathbb{R}^2 find the parametrization for least three different paths

$$\alpha, \beta, \gamma \colon [0,1] \to \mathbb{R}^2$$

from A to B.

- 3. Let $X = \{(x, y, z) \in \mathbb{R}^3 \; ; \; z^2 = x^2 + y^2, \; 0 < z < 1 \}$ and $Y = S^1 \times (0, 1)$. Show that $X \cong Y$.
- 4. Let $X_n = S^n \setminus \{(0, \dots, 0, 1), (0, \dots, 0, -1)\} \subset \mathbb{R}^{n+1}$ and $Y_n = S^{n-1} \times (-1, 1) \subset \mathbb{R}^{n+1}$. Draw X_n and Y_n for n = 0, 1, 2. Prove that X_2 and Y_2 are homeomorphic.
- 5. Which of the following surfaces (cylinder, Moebius strip, sphere, torus, Klein bottle) are homeomorphic? Are any of them homotopy equivalent? If so, which? If not, why not?

- 6. Draw $X_n = S^{n-1}$ and $Y_n = \mathbb{R}^n \setminus \{0\}$ for n = 1, 2. Show that X_2 and Y_2 are homotopy equivalent.
- 7. Show that the Moebius band $M = [-1,1] \times [-1,1]/_{\sim}$, where $(-1,y) \sim (1,-y)$ for all $y \in [-1,1]$, is homotopy equivalent to the circle $S^1 = [-1,1]/_{\sim}$, where $-1 \sim 1$.