Development of intelligent systems (RInS)

Object recognition with Convolutional Neural Networks

Danijel Skočaj University of Ljubljana Faculty of Computer and Information Science

Academic year: 2022/23

Media hype

IM GENET

1k categories 1,3M images Top5 classification

ILSVRC results

New deep learning era

More data!

More computing power - GPU!

Better learning algorithms!

New deep learning era

Machine learning in computer vision

Conventional approach

Development of intelligent systems, Object recognition with CNNs

Deep learning in computer vision

Conventional machine learning approach in computer vision

Deep learing approach

Deep learning – the main concept

Sigmoid neurons

Real inputs and outputs from interval [0,1]

Activation function: sgimoid function

• output =
$$\frac{1}{1 + \exp(-\sum_j w_j x_j - b)}$$

Sigmoid neurons

Small changes in weights and biases causes small change in output

Enables learning!

Feedfoward neural networks

Network architecture:

Example: recognizing digits

- MNIST database of handwritten digits
 - 28x28 pixes (=784 input neurons)
 - 10 digits
 - 50.000 training images

hidden layer (n = 15 neurons)

output layer

Example code: Feedforward

- Code from https://github.com/mnielsen/neural-networks-and-deep-learning git clone https://github.com/mnielsen/neural-networks-and-deep-learning git clone https://github.com/mnielsen/neural-networks-and-deep-learning
- Or <u>https://github.com/chengfx/neural-networks-and-deep-learning-for-python3</u> (for Python 3)

```
net = network.Network([784, 30, 10])
class Network(object):
                                                  net.SGD(training_data, 5, 10, 3.0, test_data=test_data)
                                                                                In [55]: x,y=test data[0]
    def init (self, sizes):
        self.num_layers = len(sizes)
                                                                                In [56]: net.feedforward(x)
        self.sizes = sizes
                                                                                Out[56]:
        self.biases = [np.random.randn(y, 1) for y in sizes[1:]]
                                                                                array([[ 1.83408119e-03],
        self.weights = [np.random.randn(y, x)
                                                                                          5.94472468e-08],
                        for x, y in zip(sizes[:-1], sizes[1:])]
                                                                                          1.84785949e-03],
                                                                                          6.85718810e-04],
   def feedforward(self, a):
                                                                                          1.41399919e-05],
       for b, w in zip(self.biases, self.weights):
                                                                                          5.40491233e-06],
           a = sigmoid(np.dot(w, a)+b)
                                                                                          4.74332685e-09],
       return a
                                                                                          9.97920007e-01],
                                                                                          8.19370561e-05],
                                                                                          6.65086583e-05]])
def sigmoid(z):
    return 1.0/(1.0+np.exp(-z))
                                                                                In [57]: y
```

Out[57]: 7

Loss function

- Loss function: $C(w,b) \equiv rac{1}{2n} \sum_x \|y(x) a\|^2$
 - (mean sqare error quadratic loss function)
- Find weigths w and biases b that for given input x produce output a that minimizes Loss function C

Gradient descend

• Find minimum of $C(v_1, v_2)$

Gradient descend in neural networks

- Loss function C(w, b)
- Update rules:

$$egin{aligned} w_k & o w_k' = w_k - \eta rac{\partial C}{\partial w_k} \ b_l & o b_l' = b_l - \eta rac{\partial C}{\partial b_l} \end{aligned}$$

- Consider all training samples
- Very many parameters
 => computationaly very expensive
- Use Stochastic gradient descend instead

Example code: SGD

```
def SGD(self, training data, epochs, mini batch size, eta):
    n = len(training data)
    for j in xrange(epochs):
        random.shuffle(training data)
        mini batches = [
            training data[k:k+mini batch size]
             for k in xrange(0, n, mini_batch_size)]
        for mini batch in mini batches:
             self.update mini batch(mini_batch, eta)
def update mini batch(self, mini batch, eta):
   nabla_b = [np.zeros(b.shape) for b in self.biases]
   nabla w = [np.zeros(w.shape) for w in self.weights]
   for x, y in mini batch:
        delta nabla b, delta nabla w = self.backprop(x, y)
        nabla b = [nb+dnb for nb, dnb in zip(nabla b, delta nabla b)]
        nabla_w = [nw+dnw for nw, dnw in zip(nabla_w, delta_nabla_w)]
   self.weights = [w-(eta/len(mini_batch))*nw
                    for w, nw in zip(self.weights, nabla w)]
   self.biases = [b-(eta/len(mini_batch))*nb
```

Backpropagation

- All we need is gradient of loss function ∇C
 - Rate of change of C wrt. to change in any weigt
 - Rate of change of *C* wrt. to change in any biase

$$rac{\partial C}{\partial b_j^l} \qquad \qquad rac{\partial C}{\partial w_{jk}^l}$$

- How to compute gradient?
 - Numericaly
 - Simple, approximate, extremely slow 🐵
 - Analyticaly for entire C
 - Fast, exact, nontractable 😕
 - Chain individual parts of netwok
 - Fast, exact, doable ☺

Backpropagation!

Main principle

- We need the gradient of the Loss function ∇C
- Two phases:
 - Forward pass; propagation: the input sample is propagated through the network and the error at the final layer is obtained

 ∂C

 ∂w^l_{il}

 $rac{\partial C}{\partial b_i^l}$

 Backward pass; weight update: the error is backpropagated to the individual levels, the contribution of the individual neuron to the error is calculated and the weights are updated accordingly

Learning strategy

- To obtain the gradient of the Loss function ∇C : $\frac{\partial C}{\partial b_i^l} = \frac{\partial C}{\partial w_{jk}^l}$
 - For every neuron in the network calculate error of this neuron

$$\delta^l_j \equiv {\partial C \over \partial z^l_j}$$

- This error propagates through the netwok causing the final error
- Backpropagate the final error to get all δ_i^l

• Obtain all
$$\frac{\partial C}{\partial b_j^l}$$
 and $\frac{\partial C}{\partial w_{jk}^l}$ from δ_j^l

Equations of backpropagation

• BP1: Error in the output layer:

$$\delta_j^L = rac{\partial C}{\partial a_j^L} \sigma'(z_j^L) \qquad \qquad \delta^L =
abla_a C \odot \sigma'(z^L)$$

BP2: Error in terms of the error in the next layer:

$$\delta^l_j = \sum_k w^{l+1}_{kj} \delta^{l+1}_k \sigma'(z^l_j) \qquad \qquad \delta^l = ((w^{l+1})^T \delta^{l+1}) \odot \sigma'(z^l)$$

BP3: Rate of change of the cost wrt. to any bias:

$$\frac{\partial C}{\partial b_j^l} = \delta_j^l \qquad \qquad \frac{\partial C}{\partial b} = \delta$$

BP4: Rate of change of the cost wrt. to any weight:

$$rac{\partial C}{\partial w_{jk}^l} = a_k^{l-1} \delta_j^l \qquad \qquad rac{\partial C}{\partial w} = a_{
m in} \delta_{
m out} \qquad \bigcirc^{rac{\partial C}{\partial w}} = a_{
m in} \delta_{
m out}$$

20

For a number of **epochs**

Until all training images are used

Select a **mini-batch** of *m* training samples

For each training sample x in the mini-batch

Input: set the corresponding activation $a^{x,1}$

Feedforward: for each
$$l=2,3,\ldots,L$$

compute $z^{x,l}=w^la^{x,l-1}+b^l$ and $a^{x,l}=\sigma(z^{x,l})$

Output error: compute $\delta^{x,L} = \nabla_a C_x \odot \sigma'(z^{x,L})$

Backpropagation: for each
$$\ l=L-1,L-2,\ldots,2$$
 compute $\delta^{x,l}=((w^{l+1})^T\delta^{x,l+1})\odot\sigma'(z^{x,l})$

Gradient descend: for each l = L, L - 1, ..., 2 and x update:

$$egin{aligned} & w^l
ightarrow w^l - rac{\eta}{m} \sum_x \delta^{x,l} (a^{x,l-1})^T \ & b^l
ightarrow b^l - rac{\eta}{m} \sum_x \delta^{x,l} \end{aligned}$$

Example code: Backpropagation

```
def backprop(self, x, y):
        nabla_b = [np.zeros(b.shape) for b in self.biases]
        nabla_w = [np.zeros(w.shape) for w in self.weights]
        # feedforward
        activation = x
        activations = [x] # list to store all the activations, layer by layer
        zs = [] # list to store all the z vectors, layer by layer
        for b, w in zip(self.biases, self.weights):
            z = np.dot(w, activation)+b
                                                           def cost derivative(self, output activations, y):
            zs.append(z)
                                                               return (output activations-y)
            activation = sigmoid(z)
            activations.append(activation)
       # backward pass
                                                                             def sigmoid(z):
        delta = self.cost_derivative(activations[-1], y) * \
                                                                                 return 1.0/(1.0+np.exp(-z))
            sigmoid prime(zs[-1])
        nabla b[-1] = delta
                                                                        def sigmoid prime(z):
        nabla_w[-1] = np.dot(delta, activations[-2].transpose())
                                                                            return sigmoid(z)*(1-sigmoid(z))
        for l in xrange(2, self.num_layers):
            z = zs[-1]
            sp = sigmoid prime(z)
            delta = np.dot(self.weights[-l+1].transpose(), delta) * sp
            nabla b[-1] = delta
            nabla w[-1] = np.dot(delta, activations[-1-1].transpose())
        return (nabla b, nabla w)
```

Activation function	Loss function
Linear	Quadratic
$a_j^L = z_j^L$	$C(w,b)\equiv rac{1}{2n}\sum_x \ y(x)-a\ ^2$
Sigmoid 1	Cross-entropy
$\sigma(z)\equiv rac{1}{1+e^{-z}}$	$igg C = -rac{1}{n}\sum_x\sum_j \left[y_j\ln a_j^L + (1-y_j)\ln(1-a_j^L) ight]$
Softmax $e^{z_j^L}$	Categorical Cross-entropy
$a_j^L = rac{arphi}{\sum_k e^{z_k^L}}$	$C=-rac{1}{n}\sum_{x}\sum_{j}y_{j}\ln a_{j}^{L}$
Other	Custom

Activation functions

Method	Papers		
	8096	SELU SELU	178
ReLU		Self-Normalizing Neural Networks	
Sigmoid Activation	5363	PReLU	
GELU	5285	Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification	86
🗅 Gaussian Error Linear Units (GELUs)	5205	ReLU6	
Tanh Activation	4936	MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications	58
Leaky ReLU	915	Hard Swish	E 4
		▲ Searching for MobileNetV3	54
Language Modeling with Gated Convolutional Networks	372	Maxout	45
Swish	254	L' Maxout Networks	
Searching for Activation Functions			
Softplus	204	Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs)	34
Mish	183	[https://paperswit	<u>hcode.co</u>

Regularisation

- How to avoid overfitting:
 - Increase the number of training images ☺
 - Decrease the number of parameters $\boldsymbol{\boldsymbol{\Im}}$
 - Regularization ③
- Data Augmentation
- L1 regularisation
- L2 regularisation
- Dropout
- Batch Normalization
- DropConnect
- Fractional Max Pooling
- Stochastic Depth
- Cutout / Random Crop
- Mixup

Convolutional neural networks

From feedforward fully-connected neural networks

To convolutional neural networks

Convolutional neural networks

- Data in vectors, matrices, tensors
- Neigbourhood, spatial arrangement
- 2D: Images,time-fequency representations

- 1D: sequential signals, text, audio, speech, time series,...
- 3D: volumetric images, video, 3D grids

Convolution layer

Convolution layer

Sparse connectivity

- Local connectivity neurons are only locally connected (receptive field)
 - Reduces memory requirements
 - Improves statistical efficiency
 - Requires fewer operations

The receptive field of the units in the deeper layers is large

=> Indirect connections!

Parameter sharing

Neurons share weights!

- Tied weights
- Every element of the kernel is used at every position of the input
- All the neurons at the same level detect the same feature (everywhere in the input)
- Greatly reduces the number of parameters!
- Equivariance to translation
 - Shift, convolution = convolution, shift
 - Object moves => representation moves

- Fully connected network with an infinitively strong prior over its weights
 - Tied weights
 - Weights are zero outside the kernel region
 - => learns only local interactions and is equivariant to translations

Convolutional neural network

Development of intelligent systems, Object recognition with CNNs

Slide credit: Fei-Fei Li, Andrej Karpathy, Justin Johnson

Convolutional neural network

Development of intelligent systems, Object recognition with CNNs

Slide credit: Fei-Fei Li, Andrej Karpathy, Justin Johnson 34

Stride

Step for convolution filter

Stride=1 Stride=2

- Output size: $\frac{N-F}{S} + 1$
- Example:

Pooling layer

- Downsampling reduces the volume size (width and height)
- Process each activation map independently keeps the volume depth unchanged

- Example with
 - F=2
 - S=2

Pooling

 Max pooling introduces translation invariance

- Pooling with downsampling
 - Reduces the representation size
 - Reduces computational cost
 - Increases statistical efficiency

CNN layers

- Layers used to build ConvNets:
 - INPUT: raw pixel values

1

- CONV: convolutional layer
- (BN: batch nornalisation)
- (ReLU:) introducing nonlinearity
- POOL: downsampling

- FC: for computing class scores
- SoftMax

CNN architecture

• Stack the layers in an appropriate order

Typical solution

Korak 1: Zajem podatkov

Network architecture

Example implementation in TensorFlow

AlexNet

ReLU, data augmentation, Dropout, Momentum, L2 regularisation

		ConvNet C	onfiguration		
A	A-LRN	B	С	D	Е
11 weight layers	11 weight layers	13 weight layers	16 weight layers	16 weight layers	19 weight layers
	i	nput (224×2	24 RGB image)	
conv3-64	conv3-64 LRN	conv3-64 conv3-64	conv3-64 conv3-64	conv3-64 conv3-64	conv3-64 conv3-64
		max	pool		
conv3-128	conv3-128	conv3-128 conv3-128	conv3-128 conv3-128	conv3-128 conv3-128	conv3-128 conv3-128
		max	pool		
conv3-256 conv3-256	conv3-256 conv3-256	conv3-256 conv3-256	conv3-256 conv3-256 conv1-256	conv3-256 conv3-256 conv3-256	conv3-256 conv3-256 conv3-256 conv3-256
	20	max	pool		
conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512 conv1-512	conv3-512 conv3-512 conv3-512	conv3-512 conv3-512 conv3-512 conv3-512
		max	pool		
conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512 conv1-512	conv3-512 conv3-512 conv3-512	conv3-512 conv3-512 conv3-512 conv3-512
		max	pool		
		FC-	4096		
		FC-	4096		
		FC-	1000		
		soft	-max		

- Classical CNN backbone shape
- VGG16, VGG19

VGG

Simonyan & Zisserman, 2014

Table 2: Number of parameters (in millions).

Network	A,A-LRN	В	С	D	E
Number of parameters	133	133	134	138	144

GoogLeNet / Inception

ResNet

- Going deeper!
- Plain deep networks do not work
- Shortcut connections!
 - Figth vanishing gradient problem

2

iter. (1e4)

5

- Learn residual functions $\mathbf{y} = \mathcal{F}(\mathbf{x}, \{W_i\}) + \mathbf{x}$
- Bottleneck building blocks
- Very deep networks:
 - 152, 101, 50, 34, 18

6

iter. (1e4)

7x7 conv, 64, /2 pool, /2 3x3 conv, 64 3x3 conv, 64 3x3 conv, 64

> 3x3 conv, 64 3x3 conv, 64

3x3 conv, 64

3x3 conv, 128

3x3 conv, 256, /2

3x3 conv, 256

3x3 conv, 256 ★ 3x3 conv, 256 ↓ 3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256 3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

avg pool

fc 1000

Architectures overview

Date of publication, main type

Analysis of DNN models

[Canziani et al., 2017]

Pretrained models

```
import torchvision.models as models
resnet18 = models.resnet18(pretrained=True)
alexnet = models.alexnet(pretrained=True)
squeezenet = models.squeezenet1_0(pretrained=True)
vgg16 = models.vgg16(pretrained=True)
densenet = models.densenet161(pretrained=True)
inception = models.inception v3(pretrained=True)
googlenet = models.googlenet(pretrained=True)
shufflenet = models.shufflenet_v2_x1_0(pretrained=True)
mobilenet v2 = models.mobilenet v2(pretrained=True)
mobilenet v3 large = models.mobilenet v3 large(pretrained=True)
mobilenet_v3_small = models.mobilenet_v3_small(pretrained=True)
resnext50 32x4d = models.resnext50 32x4d(pretrained=True)
wide resnet50 2 = models.wide resnet50 2(pretrained=True)
mnasnet = models.mnasnet1_0(pretrained=True)
```

Transformers

[Khan et.al, 2021]

Development of intelligent systems, Object recognition with CNNs

[Dosovitskiy et.al, Google, 2020, ICLR 2021]

Transfer learning

- Train on a large related dataset
- Fine-tune on the target dataset
- Heavily used

<u>Ribani & Marengoni 2019</u>

Development of intelligent systems, Object recognition with CNNs

Two stage object detection and recognition

SSD: Single Shot MultiBox Detector

- Multi-scale feature maps for detection
- Convolutional predictors for detection
- Default boxes and aspect ratios
- Real time operation

[Liu et al., ECCV 2016]

Main computer vision tasks

Surface-defect detection

Surface-defect detection

Development of intelligent systems, Object recognition with CNNs

Surface-defect detection

Polyp counting

Polyp counting

Ship detection

Face detection

Development of intelligent systems, Object recognition with CNNs

Mask-wearing detection

Obstacle detection on autonomous boat

USV equipped with different sensors:

- stereo camera
- IMU
- GPS
- compass

Segmentation based on RGB + IMU

Semantic edge detection

Development of intelligent systems, Object recognition with CNNs

Object (traffic sign) detection

Development of intelligent systems, Object recognition with CNNs

Object (traffic sign) detection

Image anonymisation

 Detection and anonimysation of car plates and faces

Visual tracking

Plank classification

Place recognition

Semantic segmentation

Image enhancement

Deblurring, super-resolution

Original

DAU-SNR-Deblur (our)

ABA

Original

Deep reinforcement learning

Vicos sualgnitive ystemslab

- Automatic generation of learning examples
- Goal-driven map-less mobile robot navigation

Innate and learned

- Goal-driven map-less mobile robot navigation
- Constraining the problem using a priory knowledge

Problem solving

Complexity

Simple, well defined problems

Rule-based decision making

Programming

Complex, vaguely defined problems

Data-driven decision making

Machine learning

Problem solving

Development of intelligent systems, Object recognition with CNNs

Adequate tools

Development of intelligent systems, Object recognition with CNNs

Development, deployement and maintainance

- Data, data, data!
 - Enough data, representative data
 - Correctly annotated data
- Appropriate deep architecture design
 - Proper backbone, architecture, loss function, ...
 - Learning, parameter optimisation
- Efficient implementation
 - Execution speed
 - Integration
- Maintenance
 - Incremental improvement of the learned model
 - Reflecting to changes in the environment

Development of deep learning solutions

Knowledge and experience count

Software

Neural networks in Python

Convolutional neural networks using PyTorch or TensorFlow

or other deep learning frameworks

Caffe 🖞 Caffe 2 theano MatConvNet

Optionally use Google Colab

Literature

 Michael A. Nielsen, Neural Networks and Deep learning, Determination Press, 2015 <u>http://neuralnetworksanddeeplearning.com/index.html</u>

Neural Networks and Deep Learning

 Ian Goodfellow and Yoshua Bengio and Aaron Courville, Deep Learning, MIT Press, 2016 <u>http://www.deeplearningbook.org/</u>

- Fei-Fei Li, Andrej Karpathy, Justin Johnson, CS231n: Convolutional Neural Networks for Visual Recognition, Stanford University, 2016 <u>http://cs231n.stanford.edu/</u>
- Papers