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Media hype
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Superior perfomance
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New deep learning era

▪ More data!

▪ More computing power - GPU!

▪ Better learning algorithms!
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New deep learning era

ICCV 2019, Seoul, Korea, 27. 10. - 2. 11. 2019 
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Machine learning in computer vision

▪ Conventional approach

feature 
extraction

features classification class

modellearning

PCA, LDA, CCA, 
HOG, SIFT,  

SURF, ORB, … kNN, SVM, ANN, 
AdaBoost, …
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Deep learning in computer vision

▪ Conventional machine learning approach in computer vision

▪ Deep learing approach

feature 
extraction

features classification class

modellearning

classification class

Deep 
model

deep 
learning
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Deep learning – the main concept
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Sigmoid neurons

▪ Real inputs and outputs from interval [0,1]

▪ Activation function: sgimoid function

▪ output =
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Sigmoid neurons

▪ Small changes in weights and biases causes small change in output

▪ Enables learning!
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Feedfoward neural networks

▪ Network architecture:
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Example: recognizing digits

▪ MNIST database of handwritten digits

▪ 28x28 pixes (=784 input neurons)

▪ 10 digits

▪ 50.000 training images

▪ 10.000 validation images

▪ 10.000 test images
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Example code: Feedforward

▪ Code from https://github.com/mnielsen/neural-networks-and-deep-learning/archive/master.zip

or https://github.com/mnielsen/neural-networks-and-deep-learning

git clone https://github.com/mnielsen/neural-networks-and-deep-learning.git 

▪ or https://github.com/chengfx/neural-networks-and-deep-learning-for-python3 (for Python 3)

https://github.com/mnielsen/neural-networks-and-deep-learning/archive/master.zip
https://github.com/mnielsen/neural-networks-and-deep-learning
https://github.com/chengfx/neural-networks-and-deep-learning-for-python3
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Loss function

▪ Given:

for all training images

▪ Loss function:

▪ (mean sqare error – quadratic loss function)

▪ Find weigths w and biases b that for given input x

produce output a that minimizes Loss function C
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Gradient descend

▪ Find minimum of

▪ Change of C:

▪ Gradient of C:

▪ Change v in the opposite

direction of the gradient: 

▪ Algorithm:

▪ Initialize v

▪ Until stopping criterium riched

▪ Apply udate rule

Learning rate
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Gradient descend in neural networks

▪ Loss function

▪ Update rules:

▪ Consider all training samples

▪ Very many parameters
=> computationaly very expensive

▪ Use Stochastic gradient descend instead
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Example code: SGD
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Backpropagation

▪ All we need is gradient of loss function

▪ Rate of change of C wrt. to change in any weigt

▪ Rate of change of C wrt. to change in any biase

▪ How to compute gradient?

▪ Numericaly

▪ Simple, approximate, extremely slow 

▪ Analyticaly for entire C

▪ Fast, exact, nontractable 

▪ Chain individual parts of netwok

▪ Fast, exact, doable ☺

Backpropagation!
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Main principle

▪ We need the gradient of the Loss function

▪ Two phases:

▪ Forward pass; propagation: the input sample is propagated through the network and
the error at the final layer is obtained

▪ Backward pass; weight update: the error is backpropagated to the individual levels, 
the contribution of the individual neuron to the error is calculated and the weights are 
updated accordingly
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Learning strategy

▪ To obtain the gradient of the Loss function :

▪ For every neuron in the network calculate error of this neuron

▪ This error propagates through the netwok causing the final error

▪ Backpropagate the final error to get all

▪ Obtain all and from
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Equations of backpropagation

▪ BP1: Error in the output layer:

▪ BP2: Error in terms of the error in the next layer:

▪ BP3: Rate of change of the cost wrt. to any bias:

▪ BP4: Rate of change of the cost wrt. to any weight:
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Backpropagation and SGD

For a number of epochs

Until all training images are used

Select a mini-batch of training samples

For each training sample in the mini-batch

Input: set the corresponding activation

Feedforward: for each

compute and

Output error: compute

Backpropagation: for each

compute

Gradient descend: for each and update: 
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Example code: Backpropagation
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Activation and loss functions

Activation function Loss function

Linear Quadratic

Sigmoid Cross-entropy

Softmax Categorical Cross-entropy

Other Custom
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Activation functions

[https://paperswithcode.com]

https://paperswithcode.com/
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Regularisation

▪ How to avoid overfitting:

▪ Increase the number of training images 

▪ Decrease the number of parameters 

▪ Regularization ☺

▪ Data Augmentation

▪ L1 regularisation

▪ L2 regularisation

▪ Dropout

▪ Batch Normalization

▪ DropConnect

▪ Fractional Max Pooling

▪ Stochastic Depth

▪ Cutout / Random Crop

▪ Mixup

[Wan et al. 2013]

[Huang et al. 2016]

[Graham, 2014]
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Convolutional neural networks

▪ From feedforward fully-connected neural networks

▪ To convolutional neural networks
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Convolutional neural networks

▪ Data in vectors, matrices, tensors

▪ Neigbourhood, spatial arrangement

▪ 2D: Images,time-fequency representations

▪ 1D: sequential signals, text, audio, speech, time series,…

▪ 3D: volumetric images, video, 3D grids
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Convolution layer

*
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Convolution layer
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Sparse connectivity

▪ Local connectivity – neurons are only locally connected (receptive field)

▪ Reduces memory requirements

▪ Improves statistical efficiency

▪ Requires fewer operations

from below from above

The receptive field of the 
units in the deeper layers 
is large
=> Indirect connections!
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Parameter sharing

▪ Neurons share weights!

▪ Tied weights

▪ Every element of the kernel is used 
at every position of the input

▪ All the neurons at the same level detect
the same feature (everywhere in the input)

▪ Greatly reduces the number of parameters!

▪ Equivariance to translation

▪ Shift, convolution = convolution, shift

▪ Object moves => representation moves

▪ Fully connected network with an infinitively strong prior over its weights

▪ Tied weights

▪ Weights are zero outside the kernel region

=> learns only local interactions and is equivariant to translations
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Convolutional neural network

[From recent Yann 

LeCun slides]

Slide credit: Fei-Fei Li, Andrej Karpathy, Justin Johnson
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Convolutional neural network

example 5x5 filters

(32 total)
one filter => 

one activation map

input

image:

Slide credit: Fei-Fei Li, Andrej Karpathy, Justin Johnson
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Stride

▪ Step for convolution filter

Convolution with stride>1 
is equivalent to 
convolution + downsampling

▪ Output size:
𝑁−𝐹

𝑆
+ 1

▪ Example:

Stride=1
Stride=2
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▪ Downsampling – reduces the volume size (width and height)

▪ Process each activation map independently – keeps the volume depth unchanged

Pooling layer

4 

4 

1 0 3 6

5 6 7 8

9 8 7 6

4 3 2 5

6 8

9 7

• Example with
• F=2 
• S=2

3 6

2 5

Max 
pooling

Avg 
pooling
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Pooling

▪ Max pooling introduces translation 
invariance

▪ Pooling with downsampling
▪ Reduces the representation size

▪ Reduces computational cost

▪ Increases statistical efficiency
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CNN layers

▪ Layers used to build ConvNets:

▪ INPUT: 
raw pixel values

▪ CONV: 
convolutional layer

▪ (BN: batch nornalisation)

▪ (ReLU:)
introducing nonlinearity 

▪ POOL: 
downsampling

▪ FC: 
for computing class scores

▪ SoftMax
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CNN architecture

▪ Stack the layers in an appropriate order

Hu et. al. 

Babenko et. al. 
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Typical solution
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Network architecture

▪ Training the model

▪ Inference
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Example implementation in TensorFlow

Segmentation network

Classification network
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LeNet-5

LeCun et al., 1998

CONV 
5x5

POOL 
F=2, S=2

CONV 
5x5

POOL 
F=2, S=2

FC FC

http://www.cs.utoronto.ca/~hinton/absps/naturebp.pdf
http://www.cs.utoronto.ca/~hinton/absps/naturebp.pdf


Development of intelligent systems, Object recognition with CNNs 44

AlexNet

▪ ReLU, data augmentation, Dropout, Momentum, L2 regularisation

Image credit: http://fromdata.org/2015/10/01/imagenet-cnn-architecture-image/

Krizhevsky, 2012

CONV1 
F=11
S=4

POOL 
F=3
S=2

CONV2 
F=5
S=1
P=2

POOL 
F=3
S=2

CONV3 
F=3
S=1
P=1

CONV4 
F=3
S=1
P=1

CONV5 
F=3
S=1
P=1

FC6 
4096

FC7 
4096

FC8 
1000

POOL 
F=3
S=2

https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
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VGG

▪ Classical CNN backbone shape

▪ VGG16, VGG19

CONV: F=3, S=1, P=1

POOL: F=2, S=2

Simonyan & Zisserman, 2014

https://arxiv.org/abs/1409.1556
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GoogLeNet / Inception
S
te

m
n
e
tw

o
rk Inception module Auxiliary output
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s
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u
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Szegedy et al., 2014

https://arxiv.org/abs/1409.4842
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ResNet

▪ Going deeper!

▪ Plain deep networks do not work

▪ Shortcut connections!

▪ Figth vanishing gradient problem

▪ Learn residual functions

▪ Bottleneck building blocks

▪ Very deep networks:

▪ 152, 101, 50, 34, 18

He et al., 2015

https://arxiv.org/abs/1512.03385
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Architectures overview

▪ Date of publication, main type

[Hoeser and Kuenzer, 2020]
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Analysis of DNN models

[Canziani et al., 2017]
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Pretrained models
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Transformers

[Khan et.al, 2021][Vaswani et.al, NIPS 2017]
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ViT - Vision Transformer

▪ AN IMAGE IS WORTH 16X16 WORDS: 
TRANSFORMERS FOR IMAGE RECOGNITION AT SCALE

[Dosovitskiy et.al, 
Google, 2020,
ICLR 2021]
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Transfer learning

▪ Train on a large related dataset

▪ Fine-tune on the target dataset

▪ Heavily used

Ribani & Marengoni 2019

https://www.researchgate.net/publication/337794654_A_Survey_of_Transfer_Learning_for_Convolutional_Neural_Networks
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Two stage object detection and recognition

Face 
detection

Face 
recognition

„Scarlet“

very fast
efficient

could be slower
computationally more complex

HOG+SVM
AdaBoost
SSD

CNN
PCA/LDA
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SSD: Single Shot MultiBox Detector

▪ Multi-scale feature maps for 
detection

▪ Convolutional predictors for 
detection

▪ Default boxes and aspect ratios

▪ Real time operation

[Liu et al., ECCV 2016]
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Main computer vision tasks

Classification Localisation Detection

Instance segmentation Semantic segmentation Panoptic segmentation
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Surface-defect detection

Segmantation-based data-driven
surface-defect detection
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Surface-defect detection
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Surface-defect detection
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Polyp counting
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Polyp counting
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Ship detection
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Face detection
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Mask-wearing detection
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Obstacle detection on autonomous boat

USV equipped with 
different sensors:

• stereo camera
• IMU
• GPS
• compass

Segmentation based on
RGB + IMU
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Semantic edge detection
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Object (traffic sign) detection
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Object (traffic sign) detection
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Image anonymisation

▪ Detection and 
anonimysation of car 
plates and faces
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Visual tracking
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Plank classification
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Place recognition
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Semantic segmentation
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Image enhancement

▪ Deblurring, super-resolution
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Deep reinforcement learning

▪ Automatic generation of 
learning examples

▪ Goal-driven map-less 
mobile robot navigation
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Innate and learned

▪ Goal-driven map-less mobile robot navigation 

▪ Constraining the problem using a priory knowledge

Engineering

approach

Engineering  approach + 
deep learning

Pure learning
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Problem solving

▪ Different problem complexities

Simple, 
well defined problems

Complex, vaguely 
defined problems

C
o
m

p
le

x
it
y

Rule-based
decision making

Data-driven 
decision making

Programming Machine learning
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Problem solving

Routine solutions Rule-based solutions Data-driven solutions General intelligence

C
o

m
p
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ty
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Adequate tools

Routine solutions Rule-based solutions Data-driven solutions General intelligence
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Development, deployement and maintainance

• Data, data, data!
• Enough data, representative data

• Correctly annotated data

• Appropriate deep architecture design
• Proper backbone, architecture, loss function, …

• Learning, parameter optimisation

• Efficient implementation
• Execution speed

• Integration

• Maintenance
• Incremental improvement of the learned model

• Reflecting to changes in the environment
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Development of deep learning solutions
%

 o
f 

so
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n

time

80%

20%

80%
20%

80:20?

60:40?

90:10?

99:1?
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Knowledge and experience count
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Software

▪ Neural networks in Python

▪ Convolutional neural networks using PyTorch or TensorFlow

▪ or other deep learning frameworks

▪ Optionally use Google Colab
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Literature

▪ Michael A. Nielsen, Neural Networks and Deep learning, 
Determination Press, 2015
http://neuralnetworksanddeeplearning.com/index.html

▪ Ian Goodfellow and Yoshua Bengio and Aaron Courville,
Deep Learning, MIT Press, 2016
http://www.deeplearningbook.org/

▪ Fei-Fei Li, Andrej Karpathy, Justin Johnson, CS231n: Convolutional Neural 
Networks for Visual Recognition, Stanford University, 2016
http://cs231n.stanford.edu/

▪ Papers

http://neuralnetworksanddeeplearning.com/index.html
http://www.deeplearningbook.org/
http://cs231n.stanford.edu/
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