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a b s t r a c t

Differential Evolution (DE) is arguably one of the most powerful and versatile evolutionary optimizers for
the continuous parameter spaces in recent times. Almost 5 years have passed since the first compre-
hensive survey article was published on DE by Das and Suganthan in 2011. Several developments have
been reported on various aspects of the algorithm in these 5 years and the research on and with DE have
now reached an impressive state. Considering the huge progress of research with DE and its applications
in diverse domains of science and technology, we find that it is a high time to provide a critical review of
the latest literatures published and also to point out some important future avenues of research. The
purpose of this paper is to summarize and organize the information on these current developments on
DE. Beginning with a comprehensive foundation of the basic DE family of algorithms, we proceed
through the recent proposals on parameter adaptation of DE, DE-based single-objective global optimi-
zers, DE adopted for various optimization scenarios including constrained, large-scale, multi-objective,
multi-modal and dynamic optimization, hybridization of DE with other optimizers, and also the multi-
faceted literature on applications of DE. The paper also presents a dozen of interesting open problems
and future research issues on DE.

& 2016 Published by Elsevier B.V.
1. Introduction

In an attempt to find the global optimum of non-linear, non-con-
vex, multi-modal and non-differentiable functions defined in the
continuous parameter space (DRd), Storn and Price proposed the
Differential Evolution (DE) [173,174] algorithm in 1995. Since then, DE
and its variants have emerged as one of the most competitive and
versatile family of the evolutionary computing algorithms and have
been successfully applied to solve numerous real world problems
from diverse domains of science and technology [134,40]. Starting
with a uniformly random set of candidate solutions sampled from the
feasible search volume, every iteration (commonly known as genera-
tion in evolutionary computing terminology) of DE operates through
the same computational steps as employed by a standard Evolu-
tionary Algorithm (EA). However, DE differs markedly from the well-
known EAs like Evolution Strategies (ESs) and Evolutionary Pro-
gramming (EP) in consideration of the fact that it mutates the base
vectors (secondary parents) with scaled difference(s) of the distinct
members from the current population. As iterations pass, these dif-
ferences tend to adapt to the natural scales of the objective landscape.
For example, if the population becomes compact in one variable but
s),
remains widely dispersed in another, the difference vectors sampled
from it will be smaller in the former variable, yet larger in the latter.
This automatic adaptation significantly improves the search moves of
the algorithm. This property is also known as the self-referential
mutation. In other words, while ES, EP, and some other real coded
Genetic Algorithms (GAs) require the specification or adaptation of the
absolute step size for each variable over iterations, the canonical DE
requires only the specification of a single relative scale factor F for all
variables. Unlike several other evolutionary computation techniques,
basic DE stands out to be a very simple algorithm whose imple-
mentation requires only a few lines of code in any standard pro-
gramming language. In addition, the canonical DE requires very few
control parameters (3 to be precise: the scale factor, the crossover rate
and the population size) — a feature that makes it easy to use for the
practitioners. Nonetheless, DE exhibits remarkable performance while
optimizing a wide variety of objective functions in terms of final
accuracy, computational speed, and robustness. It is interesting to note
that the variants of DE have been securing front ranks in various
competitions among EAs organized under the IEEE Congress
on Evolutionary Computation (CEC) conference series (for details,
please see http://www.ntu.edu.sg/home/epnsugan/index_files/cec-
benchmarking.htm). It is evident that no other single search paradigm
has been able to secure competitive ranking in nearly all the CEC
competitions on single-objective, constrained, dynamic, large-scale,
multi-objective, and multi-modal optimization problems.
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In order to present the flavor of the huge and multi-faceted
literature on DE, in 2010, [134] reviewed a number of DE-variants
for the single-objective optimization problems and also made an
experimental comparison of these variants on a set of standard
benchmark functions. However, the article did not address issues
like adapting DE to complex optimization environments involving
multiple and constrained objective functions, noise and uncer-
tainty in the fitness landscape, very large number of search vari-
ables, and so on. Also, it did not focus on the most recent engi-
neering applications of DE and the developments in the theoretical
analysis of DE. In this respect, the first comprehensive survey on
almost all aspects of the DE family of algorithms was published in
2011 by [40]. Since then, DE has advanced a lot due to the con-
tinuous efforts of EC researchers all over the globe. In a recent
survey by [49], the authors reviewed two aspects of the DE family
of algorithms: the self-adaptive and adaptive parameter control
strategies in DE and the hybridization of DE with other algorithms.
In this article, we present a more exhaustive account of the recent
advances in DE including its basic concepts, different structures,
and variants for solving constrained, multi-objective, dynamic, and
large-scale optimization problems as well as applications of DE
variants to practical optimization problems. In addition we present
several open research issues that call for the attention of the DE
researchers.

The rest of this paper is arranged as follows. In Section 2, the
basic concepts related to classical DE are explained along with the
original formulation of the algorithm in the real number space.
Section 3 discusses the recently developed parameter adaptation
and control schemes for DE. Section 4 provides an overview of
several prominent variants of the DE algorithm for the single-
objective global numerical optimization. Section 5 provides an
extensive survey on the applications of DE to the constrained,
multi-objective, multi-modal, combinatorial, and dynamic opti-
mization problems. Hybrid DE algorithms have been reviewed in
Section 6. An overview on the recent theoretical studies of DE has
been presented in Section 7. Section 8 provides an account of the
recently developed parallel and distributed DE schemes. Section 9
highlights the recent and prominent engineering applications of
DE. Section 10 discusses some interesting future research issues
related to DE. Finally, the paper is concluded in Section 11.
2. The canonical DE algorithm

The initial iteration of a standard DE algorithm consists of four
basic steps – initialization, mutation, recombination or crossover,
and selection, of which, only the last three steps are repeated into
the subsequent DE iterations. The iterations continue till a termi-
nation criterion (such as exhaustion of maximum functional eva-
luations) is satisfied.

2.1. Initialization of the decision variable vectors

DE searches for a global optimum point in a d-dimensional real
decision variable space ΩDRd. It begins with a randomly initiated
population of Np d-dimensional real-valued decision vectors. Each
vector, also known as genome/chromosome, forms a candidate solution
to the multi-dimensional optimization problem. We shall denote
subsequent iterations in DE by t ¼ 0;1; :::; tmax. Since the parameter
vectors are likely to be changed over different iterations, we may
adopt the following notation for representing the ith vector of the
population at the current iteration:

xi
tð Þ ¼ xi;1

tð Þ; xi;2
tð Þ;…; xi;d

tð Þ� �
: ð1Þ

For each decision variable of the problem, there may be a cer-
tain range within which the value of the decision variable should
be restricted, often because decision variables are related to phy-
sical components or measures that have natural bounds (for
example if one decision variable is a length or mass, we would
want it not to be negative). The initial population (at t ¼ 0) should
cover this range as much as possible by uniformly randomizing
individuals within the search space constrained by the prescribed
minimum and maximum bounds: xmin ¼ xmin;1; xmin;2;…; xmin;d

� �
and xmax ¼ xmax;1; xmax;2;…; xmax;d

� �
. Hence, we may initialize the

jth component of the ith decision vector as

xi;j
0ð Þ ¼ xmin;jþrandi;j 0;1½ � xmax;j�xmin;j

� �
; ð2Þ

where randi;j 0;1½ � is a uniformly distributed random number lying
between 0 and 1 (actually 0rrandi;j 0;1½ �r1) and is instantiated
independently for each component of the i-th vector.

2.2. Mutation with difference vectors

After initialization, DE creates a donor/mutant vector vi
tð Þ cor-

responding to each population member or target vector xi
tð Þ in the

current iteration through mutation. Five most frequently referred
mutation strategies are listed below:

“DE=rand=1”:vi tð Þ ¼ xR1
i
tð Þ þF xR2

i
tð Þ �xR3

i
tð Þ

� �
: ð3aÞ

“DE=best=1”:vi tð Þ ¼ xbest
tð Þ þF xR1

i
tð Þ �xR2

i
tð Þ

� �
: ð3bÞ

“DE=current�to�best=1”:vi tð Þ ¼ xi
tð Þ þF xbest

tð Þ �xi
tð Þ� �

þF xR1
i
tð Þ �xR2

i
tð Þ

� �
: ð3cÞ

“DE=best=2”:vi tð Þ ¼ xbest
tð Þ þF xR1

i
tð Þ �xR2

i
tð Þ

� �
þF xR3

i
tð Þ �xR4

i
tð Þ

� �
:

ð3dÞ

“DE=rand=2”:vi tð Þ ¼ xR1
i
tð Þ þF xR2

i
tð Þ �xR3

i
tð Þ

� �
þF xR4

i
tð Þ �xR5

i
tð Þ

� �
:

ð3eÞ
The indices R1

i,R2
i,R3

i,R4
i and R5

i are mutually exclusive inte-
gers randomly chosen from the range [1, Np], and all are different
from the base index i. These indices are randomly generated anew
for each donor vector. The scaling factor F is a positive control
parameter for scaling the difference vectors. xbest

tð Þ is the best
individual vector with the best fitness (i.e. with the lowest objec-
tive function value for a minimization problem) in the population
at iteration t. The general convention used for naming the various
mutation strategies is DE/x/y/z, where DE stands for Differential
Evolution, x represents a string denoting the vector to be per-
turbed and y is the number of difference vectors considered for
perturbation of x. z stands for the type of crossover being used
(exp: exponential; bin: binomial). Note that in the DE/current-to-
best/1 scheme the vector which is being perturbed with the scaled
difference of the two other population members is basically a
convex combination of the current target vector and the best
population member for Fo1. This means here the base vector for
mutation denotes a point on the line joining the target vector and
the best population member and it is an arithmetic recombination
between xi

tð Þand xbest
tð Þ. Thus, the resulting donor vector can be

thought of as a mutated recombinant.

2.3. Crossover

Through crossover, the donor vector mixes its components with
the target vector xi

tð Þ to form the trial/offspring vector ui
tð Þ ¼ ui;1

tð Þ;
�

ui;2
tð Þ;…;ui;d

tð ÞÞ. The DE family of algorithms commonly uses two
crossover methods-exponential (or two-point modulo) and binomial
(or uniform) [40]. We here elaborate the binomial and the exponential
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crossover schemes. Binomial crossover is performed on each of the d
variables whenever a randomly generated number between 0 and 1 is
less than or equal to a pre-fixed parameter Cr, called the crossover
rate. In this case, the number of parameters inherited from the donor
has a (nearly) binomial distribution. The scheme can be expressed as

ui;j
tð Þ ¼

vi;j tð Þ if j¼ K or randi;j 0;1½ �rCr;

xi;j tð Þ otherwise;

(
ð4Þ

where K is any randomly chosen natural number in 1;2;…; d
� �

,
randi;j½0;1� is a uniform random number in [0, 1] and ensures that ui

tð Þ

gets at least one component from vi
tð Þ. randi;j½0;1� is instantiated once

for every component of each vector per iteration.
In exponential crossover, we first choose an integer n randomly

among the numbers 1;2;…;d
� �

. This integer acts as a starting
point in the target vector, fromwhere the crossover or exchange of
components with the donor vector starts. We also determine
another integer L from the numbers in 1;2;…;d

� �
. L denotes the

number of components the donor vector actually contributes to
the target vector. The integer L is drawn from numbers in
1;2;…; d
� �

according to the following pseudo-code:

L¼ 0;

DO
{

L¼ Lþ1;

}WHILE ( rand 0;1½ �oCrð Þ AND Lodð Þ);

Here also Cr is called the crossover rate and appears as a control
parameter of DE just like F. After choosing n and L, the trial vector
is obtained as

ui;j
tð Þ ¼

vi;j tð Þ if j¼ ⟨n⟩d; ⟨nþ1⟩d;…; ⟨nþL�1⟩d;
xi;j tð Þ otherwise;

(
ð5Þ

where the angular brackets :h id denote a modulo function with
modulus d i.e. xh id ¼ xmodd. Hence in effect, probability (LZυ)¼
(Cr)υ�1 for any υ40. For each donor vector, a new set of n and L
must be chosen as shown above. The exponential crossover is
effective only when linkages exist between the neighboring deci-
sion variables [181]. In fact, exponential crossover performed well
on 2011 large scale global optimization (LSGO) problems devel-
oped for special issue in Soft Computing [232], as many of these
problems had linkages among the neighboring decision variables.
Due to this limitation of exponential crossover, binomial crossover
has been more frequently used.

Although not as common as the binomial or exponential
crossovers, some of the DE variants may include the arithmetic
recombination [148] where the trial may be generated as a convex
combination of the target vector and a donor vector in the fol-
lowing manner:

ui
tð Þ ¼ xi

tð Þ þki vi tð Þ �xi
tð Þ� �

; ð6Þ

where ki is a scalar combination coefficient. If ki remains the same
for all the components of the ith vector, then the resulting ui

tð Þ

becomes a point on the line joining solution-points denoted by
xi

tð Þ and vi
tð Þ. In this case, the process is called a line recombination

which is rotation invariant. However, the combination coefficient
can be randomly instantiated for each component resulting in a
component-level operation given by the following at the expense
of rotational invariance property:

ui;j
tð Þ ¼ xi;j

tð Þ þki;j vi;j
tð Þ �xi;j

tð Þ� �
:

2.4. Selection

Selection determines whether the target (parent) or the trial
(offspring) vector survives to the next iteration i.e. at t ¼ tþ1. The
selection operation is described as

xi
tþ1ð Þ ¼

u tð Þ if f u tð Þ� �
r f xi

tð Þ� �
;

xi
tð Þ otherwise;

(
ð7Þ

where f :ð Þ is the objective function to be minimized. Therefore, if
the new trial vector yields an equal or lower value of the objective
function, it replaces the corresponding target vector in the next
iteration; otherwise, the target is retained in the next generation
population. The equality in “r” of (7) helps the DE population to
navigate the flat portions of a fitness landscape and to reduce the
possibility of population becoming stagnated.

Due to the crossover operation, only the target and trial vector can
have the same numerical values for some decision variables. If many
population members have the same numerical values for the same
decision variables, the difference-vector’s components will be zero for
these decision variables if such population members are selected for
computing the difference vector. However, the parent–offspring
competition eliminates the possibility of two distinct population
members inheriting the same numerical values for any particular
decision variable in the early stages of evolution [175].

Note that the DE algorithms can use both synchronous and asyn-
chronous modes of survivor selection or population update. In syn-
chronous population update strategy the population is updated with
all the new solutions at the same time, instead of updating the indi-
viduals just after being generated. Canonical DE [173,174] implements
a synchronous update by maintaining a primary array for holding the
current individuals and a secondary array to store the selected solu-
tions for the next generation. Once the calculations with the current
population members finish at a generation, the secondary array and
the primary array are exchanged for resuming calculations in the next
generation. In asynchronous population update, each newly generated
offspring can replace its parent (if better or equal) and become a
member of the current population, subsequently taking part in the
mutation of the other population members. Many DE-variants pub-
lished subsequently (see [40]) have used this update strategy. Asyn-
chronous update permits the improved solutions to contribute to the
evolution immediately and can speed up the convergence faster than
the synchronous batch mode update.
3. Strategy selection and parameter adaptation in DE

The classical DE includes a set of basic mutation strategies
(most common 5 of which have been shown in Eqs. (3a)–(3e))
along with three possible crossover schemes (binomial, expo-
nential and arithmetic). Starting with the landmark paper on Self
adaptive DE (SaDE) [150,151], there has been a growing trend of
selecting the offspring generation strategies (a combination of a
mutation and a crossover strategy) from a pool [172] as well as
adapting the control parameters F and Cr based on success his-
tories of the generated trial vectors. This section provides an
overview of such approaches developed after 2010. As will be
evident, some of these approaches also create a pool comprising a
mixture of the existing and newly proposed mutation schemes.

It is very difficult to classify the DE methods discussed in this
section under a well defined taxonomy since some of these approa-
ches combine multiple mechanisms together. We still elaborate these
methods under a few representative heads like: DE methods with
both strategy and control parameter adaptations, DE with only control
parameter (F and Cr) adaptation, and DE with population size control.
Note that although the population size Np is counted as a control



S. Das et al. / Swarm and Evolutionary Computation 27 (2016) 1–304
parameter of classical DE, the volume of works devoted for controlling
the population size indicates that this aspect is relatively under
investigated. Hence, a separate subsection on this topic is worth
including.

3.1. DE with both strategy and control parameter (F and Cr)
adaptation

DE methods discussed under this subsection have two aspects.
Firstly, instead of using a single offspring generation strategy, they
select one such strategy from a pool of a few possible strategies.
Secondly, they include some mechanisms for adapting F and Cr
values also.

We begin with a very competitive method, called DE with
Ensemble of Parameters and mutation Strategies (EPSDE) [120] to
select the individual-specific strategy from a pool of mutation variants
as well as values of F and Cr from sets of discrete candidate values
within certain ranges. During initialization each individual of the
population is associated with a value of F and Cr, and a mutation
scheme from the strategy pool. If the generated trial is successful in
replacing the target vector, then it also follows the target’s strategy in
the subsequent generation. Else, in the next generation, the target
vector of the same index either picks a new strategy or keeps its old
one with equal probability. The mutation pool is created with three
strategies having distinct characteristics. These strategies are DE/best/
2/bin, DE/rand/2/bin, and DE/current-to-rand/1 (chosen for its diverse
nature). Note that unlike the first two strategies, DE/current-to-rand/1
does not involve a binomial crossover. Rather, it forms a kind of
mutated recombinant (which is rotation invariant) through the fol-
lowing equation:

ui
ðtÞ ¼ xiðtÞ þK: xr1

tð Þ �xi tð ÞÞþF:ðxr1 tð Þ �xr2
tð Þ

� �
;

where K is an additional combination coefficient. The F values are
taken in the range [0.4, 0.9] with a step of 0.1, and the Cr values are
taken in the range [0.1, 0.9] with the same step size. EPSDE exhibited
highly competitive performance on the IEEE CEC 2005 benchmark
suite for real parameter optimization. EPSDE has since then been
enhanced by integrating SaDE-based adaptation [150,151]. Recently,
[117] proposed a variant of EPSDE where the ensemble of F and Cr
values are evolved by using the optimization process of another
metaheuristic algorithm called Harmony Search (HS). However, this
algorithm can be computationally costlier, especially on large scale
problem instances, due to the involvement of two global optimizers:
DE and HS.

Wang et al. [197] developed a Composite DE (CoDE) algorithm
where a trial vector is chosen from a set of candidates generated by
using different DE strategies. The authors selected 3 trial vector gen-
eration algorithms (DE/rand/1/bin, DE/rand/2/bin and DE/current-to-
rand/1) and three popular choices of the control parameter settings
(F ¼ 1:0;Cr¼ 0:1; F ¼ 1:0;Cr ¼ 0:9; F ¼ 0:8;Cr¼ 0:2). In each genera-
tion three candidates for each trial vector are generated by a distinct
strategy which will use a control parameter settings picked uniformly
at random from the set of allowable values. The final trial vector will
be selected as the candidate with the best fitness value. The three
parameter settings used in thework have distinct effects and thus, will
generate candidates of different characteristics. The varying Cr and F
values are responsible for different search behaviors of the algorithm.
For example, F ¼ 1:0;Cr¼ 0:9 provided high variation in donor and
high degree of perturbation of parent (most components of the trial
vector coming from the donor), resulting in exploration of the search
space, while F ¼ 0:8;Cr¼ 0:2 does the opposite to facilitate exploita-
tion of the space around the target (parent) vector.

Gong et al. [72] proposed an adaptive DE algorithm where
4 mutation strategies are used to create a pool. These strategies are
DE/current-to-pbest/1, DE/rand-to-pbest/1 and their modified versions
with external archive [228]. For each individual, a particular mutation
strategy is selected from the pool with a controlled randomness. The
values for the control parameters are also adapted following the JADE
algorithm [228]. The same year, Gong and his colleagues [73] pre-
sented an adaptive strategy selection technique for generating better
trial vectors by DE. Besides choosing a suitable strategy pool, the
authors also tackled the two issues of selecting a strategy and
rewarding the successful one. For each of k strategies of the pool, one
is selected based on a probability. The probability is improved with the
rewards obtained by a strategy. For updating the probabilities, two
methods are suggested: the probability matching defined by [71] and
the adaptive pursuit defined by [187]. For assignment of credit the
relative fitness improvement measure proposed in [138] was used.

Elsayed et al. [52] presented a variant of DE, which adapts a
mutation strategy, by selecting one from a pool of four allowable
schemes, with the progress of generations. The authors pointed
that, different mutation schemes due to their distinct character-
istics, cannot perform well in the entire run of the DE algorithm,
and proposed that a mutation scheme should be used in those
generations only where it will be most beneficial. This proposal is
implemented, by dividing the total population, into four distinct
groups, each of which will execute one type of mutation strategy
on their members. In contrast to the most commonly used
mutation schemes of DE, the authors used the following 4 muta-
tion schemes:

“DE=rand=3”:viðtÞ ¼ xr1
ðtÞ þF : xr2

tð Þ �xr3
tð Þ þxr4

tð Þ �xr5
tð Þ þxr6

tð Þ �xr7
tð Þ� �

:

“DE=best=3”:viðtÞ ¼ xbest
ðtÞ þF : xr2

tð Þ �xr3
tð Þ þxr4

tð Þ �xr5
tð Þ þxr6

tð Þ �xr7
tð Þ� �

:

“DE=rand�to�current=2”:viðtÞ ¼ xr1
ðtÞ þF : xr2

tð Þ �xi tð Þ þxr3
tð Þ �xr4

tð Þ� �
:

“DE=rand�to�bestandcurrent=2”:viðtÞ ¼ xr1
ðtÞ þF : xbest

tð Þ �xr2
tð Þ þxr3

tð Þ �xi tð Þ
� �

:

Wu et al. [210] proposed a multi-population based framework
to realize an adapted ensemble of three mutation strategies (i.e.
“current-to-pbest/1” and “current-to-rand/1” and “rand/1”) into a
novel DE variant, named MPEDE. The population of MPEDE is
dynamically partitioned into several subpopulations including
three indicator subpopulations and one reward subpopulation.
Each indicator subpopulation with a relatively smaller size is
assigned to a constituent mutation strategy and the reward sub-
population with a relatively larger size is assigned to the currently
best performed mutation strategy as an extra reward. This way,
dynamically computational resource allocation among the muta-
tion strategies is realized and the best mutation strategy is
expected to obtain the most computational resources.

3.2. DE with adaptation of F and Cr parameters only

Since 2010, there has been a good volume of studies focusing
on guided adaptation of the two primary control parameters of DE
namely F and Cr. Instead of some prior works which mainly were
based on randomization of these parameters without any learning
mechanism (see for example [36]), most of these recent studies try
to involve some form of learning from the past instances of suc-
cesses/failures while adapting F and Cr.

Elsayed et al. [54] presented a variant of DE with an adaptive
parameter control scheme. The authors defined two sets of allowable
values for F and Cr, and the trial vector is generated by DE/rand/1/bin
strategy (two vectors are selected at random from the population),
while the base is selected from the solutions in the range of top 10–
40% performing individuals similar to JADE strategy [227]. Initially a
counter is assigned and reset to zero for each of the combinations of F
and Cr values from the set. A trial vector is generated by picking a
combination of the control parameters randomly, and if it is success-
fully selected for the next generation, the counter corresponding to the
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combination is increased by one. After each interval of generations the
top half of the performing combinations is selected, their counters are
reset to zero, while the others are discarded. If the number of gen-
eration exceeds a limit, then the iteration count and combination
counters are reset to zero, indicating a restart.

Sarker et al. [167] improved the work of Elsayed et al. [54] to
dynamically identify and use the best combination of the control
parameters of DE i.e. Np, F and Cr. The algorithm decreases the
value of Np after a periodic interval of generations. The better
solutions are kept in the reduced population while the others are
archived. When least value of Np is reached, the average fitness
improvement by the populations having different number of
members are calculated, and the Np corresponding to the best
improved population is selected as the current population size.
The population is increased by adding the top required number of
individuals from the archive. The mutation scheme remains the
same as that used by Elsayed et al. [54].

Tanabe and Fukunaga [179] proposed an improved variant of the
JADE algorithm [227] and called the same as the Success History based
DE (SHADE). JADE is a powerful DE-variant that uses a control para-
meter adaptation strategy based on updating the parameters of the
probability distributions from which values of F and Cr are sampled.
Such updating considers those F and Cr values that yielded successful
offspring in the recent generations. In SHADE, instead of sampling the
F and Cr values from gradually adapted probability distributions, the
authors used historical memory archivesMCr andMF which store a set
of Cr and F values, respectively that have performed well in the recent
past. The algorithm generates new Cr, F pairs by directly sampling the
parameter space close to one of the stored pairs. Out of the 21 algo-
rithms that participated in the IEEE CEC competition on real parameter
single-objective optimization [103], SHADE ranked 3rd, the first two
ranks being taken by non-DE based algorithms. Tanabe and Fukunaga
[180] further improved the SHADE algorithm by using the linear
population size reduction and called this variant as L-SHADE. In L-
SHADE, the population size of DE is continually reduced by means of a
linear function. If the minimum population size is Npmin with the
initial being Npinit, then the population size in the tth generation is

NpðtÞ ¼ Npinit�Npmin

MAX_NFE
:NFEþNpinit

� 	
:

Here NFE is the current number of fitness evaluations, and
MAX_NFE is the maximum allowable number of fitness evalua-
tions. As the population size will reduce over generations, only top
NpðtÞ �Npðtþ1Þ individuals will be copied to the next generation.
The size of the archive of solutions will also be readjusted with the
current population size, by discarding the required number of
worse solutions. The only challenge of the algorithm is the
requirement of maintaining three archives for solutions and con-
trol parameters, which increases the demand for space. L-SHADE
exhibited the best competitive performance among non-hybrid
algorithms at the CEC 2014 competition on real parameter single-
objective optimization [104].

Yu et al. [218] proposed an individual dependent control parameter
adaptation mechanism by using a two steps process. In the first step,
the nature of the population is estimated, i.e. if the population is in
explorative or exploitative state. Depending on the population state
then, the values for F and Cr are adapted. In the second step, the fitness
information and the distance of an individual from the best individual
is used to modify the population settings to adapt it for that individual.
The state of the population can be estimated from the distribution of
the population which will be diverse in explorative but clustered in
exploitative state. For this, the individuals of a generation are first
sorted according to their fitness values to keep the best on top. Then
all the individuals are sorted according to their distance for the best fit
solution, keeping the nearest on the top. If for the ith individual the
fitness based rank is fi and the distance based rank is di, then the
population state is quantified by indicator of the optimization state or
IOS asIOS¼ PNp

i ¼ 1 jf i�dij. The IOS values are normalized to make
them in the range [0, 1]. A low value of the IOS signifies that the better
solutions are also at a close proximity of the best or the population is
converging, while a greater IOS is indicating a scattering of better
solutions far from the best, or the population is diverse and exploring.
Thus, for choosing the state of the population a random number is
picked uniformly in the range [0, 1], if it is less than IOS then the state
of the population is explorative else it is exploitative. Now, in the case
of selecting the parameters, an explorative population will demand a
high F and a high Cr, while an exploitative will require the opposite.
The F and Cr values for the population of tth generation are assigned in
the following way:

Ftp ¼
Ft�1
p þcFΔFp if population is explorative;

Ft�1
p �cFΔFp if population is exploitative:

8<
:

Crtp ¼
Crt�1

p þcCrΔCrp if population is explorative;

Crt�1
p �cCrΔCrp if population is exploitative:

8<
:

ΔFp;ΔCrp ¼
IOS� IOSmin

IOSmax � IOSmin
if population is explorative;

IOSmax � IOS
IOSmax � IOSmin

if population is exploitative:

8<
:

IOSmin ¼ 0; IOSmax ¼
Np2

2 if Np is even;
Np2 �1

2 if Np is odd:

8<
:

Now for each of the individuals, the population parameters will
be adjusted, and for the ith individual, it will be defined as

Fgi ¼
FgpþΔFi if f i4Np=2 and di4Np=2;

Fgp�ΔFi if f ioNp=2 and dioNp=2

Fgp otherwise:
;

8>><
>>:

Crgi ¼
CrgpþΔCri if f i4Np=2 and di4Np=2;

Crgp�ΔCri if f ioNp=2 and dioNp=2

Crgp otherwise:
;

8>><
>>:

ΔFi;ΔCri ¼
f i þdi �Np

2Np if f i4Np=2 and di4Np=2;
Np� f i �di

2Np if f ioNp=2 and dioNp=2:

8<
:

Value of the coefficients cF and cCr in the expressions for Fgi and Crgi ;
were set to 0.1 and 0.05, respectively by the authors based on
empirical observations. Although the algorithm reportedly yields
competitive results, the adaptation mechanisms incur several auxiliary
calculations and distance computations which can be expensive for
complex and high-dimensional functional landscapes.

To non-linearly change both the values of F and Cr along with their
direction of changing with the progress of iterations, Draa et al. [48]
proposed six adaptation schemes based on sinusoidal functions. In
these schemes, the F and Cr values can be obtained from scaled and
shifted sinusoidal terms. In some of these schemes, either F or Cr
values are also fixed to constants (in particular F to 0.5 and Cr to 0.9).
The scaling factors for the sinusoidal terms are either increased or
decreased linearly with iteration number. It is experimentally shown
that scheme 2, in which both F and Cr values are sampled from
sinusoidal terms with increasing coefficients, outperforms other pro-
posed schemes. However, the technique used a new parameter i.e. the
frequency of the sinusoidal function, the value of which can be esti-
mated from empirical study, provided by the authors.

In the context of distributed DE algorithms, Falco et al. [61]
addressed the popular problem of selecting the control parameters
and updating them, by introducing three new strategies. The initial
values of F and Cr are selected uniformly at random from the range
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[0.1, 1]. The migration among distributed DE sub-populations takes
place in every say T generations, and then at the end of each such
interval, the average fitness improvement (over the interval of gen-
erations) is calculated for each sub-population. One of the sub-
populations is randomly chosen following one of the three control
parameter updating strategies (elaborated next), whose F and Cr
values are randomly selected from the above mentioned interval. In
the first updating scheme, one of the sub-populations is chosen from
only those, for which the average fitness improvement is less than the
average of the average fitness improvement of the sub-populations. In
the second scheme the sub-population is picked at random from any
of the sub-populations except the one containing the current global
best. In the third the sub-population holding the current global worst
is selected for replacement of the control parameters. The migration
policy is simple; each sub-population selects all those solutions having
better fitness than the average fitness, and sends them to all of its
neighbors. After receiving all the solutions from its neighbors, a sub-
population forms an intermediate set with its native solutions and the
newcomers. A subpopulation then selects the required number of top
solutions according to its cardinality. While adapting F and Cr, the
algorithm also introduces a new parameter, which is the interval of
generation (T). Mallipeddi et al. [118] proposed a scheme to adapt the F
and Cr parameters in DE by using a Gaussian adaptation algorithm.
Gaussian adaptation, which is a stochastic process of adapting a
Gaussian distribution to a region or points in some feasible search
space, is employed to determine an optimal combination of F and Cr.
However, as is evident from the results reported by the authors, the
algorithmic complexity can increase with the increase of dimensions
for this algorithm.

In a recent work, Tang et al. [182] suggested that for each individual
a clue about the most suitable trial vector generation strategy can be
obtained by observing its fitness value. For example a solution with
low fitness (meaning high objective function value for a minimization
problem) needs a higher F value to explore the search space, while the
one with high fitness needs a small F value to exploit its neighbor-
hood. Similarly a less fit parent needs to be perturbed more and will
be helped by a high Cr value, than a fitter parent. Two schemes were
presented for the parameter selection. In the first scheme the popu-
lation is sorted based on the ascending fitness values, F and Cr for any
individual are determined as the ratio of its rank and Np. The second
scheme is based on the individual fitness value, for any ith individual
the corresponding parameters are calculated as

Fi or Cri ¼
f i� f LþδL
f U� f LþδL

:

Here fU and fL are themaximum andminimum fitness values of the
current population respectively and δL is the difference between
minimum and second minimum fitness values in the current gen-
eration. However, such strict parameter settings can take away the
benefits of randomization and hence the parameters are actually
sampled from a random normal distribution with mean as the cal-
culated parameter value and standard deviation 0.1. For the individual
mutation strategy, the concept of base vector is defined say xb, which
may differ from the target vector, and the value of F for mutation will
be taken for the base vector. From experiments, it is justified that using
the base vector as the same as the trial vector helps in the early
generations while a random vector in the late generations helps the
convergence process. To distinguish between early and late genera-
tions, a generation threshold is defined, which is problem dependent.
The authors suggested if the ratio of the successful number of selected
offspring for the next generation and Np reaches under a threshold
close to zero, and retains that state for a predefined number of con-
secutive iteration then the early generation stage can presumed to be
ended. To further elevate the scheme the authors also suggested to use
different mutation schemes for differently fit individuals. The popu-
lation is divided into two non-overlapping sets: superior and inferior.
Depending on the generation and an individual’s fitness; its mutation
scheme will be selected from any one of the current-to-rand/1, cur-
rent-to-better/1, rand/2 and rand-to-better/1. To facilitate a gradual
convergence, the size of the superior set will be increased with the
generation, which is defined for the tth generation to be Np�
ð0:1þ0:9105t=ðtmax �1Þ. Finally the mutation scheme for the ith vector is
defined as follows, where xb is the base vector.

v¼
xbþFb xr1 �xb

� �þFb xr2 �dr3

� �
when iAsuperior;

xbþFb xbetter�xbð ÞþFb xr2 �dr3

� �
when iA inferior:

(

Here, xb ¼ xi in the earlier stage of generation else xb is selected
at random from [1, Np]. The vector xbetter is randomly selected from
the set superior. Each component of the vector dr3 is either uni-
formly randomly sampled from the entire feasible search space
with a probability pd (the authors call it “the probability factor of
disturbance”) or it is copied from the original population member
of the same index i.e. from xr3 . This procedure can suffer from the
need of heuristic tuning of the other parameters like pd for real
world problems.

Instead of resorting to complicated parameter adaptation schemes
or incorporating additional local search methods recently Das et al.
[38] proposed a simple DE strategy to solve large scale optimization
problems where the values of the F and Cr are switched in a uniformly
randomway between two extreme corners of their feasible ranges for
different population members. Also each population member is
mutated either by using the DE/rand/1 scheme or by using the
DE/best/1 scheme. The population member is subjected to that
mutation strategy which was responsible for the last successful update
at the same population index under consideration. This scheme
exhibited very competitive performance on the high-dimensional
functions compiled under the CEC 2008 and 2010 competitions on
large scale global optimization. The results indicate that a combination
of the high and unconventional value of F (¼2) with the low value
(¼0.5) can be indeed very useful for solving benchmark functions. In
contrast to the usual DE algorithms that sample F values from the
interval of (0.4, 1) and Cr values from (0, 1), the work of Das et al. [38]
indicate that most of the useful information about F and Cr values can
remain attached to the boundaries of their feasible regions. This point
requires further analytical and experimental investigations in future.

Controlling the degree of randomization of F and Cr and investi-
gating the effect of the same on the performance of DE are important
research directions in DE. A very interesting work in this direction was
recently published by Zamuda and Brest [222]. Here, the authors
introduced a randomness level parameter, which influences the dyn-
amics of the control parameter values and their propagation through
“suitable individuals' improvement contributions during elitist selec-
tion” in an extended framework of the jDE algorithm [18]. Different
randomization frequency parameter values (from default at 10% eva-
luations of jDE), rendered the performance of the utilized Structured
Population Size Reduction DE with Multiple Mutation Strategies
(SPSRDEMMS) algorithm [221] on top or bottom of a ranking list
comprised of algorithms from the CEC 2013 real parameter optimi-
zation competition. Relation between adaptation and self-adaptation
impact was shown, displaying when and how, different number of
significant improvements within the algorithm occur and that differ-
ent frequencies are suitable for different optimization problems, also
differing for F and Cr randomization.

A few more interesting schemes for strategy and control
parameter adaptation of DE are summarized in Table 1.

3.3. DE with adaptive population size control

Compared to the huge body of works on the adaptation of F, Cr
and the offspring generation strategy, relatively fewer works have



Table 1
Summary of some DE schemes with strategy and/or control parameter adaptation mechanisms.

Scheme Authors Strategy selection mechanism Parameter adaptation mechanism

Multi Population DE algo-
rithm (MPDE)

Yu and
Zhang [217]

The population is divided into a number of subpopula-
tions. The subpopulation properties are kept fixed
throughout the entire run of the algorithm. The migration
of information is done using a DE/best/1 type mutation
where the base is the local best of the current sub-
population, while the two random vectors can be taken
from the entire population.

Inspired by the work of Zhan and Zhang [225], each sub-
population maintains their own set of parameter values. After
each generation the parameter values of the subpopulation
generating maximum number of successful trials will be used
to update the parameter values of all the subpopulations.

Self-adaptive Mutation DE
(SaMDE)

Silva et al.
[169]

The individual specific mutation scheme is selected from a
pool (containing DE/rand/1, DE/best/1, DE/best/2 and DE/
current-to-rand/1) by a roulette wheel strategy. The
probability for choosing a mutation scheme is updated by
a DE/rand/1 mutation operation on the probability vector
(the scale factor is randomly selected from the range
½0:7;1�) after each generation.

The value of F and Cr is updated by applying the selected
mutation strategy (the scale factor is randomly selected from
the range ½0:7;1�) on the current values.

Fitness Adaptive DE (FiADE) Ghosh et al.
[66]

Only DE/best/1/bin is used for trial generation purpose. Two schemes for obtaining an individual specific value of F are
suggested. Both of them are guided by the difference of fitness
between the individual and the current best of the population.
The value of Cr is also adapted based on the fitness of the
donor vector compared to the current best.

Modified DE (MDE) with p-
best crossover (MDE-pBX)

Islam et al.
[87]

A new mutation scheme was proposed. For F, a Cauchy distribution with an adaptive location para-
meter (Fl) and a scale of 0.1 is used. The new Fl is calculated as
an weighted average (the weight is greater for the current Fl
and randomly taken from the range ½0:8;1�) of the current Fl
and the power mean of the archive of the better performing Fl
values till the current generation.. The Cr is calculated with a
similar technique only a Gaussian distribution is used, with an
adaptive mean and standard deviation 0.1.

Teaching and Learning
Based Self-adaptive DE
(TLBSaDE)

Biswas et al.
[12]

A pool of four mutation strategies (DE/rand/1, DE/rand-to-
best/2, DE/rand/2, and DE/current-to-rand/1) is kept, and
one of them is selected by a roulette wheel. The prob-
ability of selecting a strategy is calculated from the success
rates of all the available strategies over the last LP
generations.

The scaling factor is sampled from the distribution Nð0:5;0:3Þ
and crossover rate is picked from the distribution NðCRm ;0:1Þ.
The CRm is calculated as the mean of successful CR values over
the last LP generations.

Modified DE algorithm
(MDE)

Zou et al.
[242]

One of the two mutation strategies, DE/rand/1 and DE/
best/1, is selected for each individual based on a prob-
ability. The probability will favor DE/best/1 with the pro-
gress of the run of the algorithm.

The scale factor is selected from a Gaussian distribution with
fixed mean and standard deviation. The crossover rate is
randomly picked from a predefined range.

Adaptive DE Bujok et al.
[24]

Adaptively selects a trial vector generation scheme from a
pool of six DE strategies using the randrl mutation [191]
along with the DE/current-to-pbest/1 mutation with
orthogonal crossover. A strategy is selected by a roulette
wheel where the probabilities are calculated based on the
success rate of the strategies.

The scale factor is 0:8 for all the strategies using DE/rand/1
mutation, and 0:5 for the one using DE/current-to-pbest/1
mutation. The crossover rate is different but kept as a constant
for all of the strategies.

DE with crossover rate
repair.

Gong et al.
[75]

The JADE mutation scheme is directly used. The Cr value is drawn from the distribution in the same way as
JADE. However, the binomial crossover is rewritten in the
form ui ¼ Biviþ 1�Bið Þxi . Here Bi is the ith component of a
binary vector B used for generating the ith trial. Clearly ui can
be either equal to vi or to xi depending on whether Bi is 1 or 0.
The Cr value will be updated (after generating trail) as the
mean of the elements ofB, and will be kept in the archive.

S. Das et al. / Swarm and Evolutionary Computation 27 (2016) 1–30 7
been undertaken in recent past to control or adapt the population
size in DE.

Brest and Maučec [21] proposed a new population reduction
technique in conjunction with 3 parameter adaptation strategies.
These strategies use the basic jDE [18] type randomization of F and
Cr and are denoted by the authors as jDEbin (self-adaptive
DE/rand/1/bin), jDEexp (self-adaptive DE/best/1/bin) and jDEbest
(self-adaptive DE/best/1/bin). In each iteration of the algorithm, one
of these 3 strategies remains active. The population reduction
mechanism amounts to reduce, according to a prearranged sche-
dule, the population size of DE. More specifically, the computational
budged is divided into periods. At the beginning of each period, the
population size is halved. In the proposed population reduction
mechanism, each individual is allowed to compete with another
individual belonging to the same offspring generation strategy as
the former one. In this way, the DE appears to progressively focus
the search and thus prevents the undesired stagnation effect. A
similar scheme of progressive reduction of the population size
keeping the total computational budget (in terms of maximum
number of function evaluations allowed) constant was discussed in
context to compact DE (to be discussed in Section 4) by Iacca et al.
[86]. Zamuda and Brest [220] reduced the population size of jDE
with increasing number of FEs and used two different mutation
strategies depending on the population size. This algorithm pro-
vided competitive results on the real life problems compiled under
the 2011 CEC competition on testing EAs on practical optimization
problems. Zamuda et al. [221] combined the population reduction
based jDE with two mutation schemes by using a structured
population and the resulting SPSRDEMMS algorithm was tested on
the CEC 2013 benchmarks for real parameter optimization [104].

Instead of monotonically reducing the population size, Yang et al.
[215] proposed a method to adapt the same depending on the
population diversity. Their method is capable of identifying the inst-
ance when the population lacks enough diversity, measured in terms
of the pair-wise Euclidean distance among the individuals. When the
moment is identified, the population is regenerated to enhance the
diversity, thus eliminating the chances of stagnation. However, for
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high-dimensional problems this method can be fairly expensive due to
the need for computing Euclidean distances several times.

Zhu et al. [241] proposed a method that varies the population size
in a specified range. The algorithm after an iteration of DE, detects the
status and takes the decision of decreasing or increasing the current
population size, and performs accordingly. If the DE cannot find a
better solution in successive generations, then it is stagnating and the
population needs to be expanded by introducing new solutions. If the
DE updates the best individual in successive iterations, then it is filling
the population with redundant solutions, and the population size is
decreased to purge the redundancy. If the population size reaches a
bound and retains it for a number of generations, then the population
size is decreased or increased depending on the bound it reached. To
downsize the population, the solutions are first sorted (keeping the
best on the top). The rank of the ith solution is determined as follows:

ranki ¼
f i� f min
f max � f min

ω

$ %
;

where ω¼ 0:8 � populationSize
 �
. For each of the individuals, a

probability is calculated based on their rank and it is selected for
purging based on that probability. From all the individuals selected for
purging, the required numbers of solutions are randomly deleted by
the algorithm. At the time of increasing, a set of elite members are
selected and new solutions are generated by perturbing them, in a
selected number of dimensions. However, in the process of making
the population size adaptive, the algorithm introduces a number of
new control parameters to monitor the status or to generate new
individuals.

The work of Mallipeddi et al. [118] was further extended by
Gonuguntla et al. [77] where besides the Gaussian adaptation tech-
nique, in each generation, a fixed number of individuals are sampled
from the large set to be included in the population of the DE algo-
rithm. This fixed number of individuals can be selected from the large
set either randomly or based on the objective value depending on the
stage of evolution.
4. Prominent DE variants for bound-constrained single-
objective global optimization

Since its inception, DE has been most frequently applied to the
global optimization problems involving a single objective function
and bound constraints on the decision variables. After 2010, most
of the single-objective DE variants use parameter adaptation
schemes and multiple mutation and crossover strategies. Hence,
the demarcation between algorithms described in this section and
those discussed in the previous section may not be that promi-
nent. However, in this section we confine ourselves to the review
of those DE methods that use significant heuristic mechanisms to
improve their search moves, besides strategy selection and para-
meter adaptation techniques. We review the DE algorithms that
have been published in front-ranking journals and conferences
that cover the evolutionary computation area. We discuss such DE
variants under the following seven heads although such grouping
is not very rigid always, as a proposal may use a combination of
techniques from different heads. These heads are DE with new
initialization techniques, DE with new or improved mutation
techniques, DE with new or improved crossover techniques, DE
with sub-population and cluster based improvisations, population
topology and population diversity guided DE, DE with repre-
sentation of individuals in probabilistic space, and DE with parent
selection framework. Nevertheless, some worth mentionable DE
methods that cannot be fitted to these seven heads are discussed
under “Other Techniques” in Section 4.8.
4.1. DE with new initialization techniques

An intelligent selection of vectors from promising regions of the
feasible search space to initialize the population will definitely
encourage DE to converge faster and obtain better solution. Melo and
Delbem [123] proposed such a technique called Smart Sampling (SS)
to identify promising regions of the search space where an optimum
may lie. At first, a high number of random solutions are generated
such that the search space can be covered. Based on the fitness value
this initial population is filtered and only better solutions are kept. A
classifier is trained to distinguish the promising solutions from the non
promising ones. A collection of new solutions are generated bymoving
one of the population members towards one of the better solutions,
with a random noise. Now the classifier is used to identify the good
solutions from the newly introduced collection. The good individuals
are added to the population, and the increased population is down-
sized to maintain a fixed cardinality by deleting the worse members.
This process is repeated until a convergence criterion is met. After the
iterations a rule based classifier is used on the final population to
identify the promising region. DE is initialized with members from this
promising region alongside a small percentage of random vectors in
the search space. While the procedure can be useful, it is highly
expensive to apply, especially for multimodal and high dimensional
problems as noted by the authors.

Poikolainen et al. [145] proposed a cluster-based population
initialization technique for DE. The initialization is performed as a
three staged process. In the first phase, two local searches are
performed on a random collection of uniformly selected points
over the search space. The first local search translates each vector
with a certain amount say ς. If the translated vector is better than
the original, then it replaces the original vector in the population.
If the original vector is fitter than the modified, then another
modification is done to the original by translating it in the oppo-
site direction of the previous alteration, with an amount of ς=2. If
the new modified vector is fitter than the original, then the
population is updated. If none of the vectors of the population is
updated, then the ς valued is halved, and the process iterates until
terminal condition is met. The second searcher is the Rosenbrock
algorithm [162], which has been shown to converge towards a
local optimum. In the second phase k-means clustering is applied
to the resultant population of the first phase. To choose the value
of k i.e. the number of clusters, the silhouette index is used [163].
After the k-means clustering phase, the population may not con-
tain Np number of individuals. The third stage is used to generate
additional individuals to form the initial population of DE. In the
third stage the best fit individuals are collected (forming a set Q)
from each of the cluster. A probability is assigned to each of these
fitter individuals based on their fitness values. Now a member of Q
is selected by a roulette wheel based on the associated probability,
and a new individual is generated by a Gaussian distribution with
the selected vector as the mean and a specified standard deviation.
4.2. DE with new or improved mutation strategies

Since 2010, apart from the combination of the existing mutation
schemes in DE, researchers have also made several attempts to devise
new mutation schemes (involving difference vectors in various forms)
which can provide improved search moves on complex fitness land-
scapes. Often some improvements of the existing mutation strategies
based on neighborhood information or some other heuristics (like 2-
opt algorithm) have also been reported in literature. A few prominent
approaches in this direction published in front ranking journals are
discussed below.
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4.2.1. 2-Opt based DE (2-Opt DE)
To achieve a faster and better convergence than classical DE, [34]

proposed a variant of DE, where a mutation scheme influenced by the
2-Opt algorithm [35] is used instead of the regular DE/rand/1 or
DE/rand/2 schemes. 2-Opt algorithm was originally designed for
finding routes in the traveling salesperson problem, and was later
applied to genetic algorithm, simulated annealing, etc. The original 2-
Opt local search prohibits routes from self-crossing by reordering
them. This provides a good chance of escaping from local optima.
Following the essence of this idea, the authors devise a DE/2-Opt/1
mutation scheme involving three vectors with indices r1, r2 and r3
from the current population, and corresponding to the ith target
vector as follows (for minimization problems):

vi ¼
xr1 þF xr2 �xr3

� �
if f xr1

� �
o f xr2

� �
;

xr2 þF xr1 �xr3

� �
otherwise:

(

Thus, in 2-opt/1 scheme the base vector always has better (or
equal) fitness as compared to the first member forming the dif-
ference vector. For a 2-Opt/2 version the mutation is given as
follows for the ith target vector:

vi ¼
xr1 þF xr2 �xr3

� �þF xr4 �xr5

� �
if f xr1

� �
o f xr2

� �
;

xr2 þF xr1 �xr3

� �þF xr4 �xr5

� �
otherwise:

(

Here, the indices r1, r2, r3, r4 and r5 are mutually distinct and
picked randomly from the population, similar to the DE/rand/2
strategy of (3e). However, apart from experimental results, the
authors provided no intuitive justification for the improved per-
formance of these schemes over the conventional DE mutations.

4.2.2. Proximity-based DE (ProDE)
Epitropakis et al. [56] proposed a proximity induced mutation

scheme for DE, where neighbors of a parent vector, rather than the
random ones will be used to generate the donor vector. To avoid
sacrificing exploration capability, a probabilistic approach was sug-
gested and empirical results demonstrating mutation dynamics of a
DE run was provided to justify the approach. The mutation scheme
first computes the pair-wise distance between all members of a
population, and stores them in a matrix say R¼ ½rij�Np�Np, where rij is
the distance between ith and jth member of the population. From
these pair-wise distances a pair-wise probability is calculated as fol-
lows, where the minimum distant neighbor of a vector will have the
highest probability to be selected as ri index. Let us take the prob-
ability matrix to be Rp. Then

Rp i; jð Þ ¼ 1� rijPNp
k ¼ 1 rik

:

Now for each index i, select three vectors with indices k¼r1, r2,
and r3 from the population (wherer1; r2; r3A 1;2;…Np

� �
=i) by

using a without replacement roulette wheel strategy based on the
probabilities of Rpði; :Þ. The donor vector vi is then generated as
follows:

vi ¼ xr1 þF xr2 �xr3

� �
:

A complete update of R and Rp is not required in every gen-
eration, as only the distances and probabilities for newly selected
offspring are needed to be updated. The strategy experimentally
showed to improve explorative mutation schemes such as
DE/rand/1, but fails to show significant improvement when used
over highly multimodal or hybrid functions or with greedy
mutation schemes.

4.2.3. DE with generalized differentials (DEGD)
Ali [2] proposed a new variant of DE, with a modified mutation

scheme. The mutation scheme unlike DE/rand/1, does not use the
scaled difference of vectors, rather it uses the difference of the
scaled vectors, defined as follows:

v¼ xr1 þF1xr2 �F2xr3 :

Note that when F1 ¼ F2 ¼ F, then the proposed equation mat-
ches the one of the DE/rand/1 (3a). The author also made a claim
that instead of generating trial vectors for all of the population, it
is better to do it for only the worse solutions. The author gave
experimental results showing that as the best gets replaced in a
selection less often than the worse solutions (say the m solutions
from the bottom of the sorted list of population individuals, based
on fitness and when the best is on the top), generating trial for it is
not a very beneficial task, when high requirement of computa-
tional power is present. To enhance the chance of generating a
better quality offspring, the trial vector generation process can be
repeated at most say q times, for each target. If in the first q�1
mutations, a successful trial is not generated, vector projection is
used in place of mutation (two vectors will be picked randomly
from the population, and the worse will be projected on the better
one) for the qth time as follows:

v¼ xT
r1 :xr2

xT
r2 :xr2

 !
xr2 :

4.2.4. DE with ranking-based mutation operators
Gong and Cai [74] suggest that a mutation can be more fruitful

if the base vector and one of the terminal vectors of the difference
vector can be selected based on their fitness, while the third is
selected at random. However, to make the process less greedy a
vector will only have a probability to be selected as a base or a
terminal. The authors proposed that the instead of randomized or
proximity based approaches the probability for a vector to be
selected in the mutation can be calculated from their fitness rank
in the population. The proposed strategy is thus faster and less
computationally expensive. The population is needed to be sorted
based on their fitness values in ascending order (the best is at the
top of the list). Then for the ith solution, the rank value Ri is
defined as Np� i. The probability for the selection of the ith solu-
tion is then defined as pi ¼ Ri=Np. At the time of selecting three
vectors for the DE/rand/1 strategy, the first two vectors are chosen
proportionally to their probability of selection.

4.2.5. Intersect mutation DE (IMDE)
To improve the search capability and convergence of regular

DE, Zhou et al. [240] proposed two new variations (the first
focusing on exploration, while the second on exploitation) with
modified mutation and crossover schemes. In each generation the
population is first sorted. The best M vectors are kept in a set B and
the remaining members are included in a set W, indicating better
and worse solutions. In the first variation of DE, different mutation
and crossover strategies are prescribed for the set B andW. For any
individual in the set B, the mutation is done in a similar manner to
rand/1; only the base vector is randomly selected from the set W,
while the two vectors needed to calculate the difference are
selected from the set B. The crossover is similar to the binomial
crossover in nature; however, a donor can only take part in the
crossover if it is fitter than the target, else the trial will be the same
vector as the target. For a vector in the set W, the mutation is again
performed similarly as rand/1, only the base is taken from set B,
and the other two vectors are selected from W. Regular binomial
crossover is applied in this scenario. In the second proposal only a
newmutation is advised for the members of set B, while the rest of
the algorithm is similar to the first variant. Here, the base and the
left terminal of the difference vectors are selected from set W,
while the third vector is picked from set B.
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4.2.6. Neighborhood and direction information based DE (NDi-DE)
Understanding and utilizing neighborhood and directional

information is important for a DE population to search efficiently.
Following this line of thought, [28] suggested an improvement of
the DE mutation strategy by introducing the guidance of neigh-
borhood and directional information. They first defined a Neigh-
borhood Guided Selection (NGS) scheme for selecting the base and
difference vectors for mutation. For generating the donor of the ith
target, NGS first assigns a probability to each vector of the popu-
lation. The probability for any vector with index j is calculated as

pj ¼ 1� dðxi; xjÞPNp
j ¼ 1 dðxi; xjÞ

;

where d(xi, xj) is the Euclidean distance between vectors xi, and xj.
The algorithm uses a roulette wheel method to select three vectors
in proportion to their probabilities from the population. The base
vector is taken as the winner of the tournament between the
chosen vectors; the other two are subtracted to form the differ-
ence vector (xdifference). NGS by these techniques exploit the neig-
hborhood information and also selects the better vector as the
base vector. The direction information is included by using a
Direction Induced Mutation (DIM) strategy. DIM introduces a new
vector known as the direction vector and adds it with the base
vector and the scaled difference vector obtained through the
neighborhood-guided selection process. For the mutation of the
ith target, DIM first identifies the nearest worst and nearest best
solution of the target vector. The best near neighbor is defined to
be the jth vector, for which the ratio of the fitness difference
between xi and xj and the distance between xi and xj is the
maximum. The nearest worst neighbor is defined to be the jth
vector, for which the ratio of the fitness difference between xj and
xi and the distance between xi and xj is the maximum. Let the best
nearest neighbor be called as xi_best and the nearest worst to be
xi_worst. Three types of directional properties namely, Directional
Attraction (DA), Directional Repulsion (DR) and Directional Con-
vergence (DC) can be calculated from these vectors, and they are
defined as follows:

DAi ¼ IDA xibest �xi
� �

;

DRi ¼ � IDR xiworst �xi
� �

;

DC i ¼ IDC1 xi_best�xi
� �� IDC2 xiworst �xi

� �
:

The IDA, IDR, IDC1 and IDC2 are scaling factors which can be
controlled to limit the influence of the directional vector. The rand/
1 mutation scheme with DIM is as follows:

v¼ xbaseþFxdifferenceþDT :

Here, DT can be DA, DC or DR. The algorithm is though simple
and empirically proven to be effective. The choice of scaling
parameter and directional information are problem and mutation
strategy dependent respectively.

4.2.7. Multi-objective sorting-based mutation operators for DE
Considering both the fitness and the population diversity to

achieve a proper balance between exploration and exploitation, a bi-
criteria mutation scheme is proposed by Wang et al. [203]. The
algorithm uses two objective functions, one is the actual function to
be minimized and the other is the summation of the pair-wise
Euclidian distance between the individuals of the population. In
each generation the solutions are subjected to a non-dominated sort-
ing defined by Deb et al. [44]. This type of sorting generates a set of
mutually non-dominated (in Pareto sense) solutions, called the Pareto
optimal front. Thus, to successfully rank each individual of the
population, another round of sorting is required within each front.
This second sorting can be done based on a randomly picked objective
function. The rank of the ith individual is finally determined as
Ri ¼Npþ1� i, and an associated probability is calculated as
pi ¼ Ri=Np. A simple roulette wheel model is proposed using the
generated probabilities to select the parents for mutation.

4.3. DE with new or improved crossover strategies

Wang et al. [205] proposed the use of an orthogonal crossover
operation instead of the popular binomial or exponential to
enhance the searching capability of DE. The authors adapted the
orthogonal crossover with a quantization technique (QOX) pro-
posed by Leung and Wang [97] who used it with GA. QOX can
efficiently search the hyper rectangle formed by the donor and the
target, using M function evaluations making it computationally
expensive. To alleviate the situation, QOX is used only once in
every generation, for a randomly selected target and its donor
vector.

Binomial crossover though very effective and widely used in DE is
not rotationally invariant. Recently, Guo and Yang [80] suggested that
a rotationally invariant crossover (similar in nature to the one pro-
posed in [206]) will more successfully follow the function landscape
and will generate better trial vectors. The authors pointed out that
before crossover the co-ordinate system can be rotated to make the
function landscape pseudo separable. The crossover can be performed
on this system and then the system can be again rotated back to the
original search space. Such a co-ordinate system can be reached by
using the eigenvectors of the covariance matrix of the population as a
rotation matrix. The target and the donor vectors are rotated by
multiplying them with the matrix of the eigenvectors, and the
crossover is performed on these rotated vectors. After the trials are
generated they are multiplied by the conjugate transpose of the
rotation matrix to bring them back in the original co-ordinate system.
However, if all individuals undergo the rotation-invariant crossover,
the DE population may not be able to reach the global basin of
attraction quickly. Hence, in each generation, the individuals undergo
crossover either in rotated or in original co-ordinate system with a
pre-defined probability (which actually becomes a control parameter
of the algorithm). Due to the need for computing the spectral prop-
erties of a covariance matrix, the algorithm may become computa-
tionally expensive for large scale optimization problems.

4.4. DE with subpopulation and cluster-based improvisations

Some recent DE variants start with multiple sub-populations
and some partition the initial population into a number of clusters
which then act like sub-populations and take part in the evolution
process. Below we present a few major single-objective DE algo-
rithms that use multiple sub-populations and clustering techni-
ques. As will be evident, such approaches are especially useful on
multimodal landscapes with widely separated basins of attractions
as different subpopulations can undertake detailed search within
different basins simultaneously.

4.4.1. The DE/cluster algorithm
Li and Zhang [99] proposed a subpopulation based DE, where the

subpopulations are found by a clustering technique. The clustering
technique (agglomerative hierarchical) is simple to implement, can
create dynamic subpopulations, and is adaptive to the change of the
population. However, the raw clusters may not be suitable for evo-
lution (for example they may be too small). To circumvent this, the
authors made some suggestions. All the clusters with a single element
are combined together (called as SPEX). If the current best is a not
member of this cluster, then it can be used to maintain the diversity of
the population and the explorative capability of the algorithm. For
each of the clusters, which have more than one member but do not
have enough members to perform mutation, the algorithm maintains
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a pool of solutions. The pool is updated after every generation and
helps a cluster by supplying required members to perform amutation.

4.4.2. Clustering based DE (CDE)
To enhance the process of the generation of new population,

Cai et al. [27] proposed to use a one step k-means operation
alongside DE trial vector generation strategy. The authors pointed
that a single step of k-means can actually be viewed as a collection
of multi parent crossover outputs. The one step k-means will start
with k randomly selected vectors from the population (P), which
will act as the initial cluster centers. The number of clusters k will
be randomly selected as an integer from the range ½2;

ffiffiffiffiffiffi
Np

p
�. The

cluster centers will then be calculated following a single iteration
of the steps of the k-means algorithm. Let the new cluster centers
form a set A, and also let another set of randomly chosen vectors
from the population be B. The algorithmwill select k best solutions
from the set A [ B forming another set say Bʹ. The new population
will be ðP n BÞ [ B 0. As the clustering step is costly, it will only be
applied after certain intervals. At the end of one such interval, after
updating the population with DE, the clustering will take place on
the new population to further update it before being used in the
next generation.

4.4.3. Clustering-based DE with 2 multi-parent crossovers (2-MPCs-
CDE)

Liu et al. [109] made further modification to the clustering-based
DE proposed in [27], where they introduced two multi-parent cross-
overs over the one step k-means to generate trial vectors. They also
introduced a small alteration in the DE/rand/1 scheme by imposing
the condition that the base vector, selected from the current popu-
lation, must be fitter than the target vector. From the beginning, the
population is let evolve form consecutive iterations with the modified
DE/rand/1/bin scheme. After every m iterations, the one step k-means
and the new crossover schemes are applied on the corresponding
population. The one-step k-means algorithm is used to generate a set
Ccenter of the cluster centroids which are used in the second multi-
parent crossover to create k individuals by Gaussian mutation. The
value of k is chosen as

ffiffiffiffiffiffiffi
Np

p
by following other existing empirical

studies. For each of the individuals (targets) of the current population
(P) the first multi-parent crossover selects kþn (n is taken as 2)
random numbers (α) in the range [�1, 4], such that their summation
becomes 1. For each of the k cluster centers (Cj, where j¼ 1;…; k), a
new vector (Cj0) is generated by adding with it, a scaled difference of
two randomly picked vectors from the population. For n number of
times, perform the prescribed rand/1 mutation on the population to
generate n new vectors (vj). The new trial vectors are generated as

vi 0 ¼
Pk
j ¼ 1

αjC
0
jþ

Pn
j ¼ 1

αjþkvj. For each of the targets in the population a

second multi parent crossover is performed by first selecting kþm (m
is taken as 1) random numbers (b) in the range [-0.1, 1.5], such that the
summation becomes 1. Let Ccenter be the mean of the set C. The
algorithm generates k new vectors as C 0

j ¼ Ccenter � ð1þN 0;1ð ÞÞ. As in
the first multi-parent crossover, here also other m vectors (vj) are
generated by using the modified DE/rand/1 scheme. The new trial
vector is formed with the similar weighted sum technique, used in the
first multi-parent crossover with the b values being used as weights.
The population is updated by replacing the ith target with the fitter
vector between vi 0 and vi

00. Let the results of the multi-parent cross-
overs form a new set K. The new population for the next generation is
selected as the best Np individuals from the set P [ K [ C. The
interval of generations after which these additional crossovers will be
applied, is a crucial problem-dependent parameter of the proposed
algorithm.
4.4.4. Multi-population DE with balanced ensembles
Ali et al. [4] proposed multi-population DE with balanced search

(mDE-bES) used to boost the diversity in the DE population to handle
large-scale optimization problems. The population is divided into
subgroups where each of these subgroups follows different mutation
and update strategies. The authors introduced a new mutation strat-
egy that support the search process by using information either from
the best individual or from a random individual, probabilistically. It
uses a linear combination of vectors to produce a base vector. All
strategies select individuals using a strategy that rank individuals
based on their fitness. Randomly selected individuals are used to
migrate between the subgroups periodically to support the evolution
process.

4.5. Population topology and population diversity guided DE

Population topologies can intensely influence the search by a
metaheuristic continuous parameter optimizer as such topologies
control the flow of information from an individual to its neighbors.
This is quite evident from the research on various neighborhood
topologies in another very popular algorithm well-known as Par-
ticle Swarm Optimization (PSO) (see for example [124]). Similarly
sensing the population diversity in course of the search can pro-
vide important guidelines to modify the search moves efficiently.
This section reviews a few interesting and recent single-objective
DE variants that involve population topology or diversity guided
search mechanisms.

4.5.1. Improved DE with PBX-α mutation operator and population
topologies

Dorronsoro and Bouvry [47] presented a survey of such existing
models and proposed five new variants of DE with distinct population
models, suitable for various problems. They also suggested a new
mutation operation inspired by the PBX-α operator used in GAs [113].
In the synchronous update model of DE, the selected solution vectors
form an auxiliary population. Only after Np vectors are selected, the
auxiliary population replaces the original. This is useful for explora-
tion. However the new individuals have to wait for interacting with
the population, and thus, the exploitation is reduced. In all of the
following variants, a donor can only be generated by using neigh-
boring solutions. In distributed DE, the entire population is partitioned
into sub-populations, and an independent DE is run on each of them.
After a generation, the information among the sub-populations is
exchanged via a migration scheme. In cellular DE [47], the population
is arranged in a mesh structure. Similar to the cellular DE, the hier-
archical DE is also modeled to facilitate exploitation, the only differ-
ence is that the population structure is ranked, based on the fitness
level (the best is on the top), and after each generation the solutions
are reassigned a position guided by their current fitness values. The
advantage is, the fitter individuals will always have a good sur-
roundings of neighboring solutions and will have the opportunity to
generate a better trial vector. The random topology DE will create a
pseudo random graph with the solutions as its vertices. The neigh-
borhood will be established by the connecting edges. The population
topology will be fixed at the initialization stage and will only be
rearranged if the population remains unchanged in any generation. In
the final proposed variant called small world DE, the authors created a
ring topology with each solution having k neighbors. After generating
the graph for each vertex, an edge connecting with its neighbor will
be replaced with an edge connecting to any random solution with a
very low probability. The population models studied by the authors
have been schematically shown in Fig. 1. The proposed mutation is
defined for the jth dimension of the ith target is defined as follows

Ij ¼ xr2 ;j�xr3 ;j;



Fig. 1. Hierarchy of population models studied in [47].
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upi;j ¼min maxj; xr1 ;j� Ijα
� �

;

lowi;j ¼max minj; xr1 ;jþ Ijα
� �

;

vi;j ¼ xr1 ;jþG 0;0:1ð Þ:F: upi;j� lowi;j

� �
:

The value of α is adapted, by either picking it randomly from
[0.2, 0.8] with a probability 0.1, or kept as the previous one.

4.5.2. Dual-population DE (DP-DE)
Zhong et al. [239] proposed a dual-population DE (DP-DE) to

control exploration and exploitation capabilities of DE. The two
populations are used to serve different purposes in the search
process. One population (GP) uses an explorative strategy and
maintains diversity while the other (LP) performs an exploitative
search over the neighborhoods. A new migration strategy was
proposed after a regular selection operator to facilitate an inter-
action between the two populations. In DP-DE different mutation
strategies are applied on the populations based on the purpose.
For example, for GP population, F and Cr are chosen at random
from the bounds (0.01, 1) and (0, 1) respectively, with DE/rand/1 or
DE/current-to-pbest/1 [228] mutation strategies and a binomial
crossover operator. To further divert the population of GP, a
mutation is performed which randomly changes a dimension of a
vector with a certain probability say pm. For LP population, F is
randomly picked from the standard normal distribution with Cr¼
0 and DE/best/1 mutation is used to perform a local greedy search
(In order to keep the search efficiency alive in the greedy scheme,
the two random vectors needed in best/1 were picked from GP
rather than LP). Following selection in both populations, the
bidirectional migration is applied. First the best vector from GP
(GPbest) and two vectors (the best and the worst, called LPbest and
LPworst, respectively) from LP are selected from the population and
then the following operation is performed:

If f GPbestð Þo f LPbestð Þ then LPbest ¼ GPbest ;

Else if f GPbestð Þo f LPworstð Þ then LPworst ¼ GPbest ;

If f GPbestð Þ4 f LPbestð Þ then GPbest ¼ LPbest :
The algorithm used two extra parameters, namely the p for the
DE/current-to-pbest/1 mutation strategy and pm for further
diversifying GP. However, the algorithm is sensitive to the varia-
tion of these parameters and it is hard to establish any guideline
about choosing their values except suggestions of an empirical
range and avoidance of extreme values.

4.5.3. DE with auto-enhanced population diversity
In DE, the population diversity needs to be maintained to stop

pre-mature convergence, alongside avoiding any stagnation to
keep the algorithm in a fruitful searching mode. Yang et al. [216]
designed an automatic population enhancement scheme that will
check each dimension to identify a convergence and will diversify
that dimension to a satisfactory level; this will also aid DE to
escape from a local minimum and stagnation. To quantify diver-
sity, mean and standard deviation for each of the dimensions is
calculated for the population. A lower standard deviation in a
direction indicates lower diversity, so for each dimension, a
threshold is maintained, if the standard deviation is found to be
below the threshold, the dimension is called converged. The
threshold for the jth dimension is wj ¼min ðT ;θjÞ. Here T ¼ 10�3

and if mean and standard deviation for the jth dimension is mj and
sdj then

θj ¼
jmj�MRjj � T if sdjrT ;

T otherwise:



Here MRj is the mj of the time when the last diversity operation
in jth dimension was performed, initially set to the mean of the
initial population. If the dimension converges towards the same
point as previous then jmj�MRjj � T will be chosen as the
threshold, further decreasing it, pointing to the original con-
vergence. On the other hand if the dimension is converged
towards a new point the threshold will be set to T. To identify
stagnation a counter for each dimension can be maintained which
will increase by 1 after a generation if the mean and standard
deviation doesn’t change in the generation, else reset to 0. If this
counter reaches a threshold UN then the dimension can be called
stagnant. But diversifying a dimension may not lead to con-
vergence, and for non-separable problems diversifying a single
dimension may lose the progress of the entire run. To solve this
issue, an indicator of diversification is only set to one, when all the
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dimensions are converged or stagnant. But, for a high dimensional
problem, this is hard to achieve, thus the population will also be
diversified with a very small probability (taken as 10�3) at a
generation. A dimension is diversified by reinitializing it in each
solution with a value in the allowable range [maxj, minj]. This is
done by generating a value for the ith vector in the jth dimension
as follows xi;j ¼minjþrandnðμj;σjÞ � ðmaxj�minjÞ. The function
randn randomly picks a number in the range [0, 1] from a Gaussian
distribution with a mean μj and standard deviation σj, which are
defined as

μj ¼
mj�minj

maxj�minj
;

σj ¼ exp
�aK
d

� �
� σj;

σj ¼max μj;1�μj

� �
:

The value of K is the number of current function evaluations
and a is empirically found to be 0.0005. The value of K will ensure
that with the progress of the DE generation the diversification will
happen more close to the previous generation, believing that the
DE is actually converging with increasing generations.

4.6. DE with representation of individuals in probabilistic space

4.6.1. Compact DE
The difficulty of using evolutionary algorithms in intelligent

devices used in regular life arises from the memory requirement
for storing the population and the computation power to process
it. To solve this issue, a class of EAs known as compact EAs was
developed with a reduced representation of the population by its
statistical properties rather than as a collection of individuals.
Mininno et al. [127] developed a compact variant of the DE algo-
rithm, called cDE, by adopting the general operations and work-
flow of the common DE. cDE at the time of optimizing a d-
dimensional problem, represents a population by a multi-dimen-
sional, truncated and normalized Gaussian distribution, storing
only the mean and variances of each dimensions. cDE first initi-
alize the means to be zero and the variances to be high, to mimic
the behavior of a uniform distribution and pseudo-randomly
samples an initial “elite” solution from it. In an iteration of the
algorithm, cDE samples a number of solution vectors from the
distribution as required by the mutation strategy (for example
three vectors for DE/rand/1 mutation scheme) and generates the
donor vector. Crossover is performed between the elite and the
donor to produce a trial vector. Selection is done between trial and
elite based on their fitness values and the selected vector replaces
the elite. The newly selected elite and the loser from the selection
process both will be used to update the mean and variances, for
the next iteration. The main advantages of cDE are firstly the low
space requirement of at most 6d units (2d for the distribution, 3d
for mutation, and d for elite), and secondly the computationally
expensive mutation, crossover and fitness calculations are only
done once to generate or select a single vector per iteration.
However, the dimensions are assumed to be independent, which
simplifies the problem by representing the covariance matrix as
diagonal. In reality, this may become a very hard constraint and
the algorithm may not completely identify the global peaks in a
multimodal functional landscape with strong linkages among
groups of variables.

4.6.2. Stochastic coding DE (SDE)
Zhong and Zhang [238] proposed to use a multivariate Gaussian

distribution for each individual, instead of using the individual
solutions themselves. This coding technique is claimed to be robust
and can perform a region-wise search with ease. Each individual of
the population in the new coding scheme is represented by a mean
vector of length D and a square covariance matrix. The mean vector
(μ) is initialized with a random value in the range of the variables,
and the covariance matrix (Σ) is initialized as a diagonal matrix. In
each generation an update operator is applied on the population.
For this, first a temporary solution is sampled by ui ¼ μiþSZ. Here
Σ ¼ SST , S is upper triangular, and Z is a vector sampled from a
standard normal distribution. Algorithm’s performance can be fur-
ther improved by moving the mean towards the best so far mean,
and enhancing the diversity. After sampling the solution ui, a cor-
responding neighborhood is generated, where each neighbor ni is
produced by replacing a single dimension (randomly picked) of the
mean by the dimension of ui. After generating all the neighbors, the
ones which are better than the given individuals are selected and
kept in a set say B. If B is non-empty then the covariance matrix of B
replaces the covariance matrix of the individual, and the mean is
replaced by the mean of the best neighbor. After this a regular DE/
rand/1/bin is used to update the mean vectors, and later the cov-
ariance matrix. A major challenge of this algorithm is the high
computational cost, even after the authors’ proposal of making only
the topM individuals of the population, participating in this update.

4.6.3. Gaussian bare-bones DE
To reduce the effects of control parameters and to reduce the

importance of selection or adaptation, [200] proposed a two-fold
variation of DE, influenced by the concept of the bare-bones par-
ticle swarm algorithm [92], and named them as the Gaussian bare-
bones DE (GBDE) and Modified GBDE (MGBDE). In GBDE, the
mutation and the selection of Cr have been updated, whereas in
MGBDE the mutation step is further modified to include the
advantage of the DE/best/1 strategy. In GBDE, instead of regular
mutation schemes, the donors are generated by picking them
randomly from a Gaussian distribution with mean μ and standard
deviation σ. As the μ and σ are calculated from the current
population itself, the need for F is eliminated. For generating the
donor of the ith vector, μ is calculated as the average of the best
and the target vector, while σ is the modulus of the difference
between them. The proposed mutation is explorative in the start,
but as the generation increases the difference between the best
and any individual will decrease and the average will go toward
the best, encouraging exploitation. Regular binomial crossover
technique will be used, but the value of Cr will be initially chosen
from a Gaussian distribution of mean 0.5 and standard deviation
0.1. In later generations, Cr value will be individual dependent and
will keep its current value for an individual if that solution has
been updated in the current generation, else it will be reinitialized.
In MBGDE the mutation strategy is taken to be either DE/best/1 or
the Gaussian with equal probability. According to experimental
results MBGDE outperformed GBDE. Due to the explorative nature
of the mutation both of them succeeded in several multimodal
functions, while failing to outperform other DE variants in some of
the simple multimodal or unimodal cases.

4.7. DE with parent selection framework

Classical DE does not have a parent selection criterion for
mutation or crossover, as every individual has to undergo these
two steps. However, the need for parent selection in DE has been
advocated in works like [178,87]. Recently Guo et al. [79] have
proposed an interesting parent selection framework for DE. Guo
et al. [79] viewed stagnation as a situation in an iteration, where
the algorithm neither converges to a fixed point, nor does it find
any better solution. They tried to quantify stagnation as well. By
simply monitoring the sum of distances of the individual vectors
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from the population mean, one can identify if the algorithm is
converging to a fixed point. However, for high dimensional and
complex multimodal functions it is very hard for DE to achieve a
converged population. Nevertheless, it is possible to know if DE
has failed to generate any better solution for a number of suc-
cessive iterations. If that is the case, the population can be
improved by adding offspring from the previously successful par-
ents. For each individual of the population a counter is maintained
which increases by one if it is not replaced in selection, else reset
to 0, for being used in the next iteration. At the time of rand/1
mutation, if the counter of a target vector crosses a predefined
threshold, three vectors are randomly picked from the archive of
size Np containing the recently updated solutions; else the vectors
are randomly picked from the current population. The archive is
updated by adding the newly selected solutions replacing the
oldest ones, after each generation.

4.8. Others

Apart from the most prominent DE variants briefly reviewed in
this section under seven heads, there are several other modified
DE schemes that have been and are being published on a regular
basis since 2010. Some of these schemes that deserve mention are
in order. Lu et al. [114] modified the trial vector generation strat-
egy proposed in CoDE [197] and introduced a self-adaptive DE
framework and called their algorithm DE with Surrogate-assisted
Self Adaptation (DESSA). The proposed algorithm maintains a
database or archive, which is built in the first few generations. The
initial population is created randomly and until the database
building is completed the evolution happens following the base
algorithm and the generated populations are added in the archive.
After the database is completely build, for each of the target vector,
the trial is generated from a surrogate model (depending on the
base algorithm used) constructed from the database. After pro-
ducing the new population following regular selection, it is copied
into the archive, replacing the old records of the database.
Although DESSA uses the trial vector generation scheme of CoDE,
any classical DE or variant of DE can also be used in its framework.

In 2011, Asafuddoula et al. [7] proposed a variant of DE by
introducing a new crossover technique (the center-based differ-
ential exponential crossover), a parameter adaptation scheme and
an embedding of gradient based local search in the regular DE
framework. This variant participated in the CEC 2011 competition
on testing EAs with real world optimization problems and secured
4th rank. Brest et al. [22] further improved the popular jDE algo-
rithm [18] by introducing a subpopulation dependent trial vector
generation strategy, a mechanism for preserving the diversity, and
an aging scheme to detect possible stagnation in the original jDE
framework. Zhabitskaya and Zhabitsky [223] proposed a variant of
asynchronous DE with a new crossover scheme based on an
adaptive correlation matrix computed on the members of the
current generation and indicating the groups of correlated vari-
ables meaningfully. Recall that in asynchronous DE, only a single
target takes part at a time, in the trial vector generation scheme,
and the generated trial vector if selected, replaces the target, and
immediately becomes a member of the population. The authors
used the framework of asynchronous DE with independent restart
algorithm [224], with a JADE type parameter adaptation, to apply
the proposed crossover strategy. Poláková et al. [146] tried to
address the issue of stagnation, and proposed a way to identify
such a situation. They used the same competitive DE framework of
Bujok et al. [24]. However, only the twelve strategies from the
work of Tvrdík et al. [192] are used to build the strategy pool. Yu
et al. [219] proposed a variant of DE, where the greediness of the
mutation strategy can be adapted with the progress of the algo-
rithm. The authors modified the DE/best/1, DE/current-to-best/2
and DE/best/1 mutation strategies, by replacing the best vectors in
Eqs. (3b), (3c) and (3d), respectively, with a randomly selected
vector from the top k solutions. Clearly the greediness of the
mutation can be controlled by tuning k, where a larger k will lead
the proposed mutation towards the random mutation strategies,
and a smaller k will result in the greedy ones. Xu et al. [213]
proposed a DE variant, with a replacement policy for stagnation.
The replacement can be done in either for an individual, or for the
population itself.

Considering the fitness at the time of mutation is good for
creating a better offspring, however it also contains the risk of
uncontrolled exploitation and pre-mature convergence. To aid this
issue, Li et al. [100] proposed a new mutation scheme, such that a
balance between exploration and exploitation can be maintained.
In each generation, the population is divided into three classes
based on the fitness values. The individuals are re-indexed, such
that the lower index values have better fitness and belong to the
first class. The second class contains the medium performers, and
the worse individuals having the higher indices belong to the third
class.

In [243], Mohamed presented a new triangular mutation rule
for DE by using a convex combination of the triplet defined by the
three randomly chosen individuals and the difference vector
between the best and the worst individuals among them.
5. DE in complex optimization scenarios

For over the last five years, there has been a significant advance
in research to adopt DE for optimization in complex environments
that include optimization with nonlinear constraints (equality and
inequality), multiple objectives, dynamic and noisy fitness land-
scapes, multi-modality and very high dimensionality of the search
space. This section provides an overview of the DE approaches
developed over the past five years to tackle such optimization
processes.

5.1. Constrained optimization

Real world problems often deal with the optimization of an
objective function, subject to additional inequality and equality
constraints. These are known as constrained optimization problems.
A typical problem is concerned with finding a feasible d dimen-
sional vector x¼ x1; x2;…; xd½ � in the search space S, defined by the
variable-wise boundary conditions xmax;jrxjrxmin;j j¼ 1;…; dð Þ,
where xmax;j and xmin;j are the upper and lower bounds of xj,
respectively. The feasible region Ƒ DSð Þ is defined by a set of m
additional inequality constraints gj xð Þr0 j¼ 1;…; qð Þ and equality
constraints hjðxÞ ¼ 0 j¼ qþ1;…;mð Þ.

A DE algorithm with an Ensemble of Constraint Handling
Techniques (ECHT) was proposed by Mallipeddi and Suganthan
[119], where each constraint handling method has its own popu-
lation. A distinguishing feature of the ECHT is the utilization of
every function call by each population associated with each con-
straint handling technique. In constraint problems, depending on
several factors such as the ratio between feasible search space and
the whole search space, multimodality of the problem, the chosen
EA, and global exploration/local exploitation stages of the search
process, different constraint handling methods can be effective
during different stages of the search process. ECHT is able to adapt
to the requirements over evolution.

Mezura-Montes et al. [126] presented an empirical study on the
performance of DE in constrained optimization problems. They
performed an experiment with four DE variants (DE/rand/1/bin,
DE/best/1/bin, DE/target-to-rand/1 and DE/target-to-best/1) and
tested their performance in different dimensional (high and low)
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and structured problems (with or without equality constraints).
Based on the experimental results, they proposed a combined
search algorithm where in the first stage a DE/rand/1/bin will run
to find a feasible region, after that finer search towards optimum
will be performed by DE/best/1/bin strategy. Liu et al. [118]
developed a hybrid of DE with PSO to solve constrained numerical
optimization problems based on penalty functions and feasibility
rule [147,42]. A single-objective DE framework with a fuzzy con-
trol system influenced quantification of feasibility of a solution
was proposed in [198]. In this scheme, each of the solutions is
given a satisfaction level based on the constraint violation. The
authors kept the basic DE framework with rand/1/bin and only
modified the selection procedure by comparing the trial vector
with the target vector using the α-comparison operator. The value
of α (a scalar parameter) is made to be iteration dependent such
that in later stage the increment in number of feasible solutions is
encouraged. Sarder et al. [166] proposed a constrained optimizer
based on DE by incorporating the idea of gradient-based repair
with a DE/rand/1/bin scheme. If the individual candidate solutions
generated by DE are infeasible the algorithm calls for a gradient-
based repair to convert those into feasible solutions. Thus, as the
generation count increases, the ratio between feasible search
space and the whole search space is increased.

Mohamed and Sabry [130] presented a modified DE to handle
constrained optimization problems. This variant of DE comes with
a mutation scheme, a strategy for choosing the parameters and a
constraint handling policy. A new type of mutation is proposed
where the base vector is added with the scaled difference of the
global best and the worst vector. The selection process is modified
to select a trial based on any of the following three criteria. The
trial vector is accepted for next generation (1) if it is fitter than
target (when both are feasible), (2) if it has lesser penalty for
constraint violation than target (when both are infeasible), or (3) if
it is feasible while the target is infeasible. The problem of con-
strained optimization demands not only to optimize a function but
also to respect the constraints imposed upon its dimensions. A
way to tackle this kind of problems is to quantify the overall
constraint violation of a solution and try to minimize it alongside
optimizing the function. Wang and Cai [204] proposed such a bi-
objective framework for constrained optimization with DE. The
penalty function used to measure the constraint violation of a
solution, is similar to the one used in [108]. The authors modified
the DE framework to satisfy their requirement.

Wang and Cai [196] integrated a ðλþμÞ DE with an improved
adaptive trade-off model to handle constrained optimization
problems efficiently. In ðλþμÞ DE, each individual is made to
produce three offspring by using 3 mutation strategies (the rand/1
strategy, the current-to-best/1 strategy, and the rand/2 strategy)
and after the parent and offspring populations are combined, the
selection method of ðλþμÞ Evolution Strategy (ES) is used to select
the survivors for the next generation. Jia et al. [89] continued the
work further by proposing some modifications to the basic algo-
rithm. In their proposal, the dimensional constraint violation is
calculated in a similar manner as in [130]. Two approaches are
used to measure the penalty of a vector, depending on the differ-
ence among the maximum and the minimum values of the con-
straint violations over all the dimensions. If the difference is sig-
nificant, then normalized mean as per [130] is taken, else simple
summation as [108] is used to find the penalty.

Believing a fitter individual to be more preferable for generat-
ing the trial and for convergence of the algorithm, Gong et al. [76]
used a rank-based approach to select the vectors participating in a
mutation to generate a trial vector. But, for a constrained optimi-
zation problem, considering only the fitness value is not enough, a
quantization of the infeasibility of a solution is also needed. The
authors achieved such a quantization by a penalty function based
on mean constraint violation. Gao et al. [64] formulated a con-
strained optimization problem as a bi-objective optimization
problem (by treating the degree of constraint violation as an
additional objective) and used a Dual Population DE (DPDE) to
solve the same. DPDE maintains two populations, one containing
the infeasible solutions while the other holds the feasible ones. At
the time of mutation following the rand/1 strategy, two vectors
(the base and a terminal of the difference) are selected at random
from the same subpopulation of the target, and the third vector is
selected at random from the entire population. This modified
mutation allows information sharing through the difference vec-
tor, between the two populations. However, the only problemwith
this type of approach is the mutation requires a minimum of three
vectors in any subpopulations. The authors suggested if any sub-
population has the cardinality less than three, then it is no longer
used and a simple DE is executed on the other, to either minimize
the penalty or maximize the fitness. Recently Saha et al. [165]
proposed a fuzzy rule based constraint handling technique by
using DE as the base optimizer.

Wu et al. [211] proposed an equality constraint and variable
reduction strategy (ECVRS), which exploits the equations expressing
equality constraints to eliminate equality constraints as well as vari-
ables of constrained optimization problems. It was shown that ECVRS
can significantly improve the efficiency of DE when solving con-
strained optimization problems with equality constraints.

5.2. Multi- and many-objective optimization

Multi-objective optimization involves finding the best trade-off
among more than one objective. For a nontrivial Multi-objective
Optimization Problem (MOP), there is no single solution that
simultaneously optimizes each objective. In that case, the objec-
tive functions are said to be conflicting, and there exists a (possibly
infinite) number of Pareto optimal solutions. A solution is called
non-dominated, Pareto optimal, or Pareto efficient if none of the
objective functions can be improved in value without degrading
some of the other objective values. Many-objective optimization
can be loosely seen as a large-scale version of MOPs involving 4 or
more objective functions. Standard Evolutionary Multi-objective
Optimizers (EMOs) face several problems when applied to many-
objective problems including large non-dominated fraction of the
population, computationally expensive evaluation of diversity
measures, inefficient recombination operators, difficulty in repre-
sentation of the trade-off surface and so on. Over the past 5 years,
EMO researchers have also paid attention to DE. Prior to 2010,
there have been no significant DE-based approaches towards
many-objective optimization involving more than 3 objectives. A
few significant approaches to modify and apply DE for multi and
many-objective optimization are in order.

Zhong and Zhang [237] proposed an Adaptive Multi-objective
DE with stochastic coding strategy (AS-MODE) where each indi-
vidual in the DE population is represented, not by the exact
solution, but by a multivariate Gaussian with a diagonal covariance
matrix. A simple DE/rand/1/bin strategy is used for generating trial
vectors. However, the vectors participating in the mutation pro-
cess were chosen by using a tournament selection instead of
picking them at random. The selection process involves a non-
dominated sorting followed by the crowding distance based
operation to rank the solutions of the set, from where top Np
solutions are picked for the next generation. The algorithm,
however, introduces 6 new parameters apart from the 3 usual
parameters (F, Cr, and Np) of DE. Ali et al. [3] proposed a new
variant of DE, suitable for multi objective optimization. They used
a different population initialization technique, by first generating
two populations, each of size Np, and selecting the best Np from
the combined set. The first population is generated by solutions
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picked randomly from the entire search space. The second popu-
lation is formed by the opposite of the members of the first one, in
a manner similar to the opposition DE algorithm [157]. The two
populations are then combined and Np top solutions are selected
by non-dominated and crowding distance based ranking [43,44].
The mutation is performed using DE/rand/1 strategy. However, the
non-dominated solution among the three vectors participating in
mutation is selected as the base. An alternative approach to tackle
the multi-objective optimization is to decompose it into several
single-objective problems [230] by a linear or non linear weighted
aggregation of the multiple objectives known as Multi-Objective
Evolutionary Algorithms by Decomposition (MOEA/D). Zhao et al.
[233] introduced an ensemble approach to replace the tuning of
neighborhood size parameter in the MOEA/D-DE [231] and
demonstrated that an ensemble of neighborhood parameters
yielded an overall improved performance. The algorithm proposed
by Venske et al. [193] also follows the MOEA/D approach and uses
an adaptive strategy selection. For generating the trial vectors,
three strategies are used, two of them are the regular DE/rand/1/
bin and, DE/rand/2/bin. The third one is DE/nonlinear [170], which
has an advantage of not using any control parameter.

Qu and Suganthan [152] improved the selection method and
integrated with summation of normalized objectives based multi-
objective differential evolution to solve multi-objective optimiza-
tion problems. In the proposed selection method, a pre-selection
process is added to remove the bad solutions and improve the
convergence. The pre-selection is realized through using a refer-
ence point. All the solutions dominated by this reference point will
be removed. The reference point is starting at the center of the
objective space and gradually moves to the origin along the search
process.

Rakshit et al. [159] developed a modified version of a popular
multi-objective DE algorithm known as DEMO [161], which can
address MOPs in a noisy environment. The major problem of such
type of environment is that the fitness value of an individual
changes over sampling. To tackle this issue the authors proposed a
simple alteration of the initialization and selection step of DEMO
to apply three strategies. Firstly an adaptive sample size is sug-
gested to measure the fitness of any individual in a noisy envir-
onment, secondly the significance of using of expected value and
variance of fitness rather than simple averaging is established, and
thirdly the authors prescribed a comparison technique that will
deeply investigate the chance of a slightly worse trial to be placed
in the Pareto optimal front.

Denysiuk et al. [46] proposed a DE-variant for solving many-
objective optimization problems called Many-Objective DE with
Mutation Restriction (MyO-DEMR). The algorithm uses the con-
cept of Pareto dominance coupled with the inverted generational
distance metric to select the population for the next generation
from a combination of the parent and offspring populations. The
algorithm also utilizes a strategy for the restriction of the differ-
ence vector in DE mutation for improving the convergence char-
acteristics over multi-modal fitness landscapes. Recently, Ban-
dyopadhyay and Mukherjee [8] proposed a many-objective opti-
mization algorithm which periodically reorders the objectives
based on their conflict status and selects a subset of conflicting
objectives for further processing. The authors employed DEMO as
the underlying metaheuristic evolutionary algorithm, and imple-
mented the technique of selecting a subset of conflicting objectives
using a correlation based ordering of objectives. The resultant
method is called α-DEMO, where α is a parameter determining the
number of conflicting objectives to be selected. DE has also been
used as a base optimizer in the recently developed decomposition
based MOEAs for many-objective optimization like [90].
5.3. Optimization in dynamic and uncertain environments

Several optimization problems in the real world are dynamic in
nature. For these Dynamic Optimization Problems (DOPs), the
functional landscape changes with time, i.e., optima of the pro-
blem change their locations over time and, thus, the optimizer
should be able to track the optima continually by responding to
the dynamic environment [135]. Practical examples of such
situations are price fluctuations, financial variations, stochastic
arrival of new tasks in a scheduling problem, machine breakdown,
or maintenance.

DE has remained a popular choice for the DOP researchers since
the development of Dynamic DE (DynDE) by Mendes and Mohais
[125]. Plessis and Engelbrecht [143] improved the dynamic DE
(DynDE) [125], by providing a method for faster convergence, and
fixing the issue of diversity maintenance. The algorithm maintains
multiple populations. At any moment only the best performer of them
is evolved in its own, until a new population becomes the best with a
better performance score. The continuous competition among the
populations helps to improve the solution quality faster and provides
quick convergence towards global optimum. Halder et al. [81] pro-
posed a cluster-based DE algorithm with external archive to address
DOPs. The authors suggested clustering the entire population into
subpopulations and evolving them differently, until a global solution
is reached. The number of clusters (k) is an algorithmic parameter, and
the authors proposed an adaptive technique by modifying it dyna-
mically based on the algorithms performance. To tackle the dynamic
environment, after every generation the best individual from each
cluster is kept in the external archive. If at the end of a generation the
fitness of the archived individual and the current best of the clusters
mismatches, then an environmental change is inferred.

Kundu et al. [95] proposed an variant of the Crowding DE (CDE)
[188], for tracking multiple optima in a dynamic environment. The
authors proposed to limit the participants of the mutation among
the neighborhood of the target following an earlier work by Qu
et al. [153] on niching (to be discussed in Section 5.4). However, to
reduce the rigidity of the approach they decided to select k vec-
tors, using a roulette wheel model where the probability of
selecting a vector is inversely proportional to its distance, from the
target. To perform a simple DE/rand/1 mutation, 3 vectors will
then be selected randomly from the k vectors, picked in the earlier
stage. To detect a change in the dynamic environment, the authors
suggested the use of a test solution. The test solution is not part of
the population, so it does not participate in the algorithmic com-
putations However, after each generation, its fitness is calculated.
If there is any discrepancy between the fitness values of the test
solution in two successive generations, then a dynamic change can
be inferred.

Mukherjee et al. [131] proposed a new dynamic DE algorithm,
using clustering to generate sub-population, crowding based
technique to maintain the diversity and local information, and a
new crowding based archive to help the algorithm to adapt with a
dynamically changing environment. Das et al. [39] suggested a
dynamic DE algorithm where they used the popular multi-
population approach accompanied with two special types of
individuals in each subpopulation to maintain the diversity. These
individuals are known as Quantum or Brownian individuals and
do not follow the DE rules. The algorithm also employs a
neighborhood-driven double mutation strategy to control the
perturbation and thereby prevents the population from conver-
ging too quickly. In addition, an exclusion rule is used to spread
the subpopulations over a larger portion of the search space as this
enhances the optima tracking ability of the algorithm. Further-
more, an aging mechanism is incorporated to prevent the algo-
rithm from stagnating at any local optimum. Hui et al. [84] pro-
posed a niching based self-adaptive ensemble DE for solving



S. Das et al. / Swarm and Evolutionary Computation 27 (2016) 1–30 17
Dynamic Optimization Problems. This method also integrated a
modified multi-trajectory search operation to perform local search
within selected niches.

MOPs can be dynamic as well involving more than one con-
flicting objectives that change continuously with time. [194] pro-
posed a DE scheme equipped with an adaptive immigration
scheme (to improve diversity) for tackling dynamic MOPs. DE has
also been used as the base optimizer in a scalarization based
dynamic MOEA that relies on controlled extrapolation and Pareto
Front based nearest distance approach [13]. Dynamic Constrained
Optimization Problems (DCOPs) constitute a unique class of opti-
mization problems where the objective function as well as the
constraint functions changes with respect to time. A first approach
to solve DCOPs by using DE was taken by [139]. The authors
integrated an improved offspring repair method with DE to
maintain the diversity of the population. Ameca-Alducin et al. [5]
proposed a DE-variant by combining DE/rand/1/bin and DE/best/1/
bin schemes and by using a memory of best solutions found dur-
ing the search. Moreover, their algorithm allows addition of ran-
dom immigrants to the population at each generation and use of a
simple hill-climber-based local search operator to promote a faster
convergence to the new feasible global optimum. Eita and Shoukry
[51] proposed a constrained dynamic DE (CDDE) algorithm where
Cr and F are sampled from the range [0.5, 1] uniform at random to
enhance the degree of exploration. Also, the authors suggested a
novel hybrid simple constraint handling technique which com-
bines two well-known techniques: feasible rules and adaptive
penalty function.

5.4. Multimodal optimization and niching

Multimodal optimization techniques try to detect multiple
global and local optima (as opposed to a single solution) of a
function, so that the user can have a better knowledge about dif-
ferent optimal solutions in the search space and as and when
needed, the current solution may be switched to another suitable
one while still maintaining the optimal system performance.
Niching is a generic term used mostly in connection with the
multimodal optimization problems to denote methods for finding
and preserving multiple favorable regions (niches) of the solution
space possibly around multiple optima. DE has remained a very
popular choice for multimodal evolutionary optimization since
Thomsen’s work on Crowding DE [188]. As will be evident from
the following discussions, unlike the previous decade, for last five
years, there has been a surge of niching algorithms based on DE
that rely on Euclidean neighborhoods and that have exhibited
promising performance on modern multi-solution optimization
benchmarks like those proposed in [156].

To the best of our knowledge, Suganthan [177] first introduced
the concept of Euclidean distance-based geographical neighbor-
hoods for the PSO algorithms to generate offspring. Following the
same concept, Qu et al. [153]1 proposed a very simple yet efficient
Euclidean distance neighborhood based mutation scheme and
incorporated it within three multi-solution search approaches
capable of performing niching by crowding [188], speciation [98]
and modified fitness sharing [70] to form 3 new neighborhood
mutation niching DE algorithms. The use of a global mutation
operator (like DE/rand/1) is not suitable in case of multimodal
optimization problems which require parallel and distributed
convergence to distinct optima positions. To solve such problems,
a number of localized searches in close niches are needed to be
performed so that target vector, r1, r2, etc. and trial vector are all
from the same neighborhood. Keeping the respective framework
1 First submitted to IEEE Transactions on Evolutionary Computation in June, 2010.
alive for these DE variants, the proposed mutation scheme selects
three random vectors only from the parent’s neighborhood and
generates a donor by adding the scaled distance of two vectors
with the third one. Strength of the proposal lies in its computa-
tional simplicity and not using any sensitive niching parameter
except for the neighborhood size specified by the number of
Euclidean distance neighbors (6 in this case) of the target vector to
generate its trial vector. Even though neighborhood operations
have been used for selecting next generation parents, Qu et al.
[153] seem to be the first to use Euclidean neighborhood for off-
spring generation in niching algorithms. For solving multimodal
optimization problems, Epitropakis et al. [57] modified two pop-
ular mutation strategies of DE (rand/1 and rand/2) such that the
base vectors to be perturbed in these schemes may be the nearest
spatial neighbors of the current target vector xi;G. The resulting
mutation schemes (DE/nrand/1 and DE/nrand/2) exhibited niche
formation without the need of additional parameters.

Besides the common niching techniques, another way to solve
a multimodal optimization problem is to somehow formulate it as
an MOP and focus on the solution set provided by the algorithm to
identify multiple global and local optima. Basak et al. [10] pro-
posed such a technique where they redefined the problem as a bi-
objective one, and then used non-dominated sorting and domi-
nated hyper-volume based sorting to filter the multiple solutions.
The first objective function used in this technique is the actual
objective function, while the second one is basically the mean
distance among the solutions and is used to maintain diversity to
ensure that multiple solutions from the entire search space are
discovered. Liang et al. [105] proposed a variant of DE, where the
population is driven to form close niches around the optima. Such
techniques can only be successful when a solution vector will be
evolved by using information from its neighborhood, or with
individuals sharing the same local landscape. But also to maintain
and improve the quality of the solution, the target needs to select
better vectors to produce a good trial. To balance these two
requirements, a modified Fitness and Euclidian distance Ratio
(FER) is utilized in the algorithm. Epitropakis et al. [59] proposed a
niching DE algorithm by using a dynamic external archive to store
the potentially good solutions discovered by the population so far.
The algorithm used a control parameter adaptation scheme similar
to JADE [227] and a re-initialization scheme to explore the search
volume efficiently.

To address the multimodal optimization problems, Gao et al.
[62] proposed a cluster-based DE where the whole population is
partitioned into subpopulations so that different subpopulations
can locate different optima. Furthermore, the self-adaptive para-
meter control is employed to enhance the search ability of DE. The
authors integrated the proposed multi-population strategy and the
self-adaptive parameter control technique with two versions of
DE: crowding DE and species-based DE. Biswas et al. [14] proposed
a niching parameter free variant of DE for the multimodal opti-
mization problem. The proposed variant employs a parent centric
normalized neighborhood mutation and a synchronous population
update mechanism. DE has also been used as the base optimizer
for a very recently published niching method [15] which is free of
the explicit niching parameters like user-defined radius that
requires information about the location and spacing of the peaks
on a fitness landscape. This niching framework utilizes the concept
of local information (distance and estimated gradient) from
adjoining members to guide the search process. The authors
improved the 3 niching DE variants proposed by Qu et al. [153] by
using their framework and reported promising results on the
standard benchmark functions. Hui and Suganthan [85] markedly
improved the speciation based niching DE algorithm by integrat-
ing the arithmetic crossover operation. The resulting algorithm,
called by the authors as Ensemble and Arithmetic Recombination-
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based Speciation DE (EARSDE) also could achieve a better exploi-
tation of the individual peaks by applying neighborhood mutation
with ensemble strategies. EARSDE exhibited very competitive
results against most of the existing scalable benchmarks used in
the literature on niching. This algorithm also for the first time uses
arithmetic recombination operation in addition to the usual
binomial/exponential crossover of DE in the context to multimodal
optimization.

5.5. Large scale optimization

Large-scale optimization refers to a special category of opti-
mization problems where the number of decision variables,
objectives and/or constraints can scale to extremely large values.
Typically for real parameter EAs, locating the optima in a very
high-dimensional (more than 100 dimensions) space can be very
challenging. This is not surprising and is primarily caused by the
exponential increase of the search volume with dimensions.
Usually the distance measures break down in higher dimension-
alities and a search strategy that is valuable in small dimensions
might be useless in large or even moderately high dimensional
search spaces.

DE has been modified in different ways to search efficiently in a
high-dimensional continuous space. Prior to 2010, Brest et al. [19]
extended the adaptive jDE algorithm as jDEdynNP-F by gradually
reducing the population size with generations and using a new
scheme for changing the sign of F. Subsequently, Brest et al. [20]
proposed a variant of the jDEdynNP-F algorithm [19] by introdu-
cing two new features while retaining the prior framework. The
first feature is performing a perturbation of the current best with
randomly initialized vectors by DE/rand/1 strategy and a small
scale factor lying in the range ½0:01;0:09�, only twice per genera-
tion. The second feature is the use of exponential crossover
alongside the popular binomial with equal probability. Wang et al.
[195] extended the DE Enhanced by Neighborhood Search (DENS)
[214] for large scale global optimization in the following way. The
algorithm first generates a trial vector by either DE/rand/1/bin or
by DE/rand/1/exp strategy with equal probability and replaces the
target, if trial vector is fitter. A modified DE/target-to-best/1 with
the archived previous best and two new randomly selected vectors
from the population are used to construct a vectorL. A similar
strategy with the current best and the random vectors selected in
the trial vector generation process are used to create another
vectorG. A second selection takes place with the previously
selected target and the two newly created vector, where the fitter
becomes a member of the evolved population.

Weber et al. [207] presented a sub-population based DE to
adapt the algorithm for large scale optimization problems. The
initial population is distributed with equal probability among
some predefined number of subpopulations. At start, the sub-
population specific scale factor is initialized with values randomly
taken from the range [0.1, 1], and mutation takes place following
DE/rand/1/exp strategy, where the random vectors can be selected
from all over the population. With a certain probability, a shuffling
is performed by first uniting the subpopulations then recreating
them by randomly redistributing the solutions. An update of the
scale factor values for the sub populations are also performed after
a generation with some probability. García-Martínez et al. [65]
defined a variation of roles played by the participating vectors in a
regular DE mutation scheme. For example, the vectors picked for
finding the difference vector, and the base vector plays different
roles at the time of mutation. To achieve maximal gain from this
differentiation scheme, the authors suggested selecting a vector
only from the pool of those vectors in the current population that
are best suited for performing the desired role. For example, the
base vector will be selected among the top b vectors. In context to
scaling DE with the dimensionality of search spaces, Zhao and
Suganthan [234] demonstrated the downsides to the commonly
used exponential crossover in DE and proposed a linearly scalable
exponential crossover operator (LS-EXP) based on a number of
consecutive dimensions to crossover. Their numerical results
indicate that LS-EXP exhibits a superior performance over the
current exponential crossover operator on the most recent
benchmark problems with dimensions ranging from 50 to 1000.

Omidvar et al. [137] proposed a new technique to automatically
decompose a problem based on the interdependencies of the deci-
sion variables. The decomposition scheme first identifies the inter-
acting variables and then groups them based on common depen-
dency (linkage) properties. A neighborhood-search based variant of
DE known as SaNSDE [214] is used with this technique to optimize
the subcomponents separately. Lopez et al. [111] presented a hybrid
of DE and the Variable Mesh Optimization (VMO) proposed by Puris
et al. [149]. The DE is used to evolve and improve the quality of the
initial mesh generated by the VMO operations, before utilizing it in
the next iteration of the VMO. Very recently, Sayed et al. [168] dealt
with the problem of large scale constrained optimization and pro-
posed a new technique namely, Variable Interaction Identification
for Constrained problems (VIIC) to detect the epistasis or depen-
dence among the variables. The idea behind VIIC is to identify the
groups of dependent variables such that they can be optimized
separately. The authors integrated this scheme with DE and reported
competitive performance on standard large scale test problems with
constraints.

5.6. Surrogate-assisted DE for expensive optimization problems

In real life, optimization problems may often become very
much expensive in the sense that they can require an enormous
amount of Function Evaluations (FEs) to reach an acceptable
solution and/or each evaluation of the cost function may take very
long time. Canonical EAs cannot directly solve them since the huge
computational burden is unaffordable. As a remedy, surrogate-
assisted evolutionary computation uses efficient computational
models, often known as surrogates or meta-models, for approx-
imating the fitness function in EAs [91]. Although very small in
number, some research efforts have been recently reported about
the use DE for surrogate-assisted expensive optimization. Before
2010, such efforts of using DE in a surrogate assisted framework
were not significant. Since the success of surrogate-assisted EAs
depends not only on the construction and integration of the sur-
rogate models but also on the efficiency of the underlying opti-
mizer, due to its competitive performance, DE can stand out as a
good choice for the core optimizer in such cases.

Lu and Tang [110] pointed out that each offspring in DE is only
compared to the corresponding parent rather than with any other
individual. Hence, neither the fitness values nor the ranks of off-
spring individuals are required by the algorithm. Thus, only a sur-
rogate that can detect the better one between a parent and its
offspring should serve the purpose. Driven by this intuition, the
authors proposed the construction of surrogate for DE as a classi-
fication problem rather than a regression or ranking problem. For
each parent in current population, a training set is chosen from the
historical evaluated individuals and then a classifier is built on the
training set. After this, the classifier is used to judge whether its
offspring individual is better than itself so as to decide whether to
evaluate the offspring individual with the fitness function. Evidently
with this scheme, all offspring individuals are not required to be
evaluated with the fitness function and in each generation, some
FEs are saved for DE.

Elsayed et al. [55] presented a surrogate assisted DE scheme in
which a kriging (based on spatial linear regression and Gaussian
correlation models to estimate the shape of the objective function
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from data) model is used to approximate the objective function
while DE employs a mechanism to dynamically select the best
performing combinations of parameters (F, Cr and Np). Miruna and
Baskar [129] integrated a diversity controlled and parameter
adapted DE with local search into two dynamic surrogate models
based on artificial neural networks and response surface metho-
dology. The resulting algorithms were found to significantly
reduce the required number of FEs for complex and multimodal
problems without sacrificing the success rate.

Mallipeddi et al. [121] presented an evolving surrogate model-
based differential evolution (ESMDE) method, wherein a surrogate
model constructed based on the population members of the cur-
rent generation was used to assist the DE algorithm in order to
generate competitive offspring using the appropriate parameter
setting during different stages of the evolution. As the population
evolves over generations, the surrogate model also evolves over
the iterations and better represents the basin of search by the DE
algorithm.

A different aspect in looking at the surrogate assisted DE is that
the optimizer's computation results need to be available very quickly
despite the long time required for each function evaluation. In this
context, Glotić and Zamuda [69] recently proposed a surrogate DE
that was run over power challenges (hydrothermal optimization),
combining parallelization, kriging/surrogate matrix pre-computed
model, and surrogate-assisted (mixed) handling of constraints.

Even though surrogate methods have been investigated for
decades, MVMO [164] method without any surrogate was the
winner at CEC 2014 and CEC 2015 competitions on expensive
optimization problems [31].
6. Hybrid DE algorithms

For over the years, researchers have tried to combine the
algorithmic components of DE with those of other metaheuristics
like Particle Swarm Optimization (PSO), GA, Artificial Bee Colony
(ABC), Covariance Matrix Adaptation Evolution Strategies (CMA-
ES) and so on, with a belief that such hybrid algorithms will
benefit from the synergy. An extensive account of hybrid algo-
rithms developed in the broad perspective of computational
intelligence can be found in [23]. It has been pointed out in [16]
—“In fact, choosing an adequate combination of complementary
algorithmic concepts can be the key for achieving top performance
in solving many hard optimization problems”. Several local search
methods have also been integrated into the DE framework to
enhance the capability of detailed search in promising regions.
This led to the development of several memetic DE variants. In this
section, we review the latest developments in hybrid DE in two
parts: synergy between DE and other global search methods and
the blending of DE with local search algorithms (memetic DE).

6.1. Hybridization of DE with other global optimizers

Probably DE has been most often hybridized with PSO, a simple
continuous parameter optimizer inspired by the dynamics of social
insect groups like school of fish or flock of birds. One reason
behind this trend may be both the algorithms use simple differ-
ence operations to perturb the current solution. In fact the dif-
ference between the best and the current individual is explicitly
used both in the velocity update scheme of PSO and in DE/current-
to-best/1 mutation scheme. A comprehensive review and tax-
onomy of the plethora of PSO and DE hybrids can be found in
[212]. Some recent and notable attempts to hybridize DE and PSO
can be found in [128,58]. Elsayed et al. [53] hybridized real coded
GA with differential operators of DE to solve CEC 2011 competition
problems. This hybridization performed the best on the
competition problems. Recently Trivedi et al. [190] proposed a
hybrid of DE and GA to solve the unit commitment scheduling
problems. GA was used to handle the binary unit commitment
variables whereas DE was employed to optimize the continuous
power dispatch related variables. Liao [107] proposed two hybrid
variants of DE, one with a local search to improve exploitation
capability, and the other with the music inspired Harmony Search
(HS) algorithm to cooperatively find the global optimum. To han-
dle the situation of mixed discrete and real valued dimensional
problems, the author suggested a generalized discrete value
handling based on the idea of table look up. Some other notable
synergies between DE and HS have recently been reported in
[41,63]. Boussaïd et al. [17] used a hybrid of DE and Biogeography
Based Optimization (BBO) to provide a numerical solution to the
optimal power allocation scheme in a wireless sensor network.

Olensěk et al. [136] presented a global search algorithm,
hybridizing DE and Simulated Annealing (SA). The algorithm can
run in parallel following asynchronous master-slave architecture.
The serial searching of SA is replaced by a population of size Np,
which is subsequently modified following steps of DE instead of
the random sampling of SA. The authors also used a local search to
provide faster convergence. Another interesting hybrid of DE and
SA has been reported in [78]. Ghosh et al. [67] proposed a new
hybrid algorithm by embedding the DE type mutation, crossover,
and selection operators in the framework of CMA-ES, with a view
of improving the performance of the latter on noisy and compli-
cated fitness landscapes (like hybrid composition functions of the
CEC 2005 test-bed). Very recently, Li et al. [101] studied different
ways of population generation by DE and CMA-ES. The advantage
of DE style generation is the nonparametric distributed search
space coverage, with a direct parent offspring relation in succes-
sive generations. On the other hand CMA-ES style generation uses
a parametric intermediate distribution to generate offspring and
modifies the distribution with cumulative information gathered
from all the previous generations. The authors proposed a new
hybrid algorithm based on the DE framework that will also benefit
from the addition of key features of CMA-ES. The algorithm gen-
erates a trial vector by first using a DE/rand/1/bin strategy fol-
lowed by an Evolution Path (EP) mutation of CMA-ES.

Pholdee and Bureerat [141] proposed a hybrid algorithm by
incorporating the trial vector generation scheme of DE in a gra-
dient based Real-Coded Population-Based Incremental Learning
(RCPBIL) algorithm [26], with a view of overcoming the individual
shortcoming of the two strategies. The authors described an
extension of RCPBIL for multi-objective optimization, by making
small modification to handle Pareto optimality. A few prominent
examples of DE hybridized with other global optimizers are pro-
vided in Table 2.

6.2. Hybridization of DE with local search methods: memetic DE

Reynoso-Meza et al. [160] presented a hybrid algorithm, where
regular DE is combined with a sequential quadratic programming
type local search. The algorithm also uses a novel parameter
adaptation technique, where triangular distribution is used to
generate the control parameters. Jia et al. [88] proposed a memetic
DE that comes with a chaotic local search, which shrinks its search
space over generations, to preserve and improve the solution
quality. Neri et al. [133] proposed a compact DE, hybridized with a
memetic search to achieve faster convergence. The algorithm
represents the population with a multi-dimensional Gaussian
distribution. Zhan and Zhang [226] modified the binomial cross-
over scheme of DE to allow a dimension of the trial vector to
perform a random walk, with a certain probability. The resulting
DE algorithm could achieve better performance over classical DE
schemes especially on multimodal problems.



Table 2
Examples of recently developed hybrid DE algorithms.

Methods hybridized Authors Optimization problems applied to

DEþArtificial Bee Colony (ABC) Algorithm Tran et al. [189] Multi-objective optimization for optimal time-cost-quality trade-off for planning of con-
struction projects

DEþAnt Colony Optimization (ACO) Chang et al. [30] Single-objective real parameter engineering optimization
DEþBacterial Foraging based Optimization (BFO) Biswal et al. [11] Single-objective continuous parameter clustering problem
DEþGravitational Search Algorithm (GSA) Chakraborti et al. [29] Binary optimization problem involving highly discriminative feature subset selection
DEþ Invasive Weed Optimization (IWO) Basak et al. [9] Single-objective, bound constrained function optimization problems
DEþFirefly Algorithm (FFA) Abdullah et al. [1] Single-objective nonlinear optimization problem involving estimation of biological model

parameters
DEþFireworks Algorithm (FWA) Zheng et al. [236] Single-objective, bound constrained function optimization problems
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Poikolainen and Neri [144] proposed a hybrid DE variant,
where a Hooke–Jeeves method based local search has been used
alongside regular DE. In this algorithm, at first after selecting Np
number of solutions uniformly from the search space, the local
search (with a small number of iterations) is used for a primary
refinement, to form the initial population. DE/rand/1/exp scheme
is then used to generate the population for the next generation,
and Cr is set in such a way that in average it can copy ne number of
genes from the donor. Zhang et al. [229] presented a distributed
DE, which uses a local search to fine tune the solutions and
migrations of solutions among subpopulations are controlled by
Lamarckian and Baldwinian learning. The distributed DE uses m
number of subpopulations, each of size Np/m. The subpopulations
are arranged in Von Neumann topology as described by Dorron-
soro et al. [47]. To fine tune the solutions and avoid the case of
stagnation, the authors proposed the use of Hooke–Jeeves local
search algorithm. A new memetic DE was presented by Piotrowski
[142], where a local search algorithm has been introduced into the
framework of the DEGL (DE with Global and Local neighborhoods)
algorithm [37]. For local search the authors proposed the use of
Nelder–Mead algorithm [132], which can be employed with a long
search length, on the best individual in a neighborhood formed by
a percentage of the population.

An adaptive memetic search algorithm was proposed by Rak-
shit et al. [158], where a hybrid of DE and local reinforcement
learning based refiner namely, Temporal Difference Q Learning
(TQDL) is used. The basic idea is to reward a performing parameter
while penalizing an unsuccessful one, following the rules of TQDL
learning and the Q table. DE/current-to-best/1 mutation scheme is
used and the scaling factors for each individual are adapted based
on the reward/penalty given by the learning algorithm. The algo-
rithm was successfully used in an application involving multi-
robot path planning.

Hybridizing DE with other search methods has been a popular
research area. Qu et al. [155] further improved the fitness-Eucli-
dian distance ratio (FER) DE proposed by Liang et al. [106]. The
authors pointed out that the previous algorithm will favor those
solutions, which have a high FER. This unfortunately may end up
giving higher probability of selection to an individual situated far
from the target, hindering convergence. On another note, the
problem of finding global optimum is less complex and requires
less diversity of population than a multimodal optimization pro-
blem (for which the previous algorithm is designed). These
observations lead to a modified version of FER that uses a nor-
malization operator.

A Quasi-Newton method based local search is used here to
further fine tune the best solution found, if possible. A common
justification used by researchers is stated as “No other researcher
has hybridized DE with this specific search method”. As numerous
new names are created incessantly, there can possibly be a large
number of hybridized algorithms. An appropriate objective to be
used in the future research for hybridization should be
demonstrating improved performance by the hybridized algo-
rithm over the best state-of-the-art of the individual algorithms.
7. DE for discrete and combinatorial optimization problems

DE is by nature a continuous parameter optimizer which
directly searches on subsets of Rd. However, there have been
several attempts to modify and use DE for binary and combina-
torial optimization problems. Several such works have been dis-
cussed in our earlier 2011 DE survey. Here, we outline some recent
approaches in this direction.

Wang et al. [199] proposed a binary DE that uses a randomly
generated initial binary population of size Np. The problem of
performing mutation on binary strings is solved by producing a
probabilistic model of the mutation, and then generating a donor
following the model. The probability model for the jth dimension
of the ith target is defined as follows:

pi;j ¼
1

1þe� 2bðMO� 0:5Þ
1þ 2F

;

where MO¼ xR1
i
tð Þ þF xR2

i
tð Þ �xR3

i
tð Þ

� �
: Now, the donor is generated

as follows:

vi;j ¼
1 if rand 0;1ð Þopi;j;
0 otherwise:



Crossover and selection can be directly adopted from general
DE as they do not depend on the numerical properties of the
solution. The key feature of the algorithm is, due to the probabil-
istic modeling of the mutation, it is not affected by the constraint
of the population being binary in nature, and thus can adopt and
benefited from any variant of DE. This strategy has been recently
applied to devise a hierarchical binary DE for solving the minimal
cut-sets identification problem in [116].

In most of the occasions when DE needs to operate on discrete
valued decision variables, a usual practice is to convert a real-valued
solution into a desired integer-valued solution by applying some
posterior decoding mechanisms. Recently Dutta and Figueira [50]
proposed a DE algorithm that can directly work with real, integer, or
discrete variables without the need of such conversion. The pro-
posed DE uses a binary representation of integers and let b be the
minimum number of bits to represent any integer in the search
space. The solution is represented as a string of the concatenated
binary representation of the values in each dimension i.e. a bd
dimensional vector, where d is the dimension of the problem. The
mutation technique is done by first performing a regular mutation
on the bd dimensional solution. The donor vector can become a bd
dimensional real valued vector, due to mutation, and need to be
discretized. If an element of the donor vector is in the range [0, 1] it
is transformed to 1, else it is 0. But, this approach uses a fixed
transformation, which may not be suitable to maintain the rando-
mized environment of DE, may lead to local optima and
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dimensionality is increased thereby adversely affecting perfor-
mance on large scale problems. Thus, the authors suggested that for
each of the element of the donor, either the above mentioned
transformation or its reverse will take place with a certain
probability.

Economic Lot Scheduling (ELS) under basic period policy
amounts to finding the best cyclic production schedule of (say) n
items to be produced on a single machine such that the production
cycle of each item is an integer multiple of the basic period. The
process assumes deterministic demand and production rates that
are known a priori. [183] proposed a DE based heuristic approach
to solve such an ELS problem. The authors illustrated competitive
results against the existing GA based approaches.

Deng and Gu [45] used a hybrid discrete DE with neighborhood
search to solve no-wait flowshop scheduling problems with
makespan criteria. Tasgetiren et al. [184] integrated a variable
iterated greedy search with DE to solve the no-wait permutation
flow-shop scheduling problems. Recently Maravilha et al. [122]
presented a combinatorial optimization framework based on DE.
In this algorithm a set-based representation and operators are
used to define sub-problems that are then utilized to explore the
feasible search volume. Authors tested the proposed method on
the capacitated centered clustering problem.

A first approach to use DE for solving the multi-dimensional
knapsack problem was developed by Tasgetiren et al. [185]. The
authors employed a variable neighborhood search in conjunction
with different mutation strategies of DE to generate the trial
population. Although the proposed algorithm works on a con-
tinuous domain, these real-values are converted to 0-1 binary
values by using the sigmoid function. In order to enhance the
solution quality, DE with the variable neighborhood search was
combined with a binary swap local search technique.

Chen et al. [32] proposed a new DE algorithm that can optimize
binary coded problems. The algorithm maintains two populations
of size Np initialized with same random solutions. After the first
generation one population is used as the current and the other as
an archive for the solutions of the previous generation. However,
the algorithm didn’t follow a signature DE scaled difference vector
based mutation, or didn’t even apply a crossover. The suggested
mutation scheme is more similar to the one, done in PSO, though
some measures are taken to reduce the pre mature convergence or
stagnation common to such strategies.
8. Theoretical analysis of DE

Theoretical analysis of EAs is very much important to under-
stand their search mechanisms, to detect the allowable ranges of
the control parameters, to find problem classes in which the
algorithm with a given set of parameters will perform successfully
(with some quantification of success) or will fail. Unfortunately,
unlike PSO or Evolutionary Strategies (ESs) the framework of DE
does not easily lend itself to analytical treatments, unless some
simplifying (and often impractical) assumptions are made. In this
section, we provide a brief overview of the few theoretical studies
undertaken mainly over the last five years on DE as a function
optimizer.

Kitayama et al. [93] tried to identify the basic properties
required by the search techniques of DE. They pointed out that a
direction of searching, which will favor a solution improving local
minimum, but at the same time will discourage any that will not
improve the global status, is useful for escaping from local trough.
They also supported the inclusion of randomness in the search
technique, which favors the opportunity of exploration in an
unknown environment. By illustrative examples they showed how
the rand/1/bin strategy actually follows the above mentioned
properties and provides opportunity for a solution to escape from
a local minimum and explore the neighborhood, maintaining
diversity.

In an attempt to establish the theoretical basis of the DE, Ghosh
et al. [68] provided a proof of the convergence of a DE algorithm
following the DE/rand/1/bin strategy. The proof is provided only for
those optimization problems whose objective functions are con-
tinuous and posses a single global optimum (may contain a number of
local optimums), and there exists, continuous first and second order
derivatives. The authors modeled the DE population with a random
vector and showed that its probability distribution function (PDF)
reaches to an equilibrium PDF when the number of generation
reaches infinity. The equilibrium PDF is shown to be similar to a Dirac
delta function that has a zero probability of finding a fitter point only
the global minimum. For any other point in the search space the
equilibrium PDF will have a non-zero probability of finding a better
point, thus confirming that the DE will be able to find the global
minimum. The authors also established the fact that there is a Lya-
punov functional associated with the DE system. This functional can
be expressed as the difference between the mean fitness of the
population and the optimal fitness. The functional is shown to be
monotonically decreasing over time indicating at convergence the
mean fitness will reach to the optimum fitness or the population will
improve over time to converge in the neighborhood of the global
optimum. The importance of the difference vector mutation scheme is
also established by the authors.

Zhao et al. [235] introduced a hybrid DE algorithm (HtDE) based
on the concept of the transform functions and proved the con-
vergence of the same under some restrictive assumptions. He et al.
[82] used the so called Differential Operator (DO) to obtain a random
mapping from the decision variable space to the Cartesian product of
the former and subsequently investigated the asymptotic convergence
of DE by using the random contraction mapping theorem. A Markov
chain modeling of DE was developed by Sun [177] who inferred that
classical DE does not show convergence in probability in its
usual sense.

Recently, Hu et al. [83] derived two sufficient conditions that can
assure the convergence of DE in the usual sense. According to the
derived conditions, the DE-variants can guarantee convergence to a
globally optimal point provided the probability of generating an actual
optimum (or optima) by the reproduction operators in each genera-
tion in a certain sub-sequence of the population remains greater than
a small positive number. The fundamental problem with this
approach is that they considered the distribution of the population in
each iteration to be independent of each other, which is generally not
the case, as any population in a particular iteration is completely
determined by the previous iteration. Hence, even intuitively it is not
acceptable that the probability distribution of the population in each
iteration will be independent of the distributions in earlier iterations.
9. Parallel DE algorithms

Since the last decade of 21st Century, parallel computing
emerged as a form of high-performance computing owing to the
dramatic cost reduction and abundance of computational resour-
ces (both software and hardware). In parallel computing, several
calculations can be undertaken simultaneously based on the
principle that a large problem can be divided into smaller ones
which can then be solved concurrently. Like many other EAs, DE
has also been parallelized for enhancing its speed and accuracy on
expensive optimization problems. Discussions on some recent and
interesting studies on parallel DE algorithms are in order.

Wang et al. [202] proposed a parallel DE scheme by using an
adaptive parameter control and Generalized Opposition based
Learning (GOBL) [201], which will be useful for high dimensional
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optimization problems. This variant can also be implemented in a
parallel processing environment, for example in a graphical pro-
cessing unit (GPU), which will provide a massively large and fast
computational power. GOBL for every solution creates an opposite
solution and also it retains a dynamic range of the dimensions of
the population, such that the knowledge of the shrinking search
space with generation can be kept in record. The authors adopted
the parameter adaptation scheme from jDE [19], and only mod-
ified the allowable range of Cr, changing it to [0.8, 1]. The proposed
algorithm will either apply GOBL or classical DE with a probability.
In GOBL, after updating the dynamic range of solution, opposite
solutions will be generated to form another population. The Np
best individuals will be selected from the union of the current and
the opposite population, to form the population for the next
generation. While the above algorithm is for executing in CPU, the
authors also presented an implementation scheme, by defining the
kernel functions, to execute it in a GPU.

Distributed DE enhances the exploration power of DE by per-
forming an organized and landscape specific customized search.
Being one of the major impactful control parameter for common
DE, the scale factor in distributed DE is far more important, and
complicated to choose and adapt. The reason is the requirement
for different adaptation strategies and choice of the scale factor, for
different local landscapes. Weber et al. [208] proposed to use four
variant of scale factor adaptation schemes, in different sub popu-
lations to tackle the issue. The first scheme is to select a scale
factor uniformly from the range [0, 1], for each subpopulation. The
scale factor remains constant throughout the run of the algorithm.
In the second scheme, each kth subpopulation takes a diverse scale
factor in the following way:

Fk ¼
k�1
m

þ 1
2m

;

where m is the number of subpopulations. For the second scheme
also the scale factor is not adaptive, but allows the subpopulation
to evolve in a diverse manner. The third scheme picks a scale
factor randomly from the range [0, 1]. But, unlike scheme one; it
revises its decision by checking the improvement of every sub-
population after a certain interval. The scale factor of the sub
population, which is found to be least improved, is replaced with
another random scale factor. In the fourth scheme, each sub-
population is assigned a random scale factor, and in each gen-
eration, one randomly selected subpopulation gets its scale factor
revised with another randomly chosen one. The authors presented
an analysis using three distributed DE algorithms, Parallel DE
(PDE) [186], Island based Distributed DE (IBDDE) [6], and the
Distributed DE (DDE) proposed by [60] and validated the impor-
tance of the proposed scale factor choosing strategies. The
obtained results through various experiments, showed firstly an
algorithm dependence of schemes’ performance, which is natural
and can be explained by the different strategy of migration of
solutions between subpopulations, and disparate nature of the
subpopulations (scheme two, three and four performed better in
PDE, ISDDE and DDE, respectively), secondly PDE with scheme
three provides a globally good performance, establishing the
importance of adaptation.

The influence of migration on the performance of DE was
empirically examined by Bujok and Tvrdík [25] by applying six
adaptive DE-variants to a parallel migration model with a star
topology. Chen et al. [33] developed a parallel DE scheme for
optimizing large-scale atomic and molecular clusters based on the
sum of pair-wise potential minimization. This approach combines
a modified DE algorithm with improved genetic operators and a
parallel strategy with a migration operator to address the pro-
blems of numerous local optima and large computational
demanding. Penas et al. [140] used an asynchronous parallel
implementation of DE for the parameter estimation in dynamic
models of biological systems.

There have been some important attempts to implement DE and
its variants on modern parallel computing platforms based on super
parallel single-instruction multiple-data (SIMD) devices like GPUs.
A first parallel implementation of DE on a GPU with NVIDIA’s
compute unified device architecture (CUDA) was by Krömer et al.
[94]. Wong et al. [209] recently reported a CUDA based parallel
implementation of the well known SaDE [151] algorithm. Experi-
mental results provided by the authors indicate that such paralle-
lization can significantly speed up SaDE as compared to its single
processor sequential version across varying problem dimensions.
10. Engineering applications of DE

It is needless to mention that with the growing popularity of DE
among the practitioners, parallel to the core algorithmic research in
DE, the application specific research on and with DE has also been
spiking over the last 5 years. DE research articles indexed in SCI
database over the span of 2011–2015 is 4750 and out of these, there
are more than thousands of application papers in diverse areas.
Instead of going into any detailed discussions (which is also out of
the scope of a single survey, given the volume of works published),
in Tables 3–5 we highlight only the major applications, where DE
has been employed to solve the optimization problem, along with
the type of the DE used. Please note that to keep the reference list
tractable, all references mentioned in Tables 3–5 are kept in Sup-
plementary document named “DE Application References”.
11. Potential future research issues

Although during the last two decades, research on and with DE
has reached an impressive state, there are still some interesting
open problems and new application areas are continually emer-
ging for the algorithm. Below, we unfold some important future
directions of research in the area of DE:

1. Rotation invariance has been a challenge for DE. Covariance
matrix based mutation and cross-over operations have been
integrated in DE [203,206,67]. This approach suffers from the
lack of scalability as it involves repeated inversion of matrix
whose dimensionality is the same as the dimensionality of the
problem. Arithmetic recombination is also a rotation invariant
operator which does not suffer from the lack of scalability as
much as matrix inversion. Recently, arithmetic recombination
[85] has been employed to solve niching problems effectively.
We expect similar exceptional performance by arithmetic
recombination in other problem categories too.

2. Population topologies have been extensively investigated in the
context of particle swarm optimization (PSO). Index-based
topologies [37] have been commonly used while Euclidean
distance based topologies [85,153,154,176] have not been fre-
quently used. The objective of using topologies in PSO is to slow
down the rapid convergence of the particles towards the current
gbest position [115]. However, DE posses slower convergence
properties primarily due to the randomized mutation operators
(independent of the current gbest) and parent–offspring com-
petition. While rapid premature convergence of PSO must be
tackled, improving the convergence behavior of DE can also be
beneficial. In this context, Euclidean distance based neighbor-
hood has been demonstrated to be effective in the context of
solving niching problems [153]. Therefore, Euclidean distance
based neighborhood operations in other problem scenarios can
be investigated.



Table 3
Summary of applications of DE to engineering optimization problems.

Electrical and power systems

Economic Dispatch Bhattacharya and Chattopadhyay (2011): Hybrid of DE and biogeography based optimization.
Sayah and Hamouda (2011): Hybrid of PSO and DE.
Basu (2011): Multi-objective DE.
Ghasemi et al. (2014): Hybrid of teaching learning algorithm and a variant of DE, with double mutation and
crossover.
Pandit et al. (2015): Problem dependent mutation strategy (DE/rand/1, DE/best/1, DE/rand-to-best/1, DE/rand/2,
DE/best/2) and binomial crossover.
Glotić and Zamuda (2015): surrogate assisted DE variants combined in a master-slave optimization model.
Mallipeddi et al. (2012): ECHT-DE

Power System Stabilizer Vakula and Sudha (2012): DE/rand/1/bin.
Fault Diagnosis Zhao et al. (2014): A variant of DE called history driven DE.
Power Distribution Reconfiguration Prado et al. (2014): Discrete DE.
Optimal Power Flow Sivasubramani and Swarup (2012): DE/rand/1/bin.

Artificial Neural Networks

Optimal Network Topology Dragoi et al. (2013): Self adaptive DE.
Designing of Different Variants of Neural Networks Aliev et al. (2011): DE/rand/1/bin.

Dhahri et al. (2012): A variant of DE, named as hierarchical multi-dimensional DE.
Oh et al. (2012): DE/rand/1/bin.

Neural Network Training Subudhi and Jena (2011b): Hybrid of DE and local search.
Piotrowski (2014): Eight popular variants of DE (DEGL, JADE etc.).

Fuzzy Neural Net Controller Lu et al. (2012): DE with modified mutation and binomial crossover.
Neural Network for Non linear System Identification Subudhi and Jena (2011a): Opposition based DE with DE/rand/1/bin scheme for trial generation.

Manufacturing Science and Operation Research

Manufacturing Process Optimization Zhang et al. (2013): Hybrid of DE and Tissue P Systems.
Yildiz (2013b): Hybrid of DE and receptor editing property of immune system.

Transport Sequencing in Cross Docking Systems Liao et al. (2012): Two hybrid DE variants.
Optimization of Multi-Pass Turning Operations Yildiz (2013a): Hybrid of DE and Taguchi's method.
Scheduling Ponsich and Coello (2013): Hybrid of DE and Tabu Search.

Zhang et al. (2013): Hybrid of DE and local search.
Pan et al. (2011): Hybrid of discrete DE and local search.
Vincent and Ponnambalam (2013): Bi-level DE.
Tang et al. (2014): DE with a modified DE/current-to-best/1 mutation.
Glotić et al. (2014): Self-adaptive DE.

Ship route planning and marine safety Zhao et al. (2014): Improved variant of DEGL

Robotics and Expert Systems

Space Trajectory Optimization Vasile et al. (2011): A variant of DE known as inflationary DE.
Route Planning/Guidance of Unmanned Vehicles Fu et al. (2013): Hybrid of DE and quantum behaved PSO.

Raghunathan and Ghose (2014): DE/rand/1/bin, DE/best/1/bin.
Zamuda and Sosa (2014a): DE/best/1/bin with adaptive parameter settings.
Zhang and Duan (2014): DE with α level comparison for constraint handling.

Satellite Orbit Reconfiguration Chen et al. (2015): A variant of multi-objective DE.
Part based Work Piece Detection Liu et al. (2012): DE with rand/1 mutation and crossover.
Real Time Object Tracking Nyirarugira and Kim (2013): DE with modified mutation and crossover.
Object Detection Ugolotti et al. (2013a): DE/rand/1/bin with GPU implementation.
Body Pose Estimation Ugolotti and Cagnoni (2013b): DE/rand/bin in GPU.
Financial Market Dynamics Hachicha et al. (2011): DE with modified rand/1 mutation scheme and binomial crossover.
Neural Fuzzy Inference System Chen and Yang (2014): Depending on requirement uses five mutation schemes and binomial crossovers.
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3. DE has not demonstrated its superior performance on com-
putationally expensive problems. MVMO optimization method
[164] has been the winner at CEC 2014 and 2015 Competitions
on Expensive problems. Hence, novel strategies need to be
developed to deal with expensive problems more competi-
tively by using DE.

4. Recently, population size adaptation has been demonstrated to
yield improved performance. Naturally, we require a larger
population to perform exploration of the search space at the
early stage of the search while we require a smaller population
to conduct fine search near the best regions at the end of the
search process. Benefits of such a population reduction have
been demonstrated in works like L-SHADE [180]. Further
research is needed in the population size adaptation in single
objective and other optimization scenarios.
5. Learning based approaches [106] for DE need to be developed.
Even though DE researchers test DE on a large collection of
optimization problems with diverse characteristics, a practi-
cing engineer is likely to tackle a single problem with minor
variations repeatedly over a prolonged period of time [175]. In
this context, learning based approaches will be valuable to
solve minor variants of the same problem repeatedly by DE
[112,171]

6. No free lunch theorem states that no single instantiation of an
algorithm can outperform all others. This implies that it would be
beneficial to have several tunable parameters in an algorithm so
that numerous instantiations would be possible by setting tunable
parameters to different values in order to solve problems with
diverse characteristics. Even though this approach seems contra-
dictory to the concept of robust optimizer, investigating the



Table 4
Summary of applications of DE to engineering optimization problems (continued from Table 3).

Pattern recognition

Classification Qasem and Shamsuddin (2011): Hybrid of multi-objective DE with memetic search and radial basis neural network.
Luukka and Lampinen (2011): DE/rand/1/bin.
Triguero et al. (2011): DE, SADE, JADE, DEGL, SFLSDE (Neri and Tirronen 2009).
Triguero et al. (2012): DE/rand-to-best/1/bin.
Bazi et al. (2014): DE/rand/1/bin.
Zhai and Jiang (2015): Hybrid of self-adaptive PSO and DE.

Clustering Zhong et al. (2013): Multi objective DE.
Dong et al. (2014): Adaptive DE with multiple strategies.
Kwedlo (2013): DE/rand/1/bin.

Feature Selection Khushaba et al. (2011): DE/rand/1/bin.
Al-Ani et al. (2013): Modified DE/rand/1/bin.
Paul and Das (2015): MOEA/D-DE.

Image processing

Moving Object Detection Ghosh et al. (2014): distributed DE with neighborhood based mutation.
Image Segmentation Novo et al. (2013): Hybrid SPEA-2 (Strength Pareto Evolutionary Algorithm) and DE.
Multi-level Image Thresholding Ali et al. (2014): DE/rand/1/bin.

Sarkar et al. (2015): DE/rand/1/bin.
Feature Selection in Image Data Ghosh et al. (2013): Self-adaptive DE.
Sub-pixel Mapping Zhong and Zhang (2012): DE/rand/1/bin with adaptive control parameter values.
Animated Tree Reconstruction Zamuda and Brest (2014b): DE/rand/1/bin with adaptive parameter settings.

Zamuda et al. (2011): DE/rand/1/bin with adaptive parameter settings.
3D Reconstruction from Uncalibrated Images Kang et al. (2013): DE/rand/1/exp.

Bioinformatics and bio-medical engineering

Hypoglycaemia Detection Lai et al. (2013): Multi-objective DE, with double wavelet mutation.
Rule Extraction from Medical Database Falco (2013): DE with multiple strategies defined by Price et al.
Hippocampus localization in histological images Mesejo et al. (2013): DE/target-to-best/1/bin.
Monitoring of obstructive sleep apnea Sannino et al. (2014): DE/rand-to-best/1/bin.
Parameter Estimation of Biological Systems Zhan et al. (2014): Modified DE/rand/1/bin.

Electronics and communication engineering

Mobile Location Management Almeida-Luz et al. (2011): DE/best/1/exp.
Non-linear System Modeling Chang (2012): DE/rand/1/bin.
Clustering of Wireless Sensory Network Kuila and Jana (2014): DE/best/1/bin.
Mobile Ad-hoc Networks Gundry et al. (2015): DE/rand/1/bin.
Optimal Fault Protection in Networks Li et al. (2013): Binary multi-objective DE.

Zio et al. (2012): A variant of binary DE.
Placement of Wavelength Convertors. Lezama et al. (2012): Binary DE with DE/rand/1/bin trial vector generation strategy.
Sleep-scheduling in wireless sensor networks Sengupta et al. (2012): MOEA/D-DE
Electromagnetics including antenna design Rocca et al. (2011): A survey on the use of DE in Electromagnetics.

Secmen et al. (2013): Ensemble DE
Baatar et al. (2014): Multi-objective DE.
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benefits of increasing control parameters of DE is a promising
research direction.

7. Evolutionary algorithms are used to solve multimodal problems
within a limited computational budget. If a problem is unimodal
or if we have unlimited computational budget, we can identify
better alternatives to evolutionary algorithms. In this context,
controlling population diversity and convergence behavior over
the given computational budget is important. Hence, one of the
promising research directions will be hybridizing ensemble
methods with Euclidean distance based topologies [175] where
exploitative ensemble can be used in the neighborhood of the best
solutions while explorative ensemble can be used for weaker
solutions to generate their offspring.

8. Even before the advent of population-based EAs, the concept of
convergence was prevalent for single point (only one candidate
solution) based search methods. If the single point does not
converge, there will be no solution. However, in the context of
population based algorithms, the best scenario is that even
after one population member discovers the global solution the
other members to be well distributed in the search space. As
we do not know the exact global solutions (unlike solving the
benchmark problems) in practical scenarios, this is an ideal
scenario to have within the specified computational budget.
Hence, in the context of population-based search methods, the
focus of theoretical research can be controlling diversity and
convergence behaviors while avoiding chaotic search behavior
within the given computational budget [175].

9. Expected First Hitting Time (EFHT) is the average time that an
EA requires to find an optimal solution for the first time and it
stands out as an important issue related to the theoretical
investigation of the EAs. If the actual optimum is not known in
practice, EFHT should consider the average time required to
minimize the objective function below a predefined threshold.
To the best of our knowledge, general development of com-
putational complexity of DE is not available yet. The con-
vergence rate and EFHT, which are the measures of average
computational complexity of any optimization technique, are
yet to be developed for the DE family of algorithms. The
necessary and sufficient conditions for convergence, the
dynamics of the DE population and the time complexity of the
DE algorithm are interconnected issues that constitute the
three main aspects of this optimization technique. Hence a



Table 5
Summary of applications of DE to engineering optimization problems (continued from Table 4).

Miscellaneous

Speech Processing Schleusing et al. (2013): DE/rand/1/bin.
Lei et al. (2013): DE/rand/1/bin.

Filter design Ghosh et al. (2012): Modified JADE with pBX crossover

Parameter Estimation in Systems Banerjee and Abu-Mahfouz (2014): DE/rand/1/bin, DE/best/1/bin, DE/target-to-best/1/bin.
Tang et al. (2012): DE/rand/1/bin.
Tsai et al. (2011): DE with Taguchi sliding level method based crossover.

Beamforming in Signal Processing Mallipeddi et al. (2011a, 2011b, 2011c)

Infinite Impulse Response System in Signal processing Upadhay et al. (2014): DE with wavelet mutation.
Zhu et al. (2012): Different popular variants of DE (SADE, jDE etc).

Optimization of Low-loss Silver Nano-wires Structure Zhao et al. (2012): DE/rand-to-best/1/exp.

Fractional Order Systems Zhu et al. (2012): A variant of DE known as switching DE.

Nuclear Plant Safety Zio and Viadana (2011): Multi-objective DE.
Maio et al. (2014): Two-step hierarchical DE.

Strength of Heat Source Parwani et al. (2013): Hybrid of DE and local search.

Service Optimization Pop et al. (2011): Discrete DE.

Waveform Inversion Gao et al. (2014): Modified cooperative co-evolutionary DE.

Self Potential Data (Geophysics) Li and Yin (2012): DE/current-to-best/1/bin.

Adaptive Many Particle Quantum Metrology Lovett et al. (2013): DE/rand/1 with crossover.

Parametric identification of seismic isolators Quaranta et al. (2014): DE/best/1/bin.

Chemical Engineering Sharma and Rangaiah (2013): Multi objective DE.
Kumar et al. (2011): DE with rand/1 mutation and crossover.
Silva et al. (2012): DE/rand/1/bin.
Vakili et al. (2011): DE/best/1/bin.

Engineering Design and Modeling of Machines and Components Coelho et al. (2013): Multi-objective DE.
Joly et al. (2013): Multi-objective DE.
Bhattacharya et al. (2013): DE with mutation as in Karaboga and Okdem (2004) and binomial
crossover.
Saruhan (2014): DE/rand/1/bin.
Kranjcic and ̌Stumberger (2014): DE/rand/1/bin.
Tsai (2015): DE/rand/2 mutation with Taguchi sliding level method based crossover.
Deb et al. (2014): DE/rand/1 with crossover and DEGL.
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unified approach of addressing these three issues simulta-
neously is a must to explore their inter-correlation. To the best
of our knowledge, such a unified formulation is missing in the
theoretical development of DE.

10. Memetic algorithms have been widely studied in the evolutionary
computation domain. However, in the CEC competitions from
2005 to 2015, there is no compelling evidence of improved per-
formance by memetic DE in any of these competitions. Further,
integrating heterogeneous population topologies with exploitative
and explorative ensemble configurations might be a better alter-
native than memetic DE [175]. In this context, extensive compara-
tive studies will be valuable to compare memetic DE and DE with
heterogeneous population topologies with exploitative and
explorative ensemble configurations in the context of numerical
optimization.

11. In the paradigm of evolutionary computation, there is a general
lack of a clear mapping between problem features and the best
suited optimization algorithm (out of the plethora of choices
among DE, PSO, ABC, GA, CMA-ES and so on). This is especially
true for solving real world optimization problems. A systematic
study is required to determine which features of a particular
problem (like multi-modality, separability, ruggedness of the
functional landscape etc.) or what kind of correlation among a
set of decision variables make an objective function solvable by
DE (or any of its variants). As was also pointed out in [40],
almost eight years back from now, Langdon and Poli [96] made
a very interesting study where certain fitness landscapes were
evolved with Genetic Programming (GP) to indicate the ben-
efits and weaknesses of a few population-based algorithms like
PSO, DE, and CMA-ES. The authors indicated that some pro-
blem landscapes found with GP may deceive DE such that it
will be frequently stuck in local optima. On the other hand,
over similar landscapes PSO was demonstrated to always find
the global optima correctly within a given computational
budget. Unfortunately this kind of studies was not undertaken
on a larger scale to identify the suitable problem features for
the vast class of DE variants available today. This is particularly
challenging if real world problems possess diverse properties
over the search space like the composition problems [102].

12. Finally, while adapting the control parameters like F and Cr,
many methods introduce controlled amount of randomness. It
is certainly interesting to investigate when it is useful to
increase or decrease the degree of randomization and which
are the appropriate methods to do this. Can we link the amount
of randomness with some features of the function to be opti-
mized or on some kind of correlation among the decision
variables? This can be a potential future avenue of research.

Hence, it is apparent that there are numerous issues to be
investigated in the context of differential evolution. Further, some
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of the above issues can be investigated collectively as well as in
different optimization scenarios such as constrained, multi-
objective, dynamic, multimodal and so on.
12. Conclusions

Dramatic advances in hardware have paved the paths for solving
very complicated computational problems by using computer-based
optimization models. Such problem instances very often call for
robust, fast and reliable optimizers. The DE family of algorithms
initially meant for global numerical optimization over the continuous
search spaces emerged about two decades ago. The field has been
greatly enriched by the continual efforts of a number of researchers
from various domains. In this article, we made an effort to outline the
multi-faceted state-of-the-art research on and with DE spanning
mostly over the years 2011–2015.

The field of metaheuristics is now growing at a spectacular rate –

countless new algorithms are being published in various venues
almost every day. Inspirations for designing a nature-inspired opti-
mizer are coming from diverse sources ranging from human beings to
flu virus! Similarly researchers are exploring various ideas from the
coveted realm of mathematical programming to stretch them into
novel metaheuristics. However, unlike such mushrooming algorithms,
most of which provide a single and somewhat narrowed search
strategy due to their source of inspiration, whereas DE provides the
user with a flexible set of offspring generation strategies with strong
intuitive justifications behind the resulting search moves. Such flex-
ibility has made DE a versatile and robust optimizer in widely dif-
fering and difficult optimization scenarios. We firmly believe that DE
will continue to remain a vibrant and active field of multi-disciplinary
research in the years to come.
Appendix A. Supplementary material

Supplementary data associated with this article can be found in
the online version at http://dx.doi.org/10.1016/j.swevo.2016.01.004.
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