Development of intelligent systems (RInS)

Task 3: RoboSheriff

Danijel Skočaj University of Ljubljana Faculty of Computer and Information Science

Academic year: 2022/23

RoboSheriff

Setup:

- "Small wild west city" scene (fenced area).
- Several persons (faces) in the scene.
- Several "Wanted" posters in the scene.
- Four "buildings" (cylinders) of different colours.
- Four parking slots marked with rings of different sizes and colours.

Goal:

- Imprison the robber.
- Task:
 - Find all persons in the city.
 - Find the posters and decide which robber to find and catch.
 - Talk to persons to find out where the robber is potentially hidding.
 - Look on the top of buildings (cylinders) if there are robbers hidden.
 - When a robber is found, "take" him to the prison.
 - Find out which building is the prison.
 - Park the robot in front of the prison.

• in simulation...

Simulated scene

- There will be faces, posters, and other objects on the walls, including printed rings
- There might be different objects in the scene at the same height as 3D rings
- Rings will not be positioned exactly above the parking place

- Find all persons
 - Done for Task 1
 - The number of persons present is not known in advance
 - (Preferably) implement the autonomous exploration of space
- Find the posters, decide which robbers to find, and determine where to take them
 - Detect posters
 - By detecting faces appearing on posters, or poster design
 - Make sure to differentiate between persons and posters
 - Remember the face depicted
 - Recognize the award offered
 - Using OCR, digit classifications, etc.
 - Determine the colour of the ring denoting the prison cylinder
 - Determine the colour of the ring depicted on the poster or
 - determine the colour of the text or
 - recognise the word describing the colour of the ring

- Have a dialogue with the persons to determine the potential hiding places
 - Approach a person
 - Ask him about the colours of the cylinders the robbers are potentially hiding on top of
 - Implement a simple dialogue:
 - R: "Do you know where the robber is hiding?"
 - H1: "No, I don't."
 - R: "Do you know where the robber is hiding?"
 - H2: "Maybe on the top of the blue cylinder. Or on the top of the red one."
 - R: "OK. Thank you."
 - One of the persons can give a useful hint, the rest of them know nothing.
 - The hint always includes two cylinders.
 - Simple speech synthesis
 - Simple speech recognition, limited vocabulary
 - Automatic speech recognition
 - (Or text input as a backup)

- Find the robber
 - Detect the cylinders
 - Recognise their colours
 - Approach the cylinders of interest
 - Look on top of them using the camera on the robot manipulator
 - the robot is allowed to look on the top of only the cylinders it was told to
 - Detect the faces
 - Find out, which of the faces corresponds to the face on the poster
 - Using face reidentification
 - or classification
 - or image retrieval
 - Tell the robber to enter the robot car

- Find the prison and park
 - Detect the rings
 - Recognise their colours to determine the prison
 - Park in the parking slot below the corresponding ring
 - Done for Task 2
 - The parking slot will not be positioned exactly under the ring
 - Say "I'm done!".
 - Wave with the manipulator.

Shortcuts

- You may not implement all the functionalities (for a lower grade)
- You may not implement the autonomous exploration of space
 - and can use fixed goals instead.
- The robot may avoid recognising the digits on the poster
 - and randomly select the robber to go after.
- The robot may skip determining which ring represents the prison
 - and use the colour written in the QR code.
- The robot can skip the dialogue with a person
 - and read the colours written in the QR code.
- You may not implement the face reidentification
 - and read the colour of the correct cylinder in the QR code.
 - The QR code will therefore include all necessary information in a simple format:

```
ring blue cylinder red cylinder green face green
```

Demonstration

- Demonstrate what is going on in the robot
- Visualize in RViz:
 - Locations of detected cylinders, rings, faces, posters
 - Recognised colours
 - Navigation goals, path plans
 - Current sensor readings (images, Lidar)
 - Show live strem from both cameras
- Show dialogue in a separate window
- Show the reasoning process
- Show also the current environment in Gazebo

R: "Do you know where the robber is hidding?"

H: "No, I don't."

R: "Do you know where the robber is hidding?"

H: "Maybe on the top of the blue cylinder. Or on the top of the red one."

R: "OK. Thank you."

Tasks

- System setup
 - Running ROS
 - Tele-operating TurtleBot
- Autonomous navigation
 - Autonomous control of the mobile platform
 - Acquiring images and 3D information
 - Simultaneous mapping and localization (SLAM)
 - Path planning, obstacle avoidance, approaching
 - Advanced fine manoeuvring and parking
 - Intelligent navigation and exploration of space
- Advanced perception and cognitive capabilities
 - Detection of faces, circles, 3D rings, posters, 3D cylinders
 - Recognition of digits, colour, reidentification
 - Basic manipulation and visual servoing
 - Speech synthesis, speech recognition, dialogue processing (reading QR codes)
 - Belief maintenance, reasoning, planning

Task 1

Task 2

Task 3

Integrate everything into a robust coherent system

Evaluation protocol

- The evaluation course will be set up in advance
 - The main setup will not change
- The teams will be allowed to build the map in advance
- The faces, cylinders, posters, parking places and the rings will be positioned on the day of the evaluation
 - The size and colours of the cylinders and rings are known in advance
- The robot has to operate completely autonomously
 - only the initial positioning is allowed
 - (and the optional answering by typing the text)
- The robot can start at any position
- Every team will have allocated 15-20 minutes to show the performance of the robot
- The evaluation will take place in the last week of the semester

Requirements

- System setup
 - Running ROS
 - Tele-operating TurtleBot
- Autonomous navigation
 - Autonomous control of the mobile platform
 - Acquiring images and 3D information
 - Simultaneous mapping and localization (SLAM)
 - Path planning, obstacle avoidance, approaching
 - Advanced fine manoeuvring and parking
 - Intelligent navigation and exploration of space
- Advanced perception and cognitive capabilities
 - Detection of faces, circles, 3D rings, posters, 3D cylinders
 - Recognition of digits, colour, reidentification
 - Basic manipulation and visual servoing
 - Speech synthesis, speech recognition, dialogue processing (reading QR codes)
 - Belief maintenance, reasoning, planning

For 6
For + max. 2
For + max. 2

Grading

• Must do:

- Face detection (2 pts)
- Poster detection (2 pts)
- Ring detection (2 pts)
- Colour recognition (1 pt)
- Approaching faces (1 pt)
- Parking (2 pts)

Should do:

- Digit recognition (1 pt)
- Circle or color name rec. (1pt)
- Cylinder detection (2 pts)
- Approaching cylinders (1 pt)
- Taking images on top of cyl. (1 pt)
- Face reidentification (2pt)
- Auton. space exploration (2 pts)
- Dialogue with ASR (2 pts)
- Weaving with manipulator (1pt)

Performance evaluation

- Navigation (1 pt)
- Reasoning (1 pt)
- Visualisation (1 pt)
- Robustness (1 pts)
- Relative speed (1 pts)
- Overall impression (2 pts)

Points:

- Must do: 10
- Should do: 13
- Performance: 7
- Total: 30

Task 3 goals

- The main goals of the third task and evaluation are:
 - to navigate the robot around
 - to detect faces in 2D
 - to detect objects (rings and cylinders) in 3D
 - to learn and recognize colours
 - to reidentify faces
 - to learn and recognize digits
 - to do simple reasoning
 - to do simple dialogue processing
 - to plan adequate actions
 - to fine manoeuvre the robot
 - to do simple mobile manipulation
 - to integrate all functionalities into a coherent system