
Exercise 4: Face detection and transform frames

Development of Intelligent Systems

2021

In this exercise you will get introduced to some ways in which you can do face detection
as well as working with transform frames in ROS.

1 Transform frames - tf2
One of the cornerstones of the ROS framework is the tf2 (the next version of tf) library
which handles chains of coordinate transforms. The main idea of coordinate transform
chains is that individual components (camera, wheel, arm, etc.) of the robot are described
using their own coordinate spaces which are hierarchically linked between themselves.

1.1 Playing with coordinate transforms

Read and complete the following tutorials that introduce one of the core ROS libraries,
the tf2 library, that handles coordinate frames and their translations. The tutorials use a
simulated turtle in a 2D space so no real robot is required at this point (which makes the
development much easier).

• The turtlesim package (which we have used several times)

• Main page for tf2

• Demo introduction to tf2

1

http://www.ros.org/wiki/turtlesim
http://wiki.ros.org/tf2
http://wiki.ros.org/tf2/Tutorials/Introduction to tf2


• Python

– Getting transformations: A simple transform listener, A listener with time, A
listener with time travel.

– Adding a transform frame to the transform frame tree: Adding a frame, Static
frame broadcaster, Dynamic frame broadcaster.

• C++

– Getting transformations: A simple transform listener, A listener with time, A
listener with time travel.

– Adding a transform frame to the transform frame tree: Adding a frame, Static
frame broadcaster, Dynamic frame broadcaster.

• Debugging tf2

1.2 Breadcrumb trail

One of the examples for this exercise is a breadcrumbs node that listens for current position
of the robot and displays a new marker in map coordinate system at the location of the
robot at a given interval. It uses the TransformListener class to obtain a transformation
from the base_link to the map coordinate system. It then accumulates these positions
over time and publishes them for visualization in Rviz as Markers. Get familiar with
markers, since you will need to use them to successfully complete the tasks in this course.
In the comments of the breadcrumbs node you also have many different ways of using
the TransformListener class.

+ This assignment will be very useful later on when you will frequently have to
transform points from various detections from camera coordinate space to the
map because the camera moves around with the robot so the position of the
detection may change all the time.

2

http://wiki.ros.org/tf2/Tutorials/Writing a tf2 listener (Python)
http://wiki.ros.org/tf2/Tutorials/tf2 and time (Python)
http://wiki.ros.org/tf2/Tutorials/Time travel with tf2 (Python)
http://wiki.ros.org/tf2/Tutorials/Time travel with tf2 (Python)
http://wiki.ros.org/tf2/Tutorials/Adding a frame (Python)
http://wiki.ros.org/tf2/Tutorials/Writing a tf2 static broadcaster (Python)
http://wiki.ros.org/tf2/Tutorials/Writing a tf2 static broadcaster (Python)
http://wiki.ros.org/tf2/Tutorials/Writing a tf2 broadcaster (Python)
http://wiki.ros.org/tf2/Tutorials/Writing a tf2 listener (C++)
http://wiki.ros.org/tf2/Tutorials/tf2 and time (C++)
http://wiki.ros.org/tf2/Tutorials/Time travel with tf2 (C++)
http://wiki.ros.org/tf2/Tutorials/Time travel with tf2 (C++)
http://wiki.ros.org/tf2/Tutorials/Adding a frame (C++)
http://wiki.ros.org/tf2/Tutorials/Writing a tf2 static broadcaster (C++)
http://wiki.ros.org/tf2/Tutorials/Writing a tf2 static broadcaster (C++)
http://wiki.ros.org/tf2/Tutorials/Writing a tf2 broadcaster (C++)
http://wiki.ros.org/tf2/Tutorials/Debugging tf2 problems
http://wiki.ros.org/rviz/DisplayTypes/Marker


2 Face detection
Additionally in the provided package for this exercise you have two minimalistic Python
implementation of a face detector and localizer. The first face detector is based on the
dlib library and to get it working you need to install the dlib library (pip3 install dlib).
The second face detector is a deep neural network that we use through the DNN (Deep
Neural Network) module in OpenCV. More detailed discussion the these modules will be
available in the video tutorial for this exercise.

3 Message filtering
Sometimes, we want to carefully handle the order in which we process messages. For
example, when we want to localize a detected face in the map, we need to make sure that
the RGB image we used for detecting the face, the depth image we used for measuring
the distance to the face, and the position of the robot we used for converting the relative
position to a global position, were all acquired at the same time. For applications like this,
you can use the message_filters package, which containes utility functions for dealing
with timestamps of ROS mesages. You can read the documentation on the package here.

4 Homework
• You should create a program that drives the robot around the polygon. The robot

should detect all the faces in the polygon and place a Rviz marker where each
face was detected. The robot should place only one marker for each face that was
detected!

3

http://wiki.ros.org/message_filters

	Transform frames - tf2
	Playing with coordinate transforms
	Breadcrumb trail

	Face detection
	Message filtering
	Homework

