Development of intelligent systems (RInS)

Transformations between coordinate frames

Danijel Skočaj University of Ljubljana Faculty of Computer and Information Science

Literature: Tadej Bajd (2006).

Osnove robotike, chapter 2

Academic year: 2022/23

Coordinate frames

3D environment

2D navigation

Degrees of freedom

- DOF
- 6 DOF for full description of the pose of an object in space
 - 3 translations (position)
 - 3 rotations (orientation)

Degrees of freedom

Degrees of freedom

Position and orientation of the robot

Pose of the object in 3D space

Robot manipulator

- ViCoS LCLWOS robot manipulator
 - 5DOF
- 6DOF needed for general grasping

Chains of coordinate frames

Transformations between coordinate frames

Position and orientation

- Pose=Position+Orientation
 - Position(P2)=Position (P3)
 - Position(P1)~=Position (P2)
 - Orientation(P1)=Orientation (P3)
 - Orientation(P2)~=Orientation (P3)
 - Pose(P1)~=Pose(P2)~=Pose(P3)

Translation and rotation

- Moving objects:
 - P1 v P3: Translation (T)
 - P2 v P3: Rotation (R)
 - P1 v P2: Translation in rotation

Position

- Position: vector from the origin of the coordinate frame to the point
- Position of the object P1:

$${}^{0}\mathbf{p}_{1} = {}^{0}\mathbf{x}_{1} {}^{0}\mathbf{i} + {}^{0}\mathbf{y}_{1} {}^{0}\mathbf{j} + {}^{0}\mathbf{z}_{1} {}^{0}\mathbf{k}$$

Orientation

- Right-handed coordinate frame
- Rotation around x_0 axis:
- Rotation matrix:

$${}^{0}\mathbf{R}_{1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\alpha & -\sin\alpha \\ 0 & \sin\alpha & \cos\alpha \end{bmatrix}$$

- Orientation of c.f. O_1 with respect to c.f. O_0
- ${\color{red} \bullet}$ Transformation of the vector ${^l} p$ expressed in the c.f. O_1 into the coordinates expressed in the c.f. O_0 :

$$^{0}\mathbf{p} = {}^{0}\mathbf{R}_{1} \cdot {}^{1}\mathbf{p}$$

Rotation matrices

Rotation around x axis:

$$\mathbf{R}_{X,\alpha} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{bmatrix}$$

Rotation around y axis :

$$\mathbf{R}_{Y,\alpha} = \begin{bmatrix} \cos \alpha & 0 & \sin \alpha \\ 0 & 1 & 0 \\ -\sin \alpha & 0 & \cos \alpha \end{bmatrix}$$

Rotation around z axis :

$$\mathbf{R}_{Z,\alpha} = \begin{bmatrix} \cos \alpha & -\sin \alpha & 0 \\ \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Properties of rotation matrix

- Rotation is an orthogonal transformation matrix
- Inverse transformation:

$${}^{1}\mathbf{R}_{0} = ({}^{0}\mathbf{R}_{1})^{-1} = ({}^{0}\mathbf{R}_{1})^{T}$$

- In the right-handed coordinate frame the determinant equals to 1
- Addition of angles:

$$\mathbf{R}_{X,\alpha_1} \cdot \mathbf{R}_{X,\alpha_2} = \mathbf{R}_{X,\alpha_1 + \alpha_2}$$

Backward rotation:

$$\mathbf{R}_{X,\alpha}^{-1} = \mathbf{R}_{X,-\alpha}$$

Consecutive rotations

- Postmultiplicate the vector with the rotation matrix
- Consecutive rotations:

$${}^{0}\mathbf{p} = {}^{0}\mathbf{R}_{1} \cdot {}^{1}\mathbf{p} \qquad {}^{1}\mathbf{p} = {}^{1}\mathbf{R}_{2} \cdot {}^{2}\mathbf{p}$$
$${}^{0}\mathbf{p} = {}^{0}\mathbf{R}_{1} \cdot {}^{1}\mathbf{R}_{2} \cdot {}^{2}\mathbf{p}$$

Rotation matrices are postmultiplicated:

$${}^{0}\mathbf{R}_{2} = {}^{0}\mathbf{R}_{1} \cdot {}^{1}\mathbf{R}_{2}$$

- In general:
 - Postmultiplicate matrices for all rotations
 - Rotations always refer to the respective relative current coordinate frame

$${}^{0}\mathbf{R}_{n} = {}^{0}\mathbf{R}_{1} \cdot {}^{1}\mathbf{R}_{2} \cdot \cdot \cdot {}^{n-1}\mathbf{R}_{n}$$

Transformations

Transformation from one c.f. to another:

• If c.f. are parallel:

$$^{0}\mathbf{p} = ^{1}\mathbf{p} + ^{0}\mathbf{d}_{1}$$

- Only translation
- If c.f. are not parallel: ${}^{0}\mathbf{p} = {}^{0}\mathbf{R}_{1} \cdot {}^{1}\mathbf{p} + {}^{0}\mathbf{d}_{1}$
 - Rotation and translation
 - General pose description

Matrix notation

Three coordinate frames:

$${}^{0}\mathbf{p} = {}^{0}\mathbf{R}_{1} \cdot {}^{1}\mathbf{p} + {}^{0}\mathbf{d}_{1}$$

$${}^{0}\mathbf{p} = {}^{0}\mathbf{R}_{2} \cdot {}^{2}\mathbf{p} + {}^{0}\mathbf{d}_{2}$$

Combine the transformations:

$${}^{0}\mathbf{R}_{2} = {}^{0}\mathbf{R}_{1} \cdot {}^{1}\mathbf{R}_{2} \qquad {}^{0}\mathbf{d}_{2} = {}^{0}\mathbf{d}_{1} + {}^{0}\mathbf{R}_{1} \cdot {}^{1}\mathbf{d}_{2}$$
$${}^{0}\mathbf{p} = {}^{0}\mathbf{R}_{1} \cdot {}^{1}\mathbf{R}_{2} \cdot {}^{2}\mathbf{p} + {}^{0}\mathbf{R}_{1} \cdot {}^{1}\mathbf{d}_{2} + {}^{0}\mathbf{d}_{1}$$

- We can add the translation vectors if they are expressed in the same coordinate frame
- The two equations in the matrix form:

$$\begin{bmatrix} {}^{0}\mathbf{R}_{1} & {}^{0}\mathbf{d}_{1} \\ \mathbf{0} & 1 \end{bmatrix} \cdot \begin{bmatrix} {}^{1}\mathbf{R}_{2} & {}^{1}\mathbf{d}_{2} \\ \mathbf{0} & 1 \end{bmatrix} = \begin{bmatrix} {}^{0}\mathbf{R}_{1} \cdot {}^{1}\mathbf{R}_{2} & {}^{0}\mathbf{R}_{1} \cdot {}^{1}\mathbf{d}_{2} + {}^{0}\mathbf{d}_{1} \\ \mathbf{0} & 1 \end{bmatrix}$$

Homogeneous transformations

General pose

$$^{0}\mathbf{p} = \mathbf{R} \cdot ^{1}\mathbf{p} + \mathbf{d}$$

can be expressed in the matrix form:

$$\mathbf{H} = \begin{bmatrix} \mathbf{R} & \mathbf{d} \\ \mathbf{0} & 1 \end{bmatrix}$$

- Homogeneous transformation homogenises (combines) rotation and translation in one matrix
- Very concise and convenient format
- Homogeneous matrix of size 4x4 (for 3D space)
 - One row is added, also 1 in the position vector

$$\begin{bmatrix} {}^{0}\mathbf{p} \\ 1 \end{bmatrix} \quad \begin{bmatrix} {}^{1}\mathbf{p} \\ 1 \end{bmatrix} = {}^{0}\mathbf{H}_{1} \begin{bmatrix} {}^{1}\mathbf{p} \\ 1 \end{bmatrix}$$

Homogenous matrix

Rotation R and translation d:

Only rotation:

Only translation:

Properties of homogeneous transformation

• Inverse of homogeneous transformation:

$${}^{0}\mathbf{p} = \mathbf{R} \cdot {}^{1}\mathbf{p} + \mathbf{d}$$
$${}^{1}\mathbf{p} = \mathbf{R}^{T} \cdot {}^{0}\mathbf{p} - \mathbf{R}^{T}\mathbf{d}$$

$$\mathbf{H}^{-1} = \begin{bmatrix} \mathbf{R}^T & -\mathbf{R}^T \cdot \mathbf{d} \\ \mathbf{0} & 1 \end{bmatrix}$$

- Consecutive poses:
 - Postmultiplication of homogeneous transformations:

$${}^{0}\mathbf{H}_{2} = {}^{0}\mathbf{H}_{1} \cdot {}^{1}\mathbf{H}_{2}$$

$${}^{0}\mathbf{H}_{n} = {}^{0}\mathbf{H}_{1} \cdot {}^{1}\mathbf{H}_{2} \dots {}^{n-1}\mathbf{H}_{n}$$

 An element can be transformed arbitrary number of times – by multiplying homogeneous matrices

Example

- Two rotations
 - Vector $\mathbf{v} = [7, 3, 2, 1]^T$ first rotate for 90° around z axis $\mathbf{w} = \mathbf{Rot}(z, 90) \mathbf{v}$ and then for 90° around y axis $\mathbf{q} = \mathbf{Rot}(y, 90) \mathbf{w}$

Example- two rotations

$$w = Rot (z, 90) v$$

 $q = Rot (y, 90) w$
 $q = Rot (y, 90) Rot (z, 90) v$

$$\mathbf{Rot}(\mathbf{y},90)\ \mathbf{Rot}(\mathbf{z},90) = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{q} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 7 \\ 3 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 7 \\ 3 \\ 1 \end{bmatrix}$$

Example - translation

- After two rotations also translate the vector for (4,-3,7)
 - Merge
 - Translation Trans(4i -3j + 7k) with rotations $Rot(y,90) \cdot Rot(z,90)$

$$\mathbf{H}_{1} = \begin{bmatrix} 1 & 0 & 0 & 4 \\ 0 & 1 & 0 & -3 \\ 0 & 0 & 1 & 7 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 4 \\ 1 & 0 & 0 & -3 \\ 0 & 1 & 0 & 7 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 4 \\ 1 & 0 & 0 & -3 \\ 0 & 1 & 0 & 7 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 4 \\ 1 & 0 & 0 & -3 \\ 0 & 1 & 0 & 7 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$=$$
 Trans (4, -3, 7) Rot (y,90) Rot (z, 90)

Transformation of the point (7,3,2):

$$\mathbf{x} = \mathbf{H}_1 \cdot \mathbf{v} = \begin{bmatrix} 0 & 0 & 1 & 4 \\ 1 & 0 & 0 & -3 \\ 0 & 1 & 0 & 7 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 7 \\ 3 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 6 \\ 4 \\ 10 \\ 1 \end{bmatrix}$$

Transformation of the coordinate frame

- Homogeneous transformation matrix transforms the base coordinate frame
 Trans(4, -3, 7) Rot(y,90) Rot(z, 90)
 - Vector of origin of c.f.:

$$\mathbf{H}_{1} \cdot \mathbf{v} = \begin{bmatrix} 0 & 0 & 1 & 4 \\ 1 & 0 & 0 & -3 \\ 0 & 1 & 0 & 7 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0 \\ 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ -3 \\ 7 \\ 1 \end{bmatrix} = \mathbf{v}'$$

$$\mathbf{z}_{e}^{n}$$

Unit vectors:

$$\begin{bmatrix} 0 & 0 & 1 & 4 \\ 1 & 0 & 0 & -3 \\ 0 & 1 & 0 & 7 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ -2 \\ 7 \\ 1 \end{bmatrix} = \mathbf{x}_{e}$$

$$\mathbf{y}_{e'} = [4, -3, 8, 1]^{T}$$
, $\mathbf{z}_{e'} = [5, -3, 7, 1]^{T}$

Pose of the coordinate frame

• Unit vectors of the new coordinate frame:

$$\mathbf{x}_{e}^{n}$$
: $4\mathbf{i} - 2\mathbf{j} + 7\mathbf{k} - 4\mathbf{i} + 3\mathbf{j} - 7\mathbf{k} = 0\mathbf{i} + 1\mathbf{j} + 0\mathbf{k}$
 $\mathbf{x}_{e}^{n} = [0, 1, 0, 0]^{T}$
 \mathbf{y}_{e}^{n} : $4\mathbf{i} - 3\mathbf{j} + 8\mathbf{k} - 4\mathbf{i} + 3\mathbf{j} - 7\mathbf{k} = 0\mathbf{i} + 0\mathbf{j} + 1\mathbf{k}$
 $\mathbf{y}_{e}^{n} = [0, 0, 1, 0]^{T}$
 $\mathbf{z}_{e}^{n} = 5\mathbf{i} - 3\mathbf{j} + 7\mathbf{k} - 4\mathbf{i} + 3\mathbf{j} - 7\mathbf{k} = 1\mathbf{i} + 0\mathbf{j} + 0\mathbf{k}$
 $\mathbf{z}_{e}^{n} = [1, 0, 0, 0]^{T}$

 Transformaction matrix descibes the coordinate frame!

Movement of the coordinate frame

- Premultiplication or postmultiplication (of an object or c.f.) with transformation
- Example:
 - Coordinate frame: $\mathbf{C} = \begin{bmatrix} \mathbf{i_c} & \mathbf{j_c} & \mathbf{k_c} \\ 1 & 0 & 0 & 20 \\ 0 & 0 & -1 & 10 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \mathbf{i}$

Transformation:

$$\mathbf{P} = \begin{bmatrix} 0 & -1 & 0 & 10 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 10 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \mathbf{Trans}(10, 0, 0) \cdot \mathbf{Rot}(z, 90)$$

Premultiplication

$$\mathbf{P} \cdot \mathbf{C} = \mathbf{X} = \begin{bmatrix} 0 & -1 & 0 & 10 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & 20 \\ 0 & 0 & -1 & 10 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 20 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- The pose of the object is transformed with respect to the **fixed** reference coordinate frame in which the object coordinates were given.
- Order of transformations:

 $\frac{\mathbf{Trans}(10,0,0) \cdot \mathbf{Rot}(z,90)}{\longleftarrow}$

Postmultiplication

$$\mathbf{C} \bullet \mathbf{P} = \mathbf{Y} = \begin{bmatrix} 1 & 0 & 0 & 20 \\ 0 & 0 & -1 & 10 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \mathbf{i} \cdot \begin{bmatrix} 0 & -1 & 0 & 10 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & -1 & 0 & 30 \\ 0 & 0 & -1 & 10 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- The pose of the object is transformed with respect to its own relative current coordinate frame
- Order of transformations:

 $\mathbf{Trans}(10,0,0) \cdot \mathbf{Rot}(z,90)$

Movement of the reference c.f.

• Example: **Trans**(2,1,0)**Rot**(z,90)

$$\begin{bmatrix} 0 & -1 & 0 & 2 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} =$$

$$= \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 0 & -1 & 0 & 2 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} =$$

$$= \begin{bmatrix} 0 & -1 & 0 & 2 \\ 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Movement of the reference c.f.

Example: **Trans**(2,1,0)**Rot**(z,90)

Package TF in ROS

Maintenance of the coordinate frames through time

Conventions

- Right-handed coordinate frame
- Orientation of the robot or object axes
 - x: forward
 - y: left
 - z: up
- Orientation of the camera axes
 - z: forward
 - x: right
 - y: down
- Rotation representations
 - quaternions
 - rotation matrix
 - rotations around X, Y and Z axes
 - Euler angles

Coordinate frames on mobile plaforms

- map (global map)
 - world coordinate frame
 - does not change (or very rarely)
 - long-term reference
 - useless in short-term
- odom (odometry)
 - world coordinate frame
 - changes with respect to odometry
 - useless in long-term
 - uselful in short-term
- base_link (robot)
 - attached to the robot
 - robot coordinate frame

Tree of coordinate frames

ROS TF2

- tree of coordinate frames and their relative poses
- distributed representation
- dynamic representation
 - changes through time
- accessible representation
 - querying relations between arbitrary coordinate frames

