
CS 545 Robotics

Introduction to

Slides adapted from Sachin Chitta and Radu Rusu (Willow Garage)

Overview

memory management

device drivers file systemscheduler

web browser

email client

window manager

process management

OS

?
my new application

CS 545 Robotics
Introduction to ROS
Peter Pastor
Computational Learning and Motor Control Lab

Overview

web browser

memory management

device drivers file systemscheduler

email client

window manager

process management

OS

Standards

Hardware:

Software:

PCI bus, USB port, FireWire, ...

HTML, JPG, TCP/IP, POSIX, ...

my new application

CS 545 Robotics
Introduction to ROS
Peter Pastor
Computational Learning and Motor Control Lab

Overview

web browser

memory management

device drivers file systemscheduler

email client

window manager

process management

OS
my new application

CS 545 Robotics
Introduction to ROS
Peter Pastor
Computational Learning and Motor Control Lab

...but what about robots?

Lack of standards for robotics

CS 545 Robotics
Introduction to ROS
Peter Pastor
Computational Learning and Motor Control Lab

Typical scenario

worldrobot

1 perceiving

3 manipulating

2 processing

Many sensors require device drivers and calibration procedures

For example cameras: stereo processing, point cloud generation...

Common to many sensors: filtering, estimation, coordinate transformation,
representations, voxel grid/point cloud processing, sensor fusion,...

1

3 Motor control: inverse kinematics/dynamics, PID control, force control, ...

2

CS 545 Robotics
Introduction to ROS
Peter Pastor
Computational Learning and Motor Control Lab

Algorithms for object detection/recognition, localization, navigation, path/motion
planning, decision making, ...

Control loops

worldrobot

1 perceiving

2 processing

3 manipulating

Many control loop on different time scales

Outer most control loop may run once every second (1Hz) or slower

Inner most may run at 1000Hz or even higher rates

Software requirements:

Distributed processing with loose coupling. Sensor data comes in
at various time scales.

Real time capabilities for tight motor control loops.

CS 545 Robotics
Introduction to ROS
Peter Pastor
Computational Learning and Motor Control Lab

Debugging tools

worldrobot

1 perceiving

3 manipulating

visualization

2 processing

Simulation: No risk of breaking real robots, reduce debugging cycles, test in super real-
time, controlled physics, perfect model is available...

Visualization: Facilitates debugging, ...looking at the world from the robot’s perspective.
Data trace inspections allow debugging on small time scales.

simulation

CS 545 Robotics
Introduction to ROS
Peter Pastor
Computational Learning and Motor Control Lab

Overview

web browser

memory management

device drivers file systemscheduler

email client

window manager

process management

simulation

navigation visualizationtask executive

message passing

device drivers

OS

perception

ROS
planning

control

data logging

real-time capabilities

CS 545 Robotics
Introduction to ROS
Peter Pastor
Computational Learning and Motor Control Lab

Overview

CS 545 Robotics
Introduction to ROS
Peter Pastor
Computational Learning and Motor Control Lab

1 Orocos: <http://www.orocos.org>

2 OpenRTM: <http://www.is.aist.go.jp>

3 ROS: <http://www.ros.org>

4 OPRoS: <http://opros.or.kr>

5 JOSER: <http://www.joser.org>

6 InterModalics: <http://intermodalics.eu>

7 Denx: <http://denx.de>

8 GearBox: <http://gearbox.sourceforge.net/gbx_doc_overview.html>

Why should we agree on one standard ?

Code reuse, code sharing:
stop inventing the wheel again and again... instead build on top of each other’s code.

Ability to run the same code across multiple robots:

portability facilitates collaborations and allows for comparison of similar
approaches which is very important especially in science.

http://www.orocos.org/
http://www.is.aist.go.jp/
http://www.ros.org/
http://opros.or.kr/
http://www.joser.org/
http://intermodalics.eu/
http://denx.de/
http://gearbox.sourceforge.net/gbx_doc_overview.html

What is ROS ?

ROS is an open-source, meta-operating system
and stands for Robot Operating System.

It provides the services you would expect from an operating
system, including hardware abstraction, low-level device
control, implementation of commonly-used functionality,
message-passing between processes, and package
management.

http://www.ros.org (documentation)

https://lists.sourceforge.net/lists/listinfo/ros-users (mailing list)

http://www.ros.org/wiki/ROS/Installation (it’s open, it’s free !!)

Mainly supported for Ubuntu linux, experimental for Mac
OS X and other unix systems.

http://www.ros.org/wiki/ROS/StartGuide (tutorials)

CS 545 Robotics
Introduction to ROS
Peter Pastor
Computational Learning and Motor Control Lab

http://www.ros.org/
http://www.ros.org/wiki/ROS/Installation
http://www.ros.org/wiki/ROS/StartGuide

Robots using ROS
http://www.ros.org/wiki/Robots

CS 545 Robotics
Introduction to ROS
Peter Pastor
Computational Learning and Motor Control Lab

many more....
...and many more to come...

http://www.ros.org/wiki/Robots

ROS package system

How to facilitate code sharing and code reuse ?

A package is a building block and implements a reusable capability

Complex enough to be useful

Simple enough to be reused by other packages

A package contains one or more executable
processes (nodes) and provides a ROS interface:

Messages describe the data format of the in/output
of the nodes. For example, a door handle detection
node gets camera images as input and spits out
coordinates of detected door handles.

Service and topics provide the standardized ROS
interface to the rest of the system.

CS 545 Robotics
Introduction to ROS
Peter Pastor
Computational Learning and Motor Control Lab

ROS package system

CS 545 Robotics
Introduction to ROS
Peter Pastor
Computational Learning and Motor Control Lab

ROS packa

Collection of packages and stacks, hosted on
Many repositories (>50): Stanford, CMU, TUM

http://www.ros.org/wiki/Repositories (check it

ge system

line
, Leuven, USC, Bosch, ...

out...)

CS 545 Robotics
Introduction to ROS
Peter Pastor
Computational Learning and Motor Control Lab

http://www.ros.org/wiki/Repositories

ROS package system

ROS packages tend to follow a common structure. Here are
some of the directories and files you may notice.

• bin/: compiled binaries (C++ nodes)

• include/package_name: C++ include headers

• msg/: Message (msg) types

• src/package_name/: Source files

• srv/: Service (srv) types

• scripts/: executable scripts (Python nodes)

• launch/: launch files

• CMakeLists.txt: CMake build file (see CMakeLists)

• manifest.xml: Package Manifest

• mainpage.dox: Doxygen mainpage documentation

CS 545 Robotics
Introduction to ROS
Peter Pastor
Computational Learning and Motor Control Lab

ROS package system

<package>

<description brief="one line of text">

long description goes here,

XHTML is allowed

</description>

<author>Alice/alice@somewhere.bar</author>

<license>BSD</license>

<depend

<depend

<rosdep

package="roscpp"/>

package="my_package"/>

name="libreadline5-dev"/>

<export>

<cpp cflags="-I${prefix}/include"

lflags="-L${prefix}/lib -lmy_lib"/>

</export>

</package>

manifest.xml

The manifest is a
minimal specification
about a package and
supports a wide variety
of ROS tools.

CS 545 Robotics
Introduction to ROS
Peter Pastor
Computational Learning and Motor Control Lab

mailto:Alice/alice@somewhere.bar

ROS core

master

roscore

CS 545 Robotics
Introduction to ROS
Peter Pastor
Computational Learning and Motor Control Lab

The roscore is a collection of nodes and programs that
are pre-requisites for a ROS-based system.

It provides naming and registration services to the rest of the
nodes in the ROS system. It tracks publishers and subscribers to
topics as well as services.

The role of the master is to enable individual ROS nodes to locate
one another. Once these nodes have located each other they
communicate with each other peer-to-peer.

ROS uses socket communication to facilitate networking. The
roscore starts on http://my_computer:11311

ROS package system

node 1

<launch>

<node pkg="my_package"

type="node1"

name="node1" args="--test">

<param name="my_param"

value="42" />

</node>

</launch>

node1.launch

get

param server

my_param=42 set

master

roscore

CS 545 Robotics
Introduction to ROS
Peter Pastor
Computational Learning and Motor Control Lab

ROS: message passing

node 1
node 2

Problem:

Synchronization and message passing across multiple processes, maybe even
across multiple computer and/or robots.

master

roscore

node 3

?

?
?

CS 545 Robotics
Introduction to ROS
Peter Pastor
Computational Learning and Motor Control Lab

ROS: message passing

Problem:

node 1

master

roscore

assing across multiple processes, maybe even
robots.

node 3

node 2

init

#include

#include

#include

CS 545 Robotics
Introduction to ROS
Peter Pastor
Computational Learning and Motor Control Lab

"ros/ros.h"

"std_msgs/String.h"

<sstream>

int main(int argc, char **argv)

Synchronization and message p{

across multiple computer and/or

1000);

ros::init(argc, argv, "node1");

ros::NodeHandle n;

ros::Publisher chatter_pub =

n.advertise<std_msgs::String>("info",

ros::Rate loop_rate(10);

int count = 0;

while (ros::ok())

{

std_msgs::String msg;

std::stringstream ss;

ss << "hello world " << count;

msg.data = ss.str();

ROS_INFO("%s", msg.data.c_str());

chatter_pub.publish(msg);

ros::spinOnce();

loop_rate.sleep();

++count;

}

return 0;

}

ROS: message passing

Problem:

node 1

master

roscore

assing across multiple processes, maybe even
robots.

node 3

node 2

advertise

#include

#include

#include

"ros/ros.h"

"std_msgs/String.h"

<sstream>

int main(int argc, char **argv)

Synchronization and message p{

across multiple computer and/or

1000);

ros::init(argc, argv, "node1");

ros::NodeHandle n;

ros::Publisher chatter_pub =

n.advertise<std_msgs::String>("info",

ros::Rate loop_rate(10);

int count = 0;

while (ros::ok())

{

std_msgs::String msg;

std::stringstream ss;

ss << "hello world " << count;

msg.data = ss.str();

ROS_INFO("%s", msg.data.c_str());

chatter_pub.publish(msg);

ros::spinOnce();

loop_rate.sleep();

++count;

}

return 0;

}

CS 545 Robotics
Introduction to ROS
Peter Pastor
Computational Learning and Motor Control Lab

topic

/node1/info

ROS: message passing

Problem:

node 1

master

roscore

assing across multiple processes, maybe even
robots.

node 3

node 2

#include

#include

#include

"ros/ros.h"

"std_msgs/String.h"

<sstream>

int main(int argc, char **argv)

Synchronization and message p{

across multiple computer and/or

1000);

ros::init(argc, argv, "node1");

ros::NodeHandle n;

ros::Publisher chatter_pub =

n.advertise<std_msgs::String>("info",

ros::Rate loop_rate(10);

int count = 0;

while (ros::ok())

{

std_msgs::String msg;

std::stringstream ss;

ss << "hello world " << count;

msg.data = ss.str();

ROS_INFO("%s", msg.data.c_str());

chatter_pub.publish(msg);

ros::spinOnce();

loop_rate.sleep();

++count;

}

return 0;

}

CS 545 Robotics
Introduction to ROS
Peter Pastor
Computational Learning and Motor Control Lab

advertise

topic

/node1/info

ROS: message passing

Problem:

node 1

master

roscore

assing across multiple processes, maybe even
robots.

node 3

node 2

#include

#include

#include

CS 545 Robotics
Introduction to ROS
Peter Pastor
Computational Learning and Motor Control Lab

"ros/ros.h"

"std_msgs/String.h"

<sstream>

int main(int argc, char **argv)

Synchronization and message p{

across multiple computer and/or

1000);

ros::init(argc, argv, "node1");

ros::NodeHandle n;

ros::Publisher chatter_pub =

n.advertise<std_msgs::String>("info",

ros::Rate loop_rate(10);

int count = 0;

while (ros::ok())

{

std_msgs::String msg;

std::stringstream ss;

ss << "hello world " << count;

msg.data = ss.str();

ROS_INFO("%s", msg.data.c_str());

chatter_pub.publish(msg);

ros::spinOnce();

loop_rate.sleep();

++count;

}

return 0;

}

publish

topic

/node1/info

ROS: message passing

Problem:

Synchronization and message passing across multiple processes, maybe even
across multiple computer and/or robots.

node 1

master

roscore

node 2

node 3

publish subscribe

subscribe

CS 545 Robotics
Introduction to ROS
Peter Pastor
Computational Learning and Motor Control Lab

topic

/node1/info

ROS: message passing

Problem:

Synchronization and message passing across multiple processes, maybe even
across multiple computer and/or robots.

node 1

master

roscore

node 2

node 3

publish subscribe

subscribe

advertise

CS 545 Robotics
Introduction to ROS
Peter Pastor
Computational Learning and Motor Control Lab

ROS: message passing

Problem:

Synchronization and message passing across multiple processes, maybe even
across multiple computer and/or robots.

node 1

master

roscore

node 2

node 3

publish subscribe

subscribe

publish

subscribe

CS 545 Robotics
Introduction to ROS
Peter Pastor
Computational Learning and Motor Control Lab

topic

/node1/info

/node3/info

ROS: logging

Problem:

Synchronization and message passing across multiple processes, maybe even
across multiple computer and/or robots.

node 1

master

roscore

node 2

node 3

publish subscribe

subscribe

publish

subscribe

topic

/node1/info

/node3/info

loggingsubscribe

CS 545 Robotics
Introduction to ROS
Peter Pastor
Computational Learning and Motor Control Lab

ROS: logging

http://www.ros.org/wiki/rosbag

CS 545 Robotics
Introduction to ROS
Peter Pastor
Computational Learning and Motor Control Lab

rosbag: This is a set of tools for recording from and playing

back to ROS topics. It can be used to mimic real sensor

streams for offline debugging.

http://www.ros.org/wiki/rosbag

ROS: device drivers

Problem:

Many sensors do not come with standardized interfaces. Often the manufacturer
only provides support for a single operating system (e.g. Microsoft Windows).

Thus, everybody that wants to use a particular sensor is required to write their own
device driver, which is time consuming and tedious.

Instead, a few people did the
work and the rest of the
world (re-)uses their code
and builds on top of it.

CS 545 Robotics
Introduction to ROS
Peter Pastor
Computational Learning and Motor Control Lab

ROS: robot descriptions

http://www.ros.org/wiki/urdf

urdf: This package contains a C++ parser for the Unified Robot

Description Format (URDF), which is an XML format for representing a

robot model.

<robot name="test_robot">

<link name="link1" />

<link name="link2" />

<link name="link3" />

<link name="link4" />

<joint name="joint1" type="continuous">

<parent link="link1"/>

<child link="link2"/>

</joint>

<joint name="joint2" type="continuous">

<parent link="link1"/>

<child link="link3"/>

</joint>

<joint name="joint3" type="continuous">

<parent link="link3"/>

<child link="link4"/>

</joint>

</robot>

<robot name="test_robot">

CS 545 Robotics
Introduction to ROS
Peter Pastor
Computational Learning and Motor Control Lab

<link name="link1" />

<link name="link2" />

<link name="link3" />

<link name="link4" />

<joint name="joint1" type="continuous">

<parent link="link1"/>

<child link="link2"/>

</joint>

<joint name="joint2" type="continuous">

<parent link="link1"/>

<child link="link3"/>

</joint>

<joint name="joint3" type="continuous">

<parent link="link3"/>

<child link="kinect_link"/>

</joint>

</robot>

calibration
required !!

http://www.ros.org/wiki/urdf

ROS: calibration

http://www.ros.org/wiki/pr2_calibration

Provides a toolchain running through the robot calibration

process. This involves capturing pr2 calibration data, estimating

pr2 parameters, and then updating the PR2 URDF.

CS 545 Robotics
Introduction to ROS
Peter Pastor
Computational Learning and Motor Control Lab

http://www.ros.org/wiki/pr2_calibration

ROS: visualization

rviz: This is a 3D visualization environment for robots. It allows

you to see the world through the eyes of the robot.

CS 545 Robotics
Introduction to ROS
Peter Pastor
Computational Learning and Motor Control Lab

http://www.ros.org/wiki/rviz

http://www.ros.org/wiki/rviz

ROS: 2D/3D perception

http://www.ros.org/wiki/pcl

CS 545 Robotics
Introduction to ROS
Peter Pastor
Computational Learning and Motor Control Lab

OpenCV: (Open Source Computer Vision) is a library of programming functions for
real time computer vision. http://opencv.willowgarage.com/wiki/

Check out CS 574 (Prof. Ram Nevatia) !!

PCL - Point Cloud Library: a comprehensive open source library for n-D Point
Clouds and 3D geometry processing. The library contains numerous state-of-the
art algorithms for: filtering, feature estimation, surface reconstruction, registration,
model fitting and segmentation, etc.

http://www.ros.org/wiki/pcl
http://opencv.willowgarage.com/wiki/

ROS: planning

The motion_planners stack contains different motion
planners including probabilistic motion planners, search-based
planners, and motion planner based on trajectory optimization.

CS 545 Robotics
Introduction to ROS
Peter Pastor
Computational Learning and Motor Control Lab

http://www.ros.org/wiki/motion_planners

http://www.ros.org/wiki/motion_planners

ROS: navigation

navigation: A 2D navigation stack that takes in information

from odometry, sensor streams, and a goal pose and outputs

safe velocity commands that are sent to a mobile base.

CS 545 Robotics
Introduction to ROS
Peter Pastor
Computational Learning and Motor Control Lab

http://www.ros.org/wiki/navigation

http://www.ros.org/wiki/navigation

ROS: task executive

SMACH, which stands for 'state machine', is a task-level
architecture for rapidly creating complex robot behavior.

CS 545 Robotics
Introduction to ROS
Peter Pastor
Computational Learning and Motor Control Lab

http://www.ros.org/wiki/smach

http://www.ros.org/wiki/smach

Example application

CS 545 Robotics
Introduction to ROS
Peter Pastor
Computational Learning and Motor Control Lab

Overview

web browser

memory management

device drivers file systemscheduler

email client

window manager

process management

simulation

navigation visualizationtask executive

message passing

device drivers

OS

perception

ROS
planning

control

data logging

real-time capabilities

CS 545 Robotics
Introduction to ROS
Peter Pastor
Computational Learning and Motor Control Lab

Why should one use ROS ?

CS 545 Robotics
Introduction to ROS
Peter Pastor
Computational Learning and Motor Control Lab

Build on top of existing software, make use of existing tools, and focus on

your own research.

Provide the community your own work such that people can reproduce

your experiments and build on top of it.

More information about ROS

Stanford Course: Robot Perception

http://pr.willowgarage.com/wiki/Stanford_CS324_PerceptionForManipulation

PR2 workshop (Good tutorial videos)

http://www.ros.org/wiki/Events/PR2BetaTraining/Videos

http://pr.willowgarage.com/wiki/Stanford_CS324_PerceptionForManipulation
http://www.ros.org/wiki/Events/PR2BetaTraining/Videos

